
Lecture 3
Page 1

CS 111
Summer 2013

Shareable Executables

•  Often multiple programs share some code
– E.g., widely used libraries

•  Do we need to load a different copy for each
process?
– Not if all they’re doing is executing the code

•  OS can load one copy and make it available to
all processes that need it
– Obviously not in a writeable domain

Lecture 3
Page 2

CS 111
Summer 2013

Some Caveats

•  Code must be relocated to specific addresses
– All processes must use shared code at the same

address
•  Only the code segments are sharable

– Each process requires its own copy of writable
data
•  Which may be associated with the shared code

– Data must be loaded into each process at start time

Lecture 3
Page 3

CS 111
Summer 2013

Shared Libraries

•  Commonly used pieces of code
– Like I/O routines or arithmetic functions

•  Some obvious advantages:
– Reduced memory consumption
– Faster program start-ups, since library is often

already in memory
– Simplified updates

•  All programs using it updated by just updating the
library

Lecture 3
Page 4

CS 111
Summer 2013

Limitations of Shared Libraries
•  Not all modules will work in a shared library

– They cannot define/include static data storage

•  They are read into program memory
– Whether they are actually needed or not

•  Called routines must be known at compile-
time
– Only fetching the code is delayed until run-time

•  Dynamically loaded libraries solve some of
these problems

Lecture 3
Page 5

CS 111
Summer 2013

Layout With Shared Libraries

0x00000000

0xFFFFFFFF

code data

 stack

shared lib1 shared lib2

shared lib3

0x0100000 0x0110000

0x0120000

Lecture 3
Page 6

CS 111
Summer 2013

Dynamically Loadable Libraries
•  DLLs
•  Libraries that are not loaded when a process

starts
•  Only made available to process if it uses them

– No space/load time expended if not used
•  So action must be taken if a process does

request a DLL routine
•  Essentially, need to make it look like the

library was there all along

Lecture 3
Page 7

CS 111
Summer 2013

Making DLLs Work

•  The program load module includes a Procedure
Linkage Table
–  Addresses for routines in DLL resolve to entries in PLT
–  Each PLT entry contains a system call to a run-time loader

•  First time a routine is called, we call run-time loader
–  Which finds, loads, and initializes the desired routine
–  Changes the PLT entry to be a jump to loaded routine
–  Then jumps to the newly loaded routine

•  Subsequent calls through that PLT entry go directly

Lecture 3
Page 8

CS 111
Summer 2013

Shared Libraries Vs. DLLs
•  Both allow code sharing and run-time binding
•  Shared libraries:

– Simple method of linking into programs
– Shared objects obtained at program load time

•  Dynamically Loadable Libraries:
– Require more complex linking and loading
– Modules are not loaded until they are needed

– Complex, per-routine, initialization possible
•  E.g., allocating private data area for persistent local

variables

Lecture 3
Page 9

CS 111
Summer 2013

How Do Threads Fit In?
•  How do multiple threads in the same process

affect layout?
•  Each thread has its own registers, PS, PC
•  Each thread must have its own stack area
•  Maximum size specified at thread creation

– A process can contain many threads
– They cannot all grow towards a single hole
– Thread creator must know max required stack size
– Stack space must be reclaimed when thread exits

Lecture 3
Page 10

CS 111
Summer 2013

Thread Stack Allocation

0x00000000

0xFFFFFFFF

code data

stack

thread
stack 1

0x0120000

thread
stack 2

thread
stack 3

Lecture 3
Page 11

CS 111
Summer 2013

Problems With Fixed Size
Thread Stacks

•  Requires knowing exactly how deep a thread
stack can get

–  Before we start running the thread
•  Problematic if we do recursion
•  How can developers handle this limitation?

–  The use of threads is actually relatively rare
–  Generally used to perform well understood tasks
–  Important to keep this limitation in mind when

writing multi-threaded algorithms

Lecture 3
Page 12

CS 111
Summer 2013

How Does the OS
Handle Processes?

•  The system expects to handle multiple
processes
– Each with its own set of resources
– Each to be protected from the others

•  Memory management handles stomping on
each other’s memory
– E.g., use of domain registers

•  How does the OS handle the other issues?

Lecture 3
Page 13

CS 111
Summer 2013

Basic OS Process Handling

•  The OS will assign processes (or their threads)
to cores
–  If more processes than cores, multiplexing them as

needed
•  When new process assigned to a core, that core

must be initialized
– To give the process illusion that it was always

running there
– Without interruption

Lecture 3
Page 14

CS 111
Summer 2013

Process Descriptors

•  Basic OS data structure for dealing with
processes

•  Stores all information relevant to the process
– State to restore when process is dispatched
– References to allocated resources
–  Information to support process operations

•  Kept in an OS data structure
•  Used for scheduling, security decisions,

allocation issues

Lecture 3
Page 15

CS 111
Summer 2013

Linux Process Control Block
•  The data structure Linux (and other Unix

systems) use to handle processes
•  An example of a process descriptor
•  Keeps track of:

– Unique process ID
– State of the process (e.g., running)
– Parent process ID
– Address space information
– Accounting information
– And various other things

Lecture 3
Page 16

CS 111
Summer 2013

OS State For a Process
•  The state of process's virtual computer
•  Registers

– Program counter, processor status word
– Stack pointer, general registers

•  Virtual address space
– Text, data, and stack segments
– Sizes, locations, and contents

•  All restored when the process is dispatched
– Creating the illusion of continuous execution

Lecture 3
Page 17

CS 111
Summer 2013

Process Resource References
•  OS needs to keep track of what system

resources the process has available
•  Extremely important to get this right

– Process expects them to be available when it runs
next

–  If OS gives something it shouldn’t, major problem
•  OS maintains unforgeable handles for

allocated resources
– Encoding identity and resource state
– Also helpful for reclamation when process ends

Lecture 3
Page 18

CS 111
Summer 2013

Why Unforgeable Handles?

•  Process can ask for any resource
•  But it shouldn’t always get it
•  Process must not be able to create its own OS-

level handle to access a resource
– OS must control which ones the process gets
– OS data structures not accessible from user-mode
– Only altered by trusted OS code

•  So if it’s there, the OS put it there
•  And it has not been modified by anyone else

