
Lecture 3
Page 1

CS 111
Summer 2013

Processes
CS 111

Operating System Principles
Peter Reiher

Lecture 3
Page 2

CS 111
Summer 2013

Outline

•  Processes and threads
•  Going from conceptual to real systems
•  How does the OS handle processes and

threads?
•  Creating and destroying processes

Lecture 3
Page 3

CS 111
Summer 2013

Processes and Threads

•  Threads are a simple concept
•  They are used in real operating systems
•  But they aren’t the actual key interpreter

abstraction of real operating systems
•  Systems like Linux and Windows use another

abstraction
– The process

Lecture 3
Page 4

CS 111
Summer 2013

What Is a Process?

•  Essentially, a virtual machine for running a
program

•  So it contains state
•  And resources required to do its work

– Like threads, virtual memory, communications
primitives

•  Most machines run multiple processes
– Serially and simultaneously

Lecture 3
Page 5

CS 111
Summer 2013

Processes and Programs
•  A program is a static representation of work to

be done
•  A process is the dynamic, running instantiation

of a program
•  Most programs are run many different times

– On the same or different machines

•  Each individual run is represented by a unique
process
– Which has a discrete start and (usually) end

Lecture 3
Page 6

CS 111
Summer 2013

How Does a Process Differ
From a Thread?

•  Processes are a higher level abstraction
•  They can contain multiple threads

–  Implying that there can be simultaneous actions
within one program

– Which is not possible in a thread

•  They typically encapsulate an entire running
program

•  They are heavier weight

Lecture 3
Page 7

CS 111
Summer 2013

The OS and Processes
•  The OS must multiplex virtual processes onto

physical processors
– Start and end processes
– Set them up to run properly
–  Isolate them from other processes
– Ensure that all processes get a chance to do their

work
– Share the physical resources properly

•  One important aspect of this task is properly
handling process state

Lecture 3
Page 8

CS 111
Summer 2013

Process State
•  Similar to thread state
•  Need information on:

– What instruction to run next
– Where the process’ memory is located
– What are the contents of important registers
– What other resources (physical or virtual) are

available to the process
– Perhaps security-related information (like owner)

•  Major components are register state (e.g., the
PC) and memory state

Lecture 3
Page 9

CS 111
Summer 2013

Process State and Memory

•  Processes have several different types of
memory segments
– The memory holding their code
– The memory holding their stack
– The memory holding their data

•  Each is somewhat different in its purpose and
use

Lecture 3
Page 10

CS 111
Summer 2013

Process Code Memory

•  The instructions to be executed to run the
process

•  Typically static
– Loaded when the process starts
– Then they never change

•  Of known, fixed size
•  Often, a lot of the program code will never be

executed by a given process running it

Lecture 3
Page 11

CS 111
Summer 2013

Implications for the OS
•  Obviously, memory object holding the code

must allow execution
– Need not be writeable

•  Self-modifying code is a bad idea, usually

– Should it be readable?
•  Can use a fixed size domain

– Which can be determined before the process
executes

•  Possibility of loading the code on demand

Lecture 3
Page 12

CS 111
Summer 2013

Process Stack Memory

•  Memory holding the run-time state of the
process

•  Modern languages and operating systems are
stack oriented
– Routines call other routines
– Expecting to regain control when the called routine

exits
– Arbitrarily deep layers of calling

•  The stack encodes that

Lecture 3
Page 13

CS 111
Summer 2013

Stack Frames

•  Each routine that is called keeps its relevant
data in a stack frame
–  Its own piece of state

•  Stack frames contain:
– Storage for procedure local (as opposed to global)

variables
– Storage for invocation parameters
– Space to save and restore registers

•  Popped off stack when call returns

Lecture 3
Page 14

CS 111
Summer 2013

Characteristics of Stack Memory
•  Of unknown and changing size

– Grows when functions are called
– Shrinks when they return

•  Contents created dynamically
– Not the same from run to run
– Often data-dependent

•  Not inherently executable
– Contains pointers to code, not code itself

•  A compact encoding of the dynamic state of
the process

Lecture 3
Page 15

CS 111
Summer 2013

Implications for the OS

•  The memory domain for the stack must be
readable and writeable
– But need not be executable

•  OS must worry about stack overrunning the
memory area it’s in
– What to do if it does?

•  Extend the domain?
•  Kill the process?

Lecture 3
Page 16

CS 111
Summer 2013

Process Data Memory

•  All the data the process is operating on
•  Of highly varying size

– During a process run
– From run to run of a process

•  Read/write access required
– Usually not execute access
– Few modern systems allow processes to create

new code

Lecture 3
Page 17

CS 111
Summer 2013

Implications for the OS

•  Must be prepared to give processes new
domains for dynamic data
– Since you can’t generally predict ahead of time

how much memory a process will need
– Need strategy if process asks for more memory

than you can give it
•  Should give read/write permission to these

domains
– Usually not execute

Lecture 3
Page 18

CS 111
Summer 2013

Layout of Process in Memory

0x00000000 0xFFFFFFFF

code data stack

•  In Unix systems, data segment grows up
•  Stack segment grows down
•  They aren’t allowed to meet

Lecture 3
Page 19

CS 111
Summer 2013

Loading Programs Into Processes

•  The program represents a piece of code that
could be executed

•  The process is the actual dynamic executing
version of the program

•  To get from the code to the running version,
you need to perform the loading step
–  Initializing the various memory domains we just

mentioned

Lecture 3
Page 20

CS 111
Summer 2013

Loading Programs
•  The load module

– All external references have been resolved
– All modules combined into a few segments
–  Includes multiple segments (code, data, symbol

table)
•  A computer cannot “execute” a load module

– Computers execute instructions in memory
– Memory must be allocated for each segment
– Code must be copied from load module to memory

