/ Important OS Properties \

* For real operating systems built and used by
real people

* Differs depending on who you are talking
about

— Users
— Service providers

— Application developers

— OS developers




/" {For the End Users.

___________________________________

* Reliability
* Performance
* Upwards compatibility in releases

* Support for differing hardware

— Currently available platforms
— What’s available 1n the future

* Availability of key applications

°\S ecurity




4 Reliability N

* Your OS really should never crash
— Since 1t takes everything else down with 1t

* But also need dependability 1n a different sense

— The OS must be depended on to behave as it’s
specified

— Nobody wants surprises from their operating
system

— Since the OS controls everything, unexpected
\ behavior could be arbitrarily bad )




/ Performance

A loose goal

The OS must perform well in critical situations

But optimizing the performance of all OS
operations not always critical

Nothing can take too long

But if something 1s “fast enough,” adding
complexity to make 1t faster not worthwhile

~




/ Upward Compatibility

* People want new releases of an OS
— New features, bug fixes, enhancements

— Security patches to protect from malware

* People also fear new releases of an OS

— OS changes can break old applications

* What makes the compatibility 1ssue
manageable?
— Stable interfaces




-

Stable Interfaces

* Designers should start with well specified
Application Interfaces

— Must keep them stable from release to release

* Application developers should only use
committed interfaces

— Don’t use undocumented features or erroneous

side effects

~




/ APIs \

* Application Program Interfaces

— A source level interface, specifying:

* Include files, data types, constants

* Macros, routines and their parameters

* A basis for software portability
— Recompile program for the desired architecture
— Linkage edit with OS-specific libraries

— Resulting binary runs on that architecture and OS

* An API compliant program will compile & run
\on any compliant system /

Lecture 1

CS 111 Page 7
Summer 2013




/ ABIs \

* Application Binary Interfaces
— A binary 1nterface, specifying
* Dynamically loadable libraries (DLLs)
» Data formats, calling sequences, linkage conventions

— The binding of an API to a hardware architecture

* A basis for binary compatibility

— One binary serves all customers for that hardware

* E.g. all x86 Linux/BSD/MacOS/Solaris/...
* May even run on Windows platforms

* An ABI compliant program will run y
(unmodified) on any compliant system Lecure 1

Page 8

Summer 2013



\For the Service Providers, \
+ Reliability
* Performance
* Upwards compatibility in releases
 Platform support (wide range of platforms)
e Manageability
* Total cost of ownership
* Support (updates and bug fixes)

* Flexibility (1in configurations and applications)

I'l /
\SC? Slu ty Lecture




———————————————————————————————————————————————————————

. Rehablhty

* Performance

* Upwards compatibility 1n releases

* Standards conformance

* Functionality (current and roadmap)
* Middleware and tools

* Documentation

* Support (how to ...)

\ Lecture 1
CS 111

Page 10




S e e o e e e M e e M M M e R M M e REm M M e MEm M M e MEm M M e M M e e

* Reliability

* Performance

* Maintainability

* Low cost of development

— Original and ongoing

Lecture 1
Page 11



/ Maintainability

Operating systems have very long lives
— Solaris, the “new kid on the block,” came out 1n

Basic requirements will change many times
Support costs will dwart 1itial development
This makes maintainability critical

Aspects of maintainability:
— Understandability
— Modularity/modifiability
— Testability

CS 111

~

1993

Lecture 1

Page 12



/ ' Critical OS Abstractions | \

* One of the main roles of an operating system 1s
to provide abstract services

— Services that are easier for programs and users to
work with

* What are the important abstractions an OS
provides?

\ Lecture 1
CS 111

Page 13




—————————————————————————————————————————————

______________________________________________

relate to data storage
— Variables
— Chunks of allocated memory
— Files
— Database records
— Messages to be sent and received

* These all have some similar properties

* Many resources used by programs and people

Lecture 1
Page 14



/ The Basic Memory Operations \

* Regardless of level or type, memory
abstractions support a couple of operations
— WRITE(name, value)

* Put a value into a memory location specified by name

— value <- READ(name)

* Get a value out of a memory location specified by name
* Seems pretty stmple

* But going from a nice abstraction to a physical
\implementation can be complex )

Lecture 1
CS 111 Page 15




/An Example Memory Abstraction\
* A typical file

* We can read or write the file
* We can read or write arbitrary amounts of data

* If we write the file, we expect our next read to
reflect the results of the write

— Coherence

* [fthere are several reads/writes to the file, we
expect each to occur in some order

— With respect to the others /

Lecture 1
CS 111 Page 16




________________________________________________

* An interpreter 1s something that performs
commands

* Basically, the element of a computer (abstract
or physical) that gets things done

* At the physical level, we have a processor
* That level 1s not easy to use

* The OS provides us with higher level
interpreter abstractions

\ Lecture 1
CS 111

Page 17




/ Basic Interpreter Components \

* An instruction reference

— Tells the interpreter which instruction to do next
* A repertoire

— The set of things the interpreter can do
* An environment reference

— Describes the current state on which the next
instruction should be performed

* Interrupts
— Situations 1in which the instruction reference /
\ . pointer 1s overriden Lecture |

Page 18
Summer 2013



Kn Example Interpreter Abstractio}

« ACPU

* It has a program counter register indicating
where the next instruction can be found

— An instruction reference

* It supports a set of instructions

— Its repertoire

* It has contents 1n registers and RAM

— [ts environment

\ Lecture 1
CS 111

Page 19




/(T Abstractions of 7\

. Communications Links

— S O RS RSN RSN WEE RSN RSN RS M MmN MmN MmN MEE RSN RSN M MmN SEE MEE MEE MmN RSN SN RS e e e e S S e e e e e

* A communication link allows one interpreter to
talk to another

— On the same or different machines
* At the physical level, wires and cables

At more abstract levels, networks and
interprocess communication mechanisms

* Some similarities to memory abstractions

— But also differences

Lecture 1
Page 20




/ Basic Communication Link \

Operations
 SEND(link name, outgoing message buffer)

— Send some information contained in the buffer on
the named link

 RECEIVE(link name,
iIncoming message buffer)

— Read some information off the named link and put
it into the buffer

* Like WRITE and READ, in some respects

\ Lecture 1
CS 111

Page 21




/~ An Example Communications

Link Abstraction
* A Unix-style socket

e SEND interface:

— send(int sockfd, const void *buf, size t len, int
flags)

— The sockid 1s the link name

— The buf is the outgoing message buffer

e RECEIVE interface:

— recv(int sockfd, void *buf, size t len, int flags)

— Same parameters as for send /

Lecture 1
CS 111 Page 22




!
Q |
=3
O
O
- ,
= !
a
=
>
o
7
=
-
O |
O !
= g
O |
>
o

————————————————————————————————————————————

— Users or other “active’ entities

 Virtual machines

— Collections of other abstractions

 Protection environments

— Security related, usually

e Names

* Not a complete list

* Not everyone would agree on what’s distinct /

cture 1
CS 111 Page 23




