
Lecture 1
Page 1 CS 111

Summer 2013

Important OS Properties

•  For real operating systems built and used by
real people

•  Differs depending on who you are talking
about
– Users
– Service providers
– Application developers
– OS developers

Lecture 1
Page 2 CS 111

Summer 2013

For the End Users,

•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Support for differing hardware
– Currently available platforms
– What’s available in the future

•  Availability of key applications
•  Security

Lecture 1
Page 3 CS 111

Summer 2013

Reliability

•  Your OS really should never crash
– Since it takes everything else down with it

•  But also need dependability in a different sense
– The OS must be depended on to behave as it’s

specified
– Nobody wants surprises from their operating

system
– Since the OS controls everything, unexpected

behavior could be arbitrarily bad

Lecture 1
Page 4 CS 111

Summer 2013

Performance

•  A loose goal
•  The OS must perform well in critical situations
•  But optimizing the performance of all OS

operations not always critical
•  Nothing can take too long
•  But if something is “fast enough,” adding

complexity to make it faster not worthwhile

Lecture 1
Page 5 CS 111

Summer 2013

Upward Compatibility

•  People want new releases of an OS
– New features, bug fixes, enhancements
– Security patches to protect from malware

•  People also fear new releases of an OS
– OS changes can break old applications

•  What makes the compatibility issue
manageable?
– Stable interfaces

Lecture 1
Page 6 CS 111

Summer 2013

Stable Interfaces

•  Designers should start with well specified
Application Interfaces
– Must keep them stable from release to release

•  Application developers should only use
committed interfaces
– Don’t use undocumented features or erroneous

side effects

Lecture 1
Page 7 CS 111

Summer 2013

APIs
•  Application Program Interfaces
– A source level interface, specifying:
•  Include files, data types, constants
•  Macros, routines and their parameters

•  A basis for software portability
– Recompile program for the desired architecture
– Linkage edit with OS-specific libraries
– Resulting binary runs on that architecture and OS

•  An API compliant program will compile & run
on any compliant system

Lecture 1
Page 8 CS 111

Summer 2013

ABIs
•  Application Binary Interfaces
– A binary interface, specifying
•  Dynamically loadable libraries (DLLs)
•  Data formats, calling sequences, linkage conventions

– The binding of an API to a hardware architecture
•  A basis for binary compatibility
– One binary serves all customers for that hardware
•  E.g. all x86 Linux/BSD/MacOS/Solaris/…
•  May even run on Windows platforms

•  An ABI compliant program will run
(unmodified) on any compliant system

Lecture 1
Page 9 CS 111

Summer 2013

For the Service Providers,
•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Platform support (wide range of platforms)
•  Manageability
•  Total cost of ownership
•  Support (updates and bug fixes)
•  Flexibility (in configurations and applications)
•  Security

Lecture 1
Page 10 CS 111

Summer 2013

For the Application Developers,
•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Standards conformance
•  Functionality (current and roadmap)
•  Middleware and tools
•  Documentation
•  Support (how to ...)

Lecture 1
Page 11 CS 111

Summer 2013

For the OS Developers,

•  Reliability
•  Performance
•  Maintainability
•  Low cost of development
– Original and ongoing

Lecture 1
Page 12 CS 111

Summer 2013

Maintainability
•  Operating systems have very long lives
– Solaris, the “new kid on the block,” came out in 1993

•  Basic requirements will change many times
•  Support costs will dwarf initial development
•  This makes maintainability critical
•  Aspects of maintainability:
– Understandability
– Modularity/modifiability
– Testability

Lecture 1
Page 13 CS 111

Summer 2013

Critical OS Abstractions

•  One of the main roles of an operating system is
to provide abstract services
– Services that are easier for programs and users to

work with
•  What are the important abstractions an OS

provides?

Lecture 1
Page 14 CS 111

Summer 2013

Abstractions of Memory

•  Many resources used by programs and people
relate to data storage
– Variables
– Chunks of allocated memory
– Files
– Database records
– Messages to be sent and received

•  These all have some similar properties

Lecture 1
Page 15 CS 111

Summer 2013

The Basic Memory Operations

•  Regardless of level or type, memory
abstractions support a couple of operations
– WRITE(name, value)
•  Put a value into a memory location specified by name

– value <- READ(name)
•  Get a value out of a memory location specified by name

•  Seems pretty simple
•  But going from a nice abstraction to a physical

implementation can be complex

Lecture 1
Page 16 CS 111

Summer 2013

An Example Memory Abstraction
•  A typical file
•  We can read or write the file
•  We can read or write arbitrary amounts of data
•  If we write the file, we expect our next read to

reflect the results of the write
– Coherence

•  If there are several reads/writes to the file, we
expect each to occur in some order
– With respect to the others

Lecture 1
Page 17 CS 111

Summer 2013

Abstractions of Interpreters

•  An interpreter is something that performs
commands

•  Basically, the element of a computer (abstract
or physical) that gets things done

•  At the physical level, we have a processor
•  That level is not easy to use
•  The OS provides us with higher level

interpreter abstractions

Lecture 1
Page 18 CS 111

Summer 2013

Basic Interpreter Components
•  An instruction reference
– Tells the interpreter which instruction to do next

•  A repertoire
– The set of things the interpreter can do

•  An environment reference
– Describes the current state on which the next

instruction should be performed
•  Interrupts
– Situations in which the instruction reference

pointer is overriden

Lecture 1
Page 19 CS 111

Summer 2013

An Example Interpreter Abstraction

•  A CPU
•  It has a program counter register indicating

where the next instruction can be found
– An instruction reference

•  It supports a set of instructions
–  Its repertoire

•  It has contents in registers and RAM
–  Its environment

Lecture 1
Page 20 CS 111

Summer 2013

Abstractions of
Communications Links

•  A communication link allows one interpreter to
talk to another
– On the same or different machines

•  At the physical level, wires and cables
•  At more abstract levels, networks and

interprocess communication mechanisms
•  Some similarities to memory abstractions
– But also differences

Lecture 1
Page 21 CS 111

Summer 2013

Basic Communication Link
Operations

•  SEND(link_name, outgoing_message_buffer)
– Send some information contained in the buffer on

the named link
•  RECEIVE(link_name,

incoming_message_buffer)
– Read some information off the named link and put

it into the buffer
•  Like WRITE and READ, in some respects

Lecture 1
Page 22 CS 111

Summer 2013

An Example Communications
Link Abstraction

•  A Unix-style socket
•  SEND interface:
– send(int sockfd, const void *buf, size_t len, int

flags)
– The sockfd is the link name
– The buf is the outgoing message buffer

•  RECEIVE interface:
–  recv(int sockfd, void *buf, size_t len, int flags)
– Same parameters as for send

Lecture 1
Page 23 CS 111

Summer 2013

Some Other Abstractions
•  Actors
– Users or other “active” entities

•  Virtual machines
– Collections of other abstractions

•  Protection environments
– Security related, usually

•  Names
•  Not a complete list
•  Not everyone would agree on what’s distinct

