
Lecture 1
Page 1

CS 111
Summer 2013

Introduction to the Course

•  Purpose of course and relationships to other
courses

•  Why study operating systems?
•  Major themes & lessons in this course

Lecture 1
Page 2

CS 111
Summer 2013

What Will CS 111 Do?
•  Build on concepts from other courses

–  Data structures, programming languages, assembly
language programming, network protocols, computer
architectures, ...

•  Prepare you for advanced courses
–  Data bases and distributed computing
–  Security, fault-tolerance, high availability
–  Computer system modeling, queueing theory

•  Provide you with foundation concepts
–  Processes, threads, virtual address space, files
–  Capabilities, synchronization, leases, deadlock

Lecture 1
Page 3

CS 111
Summer 2013

Why Study Operating Systems?
•  Few of you will actually build OSs
•  But many of you will:

–  Set up, configure, manage computer systems
–  Write programs that exploit OS features
–  Work with complex, distributed, parallel software
–  Work with abstracted services and resources

•  Many hard problems have been solved in OS context
–  Synchronization, security, integrity, protocols, distributed

computing, dynamic resource management, ...
–  In this class, we study these problems and their solutions
–  These approaches can be applied to other areas

Lecture 1
Page 4

CS 111
Summer 2013

Why Are Operating Systems
Interesting?

•  They are extremely complex
–  But try to appear simple enough for everyone to use

•  They are very demanding
–  They require vision, imagination, and insight
–  They must have elegance and generality
–  They demand meticulous attention to detail

•  They are held to very high standards
–  Performance, correctness, robustness,
–  Scalability, extensibility, reusability

•  They are the base we all work from

Lecture 1
Page 5

CS 111
Summer 2013

Recurring OS Themes
•  View services as objects and operations

–  Behind every object there is a data structure
•  Separate policy from mechanism

–  Policy determines what can/should be done
–  Mechanism implements basic operations to do it
–  Mechanisms shouldn’t dictate or limit policies
–  Must be able to change policies without changing

mechanisms

•  Parallelism and asynchrony are powerful and
necessary
–  But dangerous when used carelessly

Lecture 1
Page 6

CS 111
Summer 2013

More Recurring Themes
•  An interface specification is a contract

– Specifies responsibilities of producers &
consumers

– Basis for product/release interoperability

•  Interface vs. implementation
– An implementation is not a specification
– Many compliant implementations are possible
–  Inappropriate dependencies cause problems

•  Modularity and functional encapsulation
– Complexity hiding and appropriate abstraction

Lecture 1
Page 7

CS 111
Summer 2013

What Is An Operating System?

•  Many possible definitions
•  One is:

–  It is low level software . . .
– That provides better abstractions of hardware

below it
– To allow easy, safe, fair use and sharing of those

resources

Lecture 1
Page 8

CS 111
Summer 2013

What Does an OS Do?

•  It manages hardware for programs
– Allocates hardware and manages its use
– Enforces controlled sharing (and privacy)
– Oversees execution and handles problems

•  It abstracts the hardware
– Makes it easier to use and improves s/w portability
– Optimizes performance

•  It provides new abstractions for applications
– Powerful features beyond the bare hardware

Lecture 1
Page 9

CS 111
Summer 2013

What Does An OS Look Like?
•  A set of management & abstraction services

–  Invisible, they happen behind the scenes
•  Applications see objects and their services

–  CPU supports data-types and operations
•  Bytes, shorts, longs, floats, pointers, ...
•  Add, subtract, copy, compare, indirection, ...

–  So does an operating system, but at a higher level
•  Files, processes, threads, devices, ports, ...
•  Create, destroy, read, write, signal, ...

•  An OS extends a computer
–  Creating a much richer virtual computing platform

•  Supporting richer objects, more powerful operations

Lecture 1
Page 10

CS 111
Summer 2013

Where Does the OS Fit In?

Operating System"

 System Call Interface"

Hardware"

 Standard instruction set"Privileged instruction set"

(arithmetic, logical, copy, test, flow-control operations, ...)

System Services/Libraries"

 Application Binary Interface"

(e.g. string, random #s, encryption, graphics ...)

Applications Software"
(e.g. word processor, compiler, VOIP program, ...)

Lecture 1
Page 11

CS 111
Summer 2013

What’s Special About the OS?
•  It is always in control of the hardware

–  Automatically loaded when the machine boots
–  First software to have access to hardware
–  Continues running while apps come & go

•  It alone has complete access to hardware
–  Privileged instruction set, all of memory & I/O

•  It mediates applications’ access to hardware
–  Block, permit, or modify application requests

•  It is trusted
–  To store and manage critical data
–  To always act in good faith

•  If the OS crashes, it takes everything else with it
–  So it better not crash . . .

Lecture 1
Page 12

CS 111
Summer 2013

What Functionality Is In the OS?
•  As much as necessary, as little as possible

–  OS code is very expensive to develop and maintain
•  Functionality must be in the OS if it ...

–  Requires the use of privileged instructions
–  Requires the manipulation of OS data structures
–  Must maintain security, trust, or resource integrity

•  Functions should be in libraries if they ...
–  Are a service commonly needed by applications
–  Do not actually have to be implemented inside OS

•  But there is also the performance excuse
–  Some things may be faster if done in the OS

Lecture 1
Page 13

CS 111
Summer 2013

The OS and Speed

•  One reason operating systems get big is based on
speed

•  It’s faster to offer a service in the OS than outside it
–  If it involves processes communicating, working at app

level requires scheduling and swapping them
–  The OS has direct access to many pieces of state and

system services
–  The OS can make direct use of privileged instructions

•  Thus, there’s a push to move services with strong
performance requirements down to the OS

Lecture 1
Page 14

CS 111
Summer 2013

The OS and Abstraction

•  One major function of an OS is to offer
abstract versions of resources
– As opposed to actual physical resources

•  Essentially, the OS implements the abstract
resources using the physical resources
– E.g., processes (an abstraction) are implemented

using the CPU and RAM (physical resources)
– And files (an abstraction) are implemented using

disks (a physical resource)

Lecture 1
Page 15

CS 111
Summer 2013

Why Abstract Resources?
•  The abstractions are typically simpler and better

suited for programmers and users
–  Easier to use than the original resources

•  E.g., don’t need to worry about keeping track of disk interrupts

–  Compartmentalize/encapsulate complexity
•  E.g., need not be concerned about what other executing code is

doing and how to stay out of its way

–  Eliminate behavior that is irrelevant to user
•  E.g., hide the sectors and tracks of the disk

–  Create more convenient behavior
•  E.g., make it look like you have the network interface entirely for

your own use

Lecture 1
Page 16

CS 111
Summer 2013

Common Types of OS Resources

•  Serially reusable resources
•  Partitionable resources
•  Sharable resources

Lecture 1
Page 17

CS 111
Summer 2013

Serially Reusable Resources

•  Used by multiple clients, but only one at a time
– Time multiplexing

•  Require access control to ensure exclusive use
•  Require graceful transitions from one user to

the next
– A switch that totally hides the fact that the resource

used to belong to someone else
•  Examples: printers, bathroom stalls

Lecture 1
Page 18

CS 111
Summer 2013

Partitionable Resources

•  Divided into disjoint pieces for multiple clients
– Spatial multiplexing

•  Needs access control to ensure:
– Containment: you cannot access resources outside

of your partition
– Privacy: nobody else can access resources in your

partition
•  Examples: disk space, dormitory rooms

Lecture 1
Page 19

CS 111
Summer 2013

Shareable Resources
•  Usable by multiple concurrent clients

– Clients do not have to “wait” for access to resource
– Clients don’t “own” a particular subset of resource

•  May involve (effectively) limitless resources
– Air in a room, shared by occupants
– Copy of the operating system, shared by processes

•  May involve under-the-covers multiplexing
– Cell-phone channel (time and frequency

multiplexed)
– Shared network interface (time multiplexed)

Lecture 1
Page 20

CS 111
Summer 2013

General OS Trends

•  They have grown larger and more sophisticated
•  Their role has fundamentally changed

–  From shepherding the use of the hardware
–  To shielding the applications from the hardware
–  To providing powerful application computing platform

•  They still sit between applications and hardware
•  Best understood through services they provide

–  Capabilities they add
–  Applications they enable
–  Problems they eliminate

Lecture 1
Page 21

CS 111
Summer 2013

Another Important OS Trend
•  Convergence

– There are a handful of widely used OSs
– New ones come along very rarely

•  OSs in the same family (e.g., Windows or
Linux) are used for vastly different purposes
– Making things challenging for the OS designer

•  Most OSs are based on pretty old models
– Linux comes from Unix (1970s vintage)
– Windows from the early 1980s

Lecture 1
Page 22

CS 111
Summer 2013

A Resulting OS Challenge

•  We are basing the OS we use today on an
architecture designed 30-40 years ago

•  We can make some changes in the architecture
•  But not too many

– Due to compatibility
– And fundamental characteristics of the architecture

•  Requires OS designers and builders to
shoehorn what’s needed today into what made
sense yesterday

