
Lecture 14
Page 1

CS 111
Summer 2013

Loosely Coupled Systems
•  Characterization:

– A parallel group of independent computers
– Serving similar but independent requests
– Minimal coordination and cooperation required

•  Motivation:
– Scalability and price performance
– Availability – if protocol permits stateless servers
– Ease of management, reconfigurable capacity

•  Examples:
– Web servers, app servers

Lecture 14
Page 2

CS 111
Summer 2013

Horizontal Scalability

•  Each node largely independent
•  So you can add capacity just by adding a node

“on the side”
•  Scalability can be limited by network, instead

of hardware or algorithms
– Or, perhaps, by a load balancer

•  Reliability is high
– Failure of one of N nodes just reduces capacity

Lecture 14
Page 3

CS 111
Summer 2013

Horizontal Scalability Architecture

load balancing switch
with fail-over

web
server

web
server

web
server

web
server

app
server

app
server

app
server

app
server

app
server

content
distribution

server

HA
database
server

WAN to clients

… … web
server

If I need more
web server
capacity,

Lecture 14
Page 4

CS 111
Summer 2013

Elements of Loosely Coupled
Architecture

•  Farm of independent servers
–  Servers run same software, serve different requests
–  May share a common back-end database

•  Front-end switch
–  Distributes incoming requests among available servers
–  Can do both load balancing and fail-over

•  Service protocol
–  Stateless servers and idempotent operations
–  Successive requests may be sent to different servers

Lecture 14
Page 5

CS 111
Summer 2013

Horizontally Scaled Performance
•  Individual servers are very inexpensive

–  Blade servers may be only $100-$200 each
•  Scalability is excellent

–  100 servers deliver approximately 100x performance

•  Service availability is excellent
–  Front-end automatically bypasses failed servers
–  Stateless servers and client retries fail-over easily

•  The challenge is managing thousands of servers
–  Automated installation, global configuration services
–  Self monitoring, self-healing systems
–  Scaling limited by management, not HW or algorithms

Lecture 14
Page 6

CS 111
Summer 2013

What About the Centralized
Resources?

•  The load balancer appears to be centralized
•  And what about the back-end databases?
•  Are these single points of failure for this

architecture?
•  And also limits on performance?
•  Yes, but . . .

Lecture 14
Page 7

CS 111
Summer 2013

Handling the Limiting Factors

•  The centralized pieces can be special hardware
– There are very few of them
– So they can use aggressive hardware redundancy

•  Expensive, but only for a limited set

– They can also be high performance machines
•  Some of them have very simple functionality

– Like the load balancer
•  With proper design, their roles can be

minimized, decreasing performance problems

Lecture 14
Page 8

CS 111
Summer 2013

Limited Transparency Clusters

•  Single System Image clusters had problems
–  All nodes had to agree on state of all objects
–  Lots of messages, lots of complexity, poor scalability

•  What if they only had to agree on a few objects?
–  Like cluster membership and global locks
–  Fewer objects, fewer operations, much less traffic
–  Objects could be designed for distributed use

•  Leases, commitment transactions, dynamic server binding

•  Simpler, better performance, better scalability
–  Combines best features of SSI and horizontally scaled

loosely coupled systems

Lecture 14
Page 9

CS 111
Summer 2013

Example: Beowulf Clusters

•  A technology for building high performance
parallel machines out of commodity parts

•  One server machine controlling things
•  Lots of pretty dumb client machines handling

processing
•  A LAN technology connecting them

– Standard message passing between machines

•  Applications must be written for parallelization

Lecture 14
Page 10

CS 111
Summer 2013

Beowulf High Performance
Computing Cluster

task
coordination NFS

server
MPI

Beowulf Head Node

MPI

Beowulf
Slave Node

sub-task

MPI

sub-task

MPI

sub-task

MPI

sub-task …

Message Passing Interface
exchanging information between sub-
tasks

There is no effort at transparency here. Applications are specifically written for
 a parallel execution platform and use a Message Passing Interface to mediate
 exchanges between cooperating computations.

Beowulf
Slave Node

Beowulf
Slave Node

Beowulf
Slave Node

NFS
programs and
data

Lecture 14
Page 11

CS 111
Summer 2013

Cloud Computing
•  The most recent twist on distributed computing
•  Set up a large number of machines all

identically configured
•  Connect them to a high speed LAN

– And to the Internet
•  Accept arbitrary jobs from remote users
•  Run each job on one or more nodes
•  Entire facility probably running mix of single

machine and distributed jobs, simultaneously

Lecture 14
Page 12

CS 111
Summer 2013

Distributed Computing and
Cloud Computing

•  In one sense, these are orthogonal
•  Each job submitted might or might not be

distributed
•  Many of the hard problems of the distributed

ones are the user’s problem, not the system’s
– E.g., proper synchronization and locking

•  But the cloud facility must make
communications easy

Lecture 14
Page 13

CS 111
Summer 2013

What Runs in a Cloud?
•  In principle, anything
•  But general distributed computing is hard
•  So much of the work is run using special tools
•  These tools support particular kinds of parallel/

distributed processing
•  Either embarrassingly parallel jobs
•  Or those using a method like map-reduce
•  Things where the user need not be a distributed

systems expert

Lecture 14
Page 14

CS 111
Summer 2013

Embarrassingly Parallel Jobs
•  Problems where it’s really, really easy to

parallelize them
•  Probably because the data sets are easily

divisible
•  And exactly the same things are done on each

piece
•  So you just parcel them out among the nodes

and let each go independently
•  Everyone finishes at more or less same time

Lecture 14
Page 15

CS 111
Summer 2013

The Most Embarrassing of
Embarrassingly Parallel Jobs

•  Say you have a large computation
•  You need to perform it N times, with slightly

different inputs each time
•  Each iteration is expected to take the same

time
•  If you have N cloud machines, write a script to

send one of the N jobs to each
•  You get something like N times speedup

Lecture 14
Page 16

CS 111
Summer 2013

Map-Reduce
•  A computational technique for performing

operations on large quantities of data
•  Basically:

– Divide the data into pieces
– Farm each piece out to a machine
– Collect the results and combine them

•  For example, searching a large data set for
occurrences of a phrase

•  Originally developed by Google

Lecture 14
Page 17

CS 111
Summer 2013

Map-Reduce in Cloud Computing
•  A master node divides the problem among N

cloud machines
•  Each cloud machine performs the map

operation on its data set
•  When all complete, the master performs the

reduce operation on each node’s results
•  Can be divided further

– E.g., a node given a piece of a problem can divide
it into smaller pieces and farm those out

– Then it does a reduce before returning to its master

Lecture 14
Page 18

CS 111
Summer 2013

Do-It-Yourself Distributed
Computing in the Cloud

•  Generally, you can submit any job you want to
the cloud

•  If you want to run a SSI or horizontally scaled
loosely coupled system, be their guest
– Assuming you pay, of course

•  They’ll offer basic system tools
•  You’ll do the distributed system heavy lifting
•  Wouldn’t it be nice if you had some

middleware to help . . . ?

Lecture 14
Page 19

CS 111
Summer 2013

Distribution at the
Application Level

•  This course has focused on the OS as a “platform”
–  OS services have evolved to meet application needs
–  SMP creates a scalable distributed OS platform
–  SSI clusters are a robust distributed OS platform

•  There are limitations to such a platform
–  Architectural limitations on scalability
–  A legacy of single-system semantics
–  Heterogeneity is a fundamental fact of life

•  Who said “applications must be written to an OS?”
–  Perhaps there are other, more suitable, platforms

Lecture 14
Page 20

CS 111
Summer 2013

A Different Paradigm

•  We tried to make remote services appear local
– This failed for the reasons that Deutch laid out

•  We don't want to distinguish local from remote
– Doing so is awkward, constraining, and poor

abstraction
•  What’s our other option?
•  What if we made all services seem remote?

Lecture 14
Page 21

CS 111
Summer 2013

Embracing Remote Services

•  Design interactions for remote services
•  Provide:

– Discovery
– Rendezvous
– Leases
– Rebinding
– And other features to deal with Deutsch's fallacies

•  And then provide efficient local implementations
–  Minimizing performance penalty for local resources

Lecture 14
Page 22

CS 111
Summer 2013

Alternatives to Distributed
Operating Systems

•  Network aware applications
–  That register themselves with network name services
–  Exchange services by sending messages
–  Monitor the comings and goings of their partners

•  Distributed middleware
–  To provide convenient, distributed objects and services
–  Examples:

•  Platforms: RPC, COM/.NET, Java Beans
•  Environments: Erlang, Rational Rose, Ruby on Rails
•  Services: TIBCO pub/sub messaging

Lecture 14
Page 23

CS 111
Summer 2013

RPC As an Underlying Paradigm
•  Procedure calls are already a fundamental paradigm

–  Primary unit of computation in most languages
–  Unit of information hiding in most methodologies
–  Primary level of interface specification

•  RPC is a natural boundary between client and server
–  Turn procedure calls into message send/receives

•  A few limitations
–  No implicit parameters/returns (e.g., global variables)
–  No call-by-reference parameters
–  Much slower than procedure calls (TANSTAAFL)
–  Partial failure far more likely than local procedure calls

Lecture 14
Page 24

CS 111
Summer 2013

Key Features of RPC
•  Client application links against local procedures

–  Calls local procedures, gets results
•  All RPC implementation is inside those procedures
•  Client application does not know about RPC

–  Does not know about formats of messages
–  Does not worry about sends, timeouts, resents
–  Does not know about external data representation

•  All of this is generated automatically by RPC tools
–  Canonical versions of converting calls to messages

•  The key to the tools is the interface specification

Lecture 14
Page 25

CS 111
Summer 2013

Objects – Another Key Paradigm
•  Not inherently distributed, but . . .
•  A dominant application development paradigm
•  Good interface/implementation separation

–  All we can know about object is through its methods
–  Implementation and private data opaquely encapsulated

•  Powerful programming model
–  Polymorphism ... methods adapt themselves to clients
–  Inheritance ... build complex objects from simple ones
–  Instantiation ... trivial to create distinct object instances

•  Objects are not intrinsically location sensitive
–  You don’t reference them, you call them

Lecture 14
Page 26

CS 111
Summer 2013

Local Objects and Distributed
Computing

•  Local objects are supported by compilers,
inside an address space
– Compiler generates code to instantiate new objects
– Compiler generates calls for method invocations

•  This doesn't work in a distributed environment
– All objects are no longer in a single address space
– Different machines use different binary

representations
– You can’t make a call across machine boundaries

Lecture 14
Page 27

CS 111
Summer 2013

Merging the Paradigms

•  Implement method calls with RPC, instead of
local procedure calls

•  The concept of an object hides what’s inside,
anyway
– You shouldn’t use global variables and calls by

reference with them, anyway
•  The mechanics are a bit more complicated than

simply RPC, though

Lecture 14
Page 28

CS 111
Summer 2013

Invoking Remote Object Methods

•  Compile OO program with proxy object
implementation
–  Defines the same interface (methods and properties)
–  All method invocations go through the local proxy

•  Local implementation is proxy for remote server
–  Translate parameters into a standard representation
–  Send request message to remote object server
–  Get response and translate it to local representation
–  Return result to caller

•  Client cannot tell that object is not local

Lecture 14
Page 29

CS 111
Summer 2013

Proxies for Distributed Objects
proxy object description

no
instance

data

real object description

real
instance

data

rpc method #1

rpc method #2

rpc method #3

real method #1

real method #2

real method #3

RPC server

RPC client

RPC
skeleton

Lecture 14
Page 30

CS 111
Summer 2013

Dynamic Object Binding
•  How can we compile to a binary when some of the

objects (and their implementations) are remote?
•  Local objects are compiled into an application and are

fully known at compile time
•  Distributed objects must be bound at some later time
•  These objects are provided by servers

–  The available servers change from minute to minute
–  New object classes can be created in real time
–  So the “later time” is run time

•  We need a run-time object “match-maker”
–  Like DLLs on steroids

Lecture 14
Page 31

CS 111
Summer 2013

Object Request Brokers (ORBs)
•  ORBs are the matchmakers
•  A local portal to the domain of available objects
•  A registry for available object implementations

–  Object implementers register with the broker
•  Meeting place for object clients and implementers

–  Clients go to broker to obtain services of new objects
•  A local interface to remote object components

–  Clients reference all remote objects through local ORB
•  A router between local and remote requests

–  ORBs pass messages between clients and servers
•  A repository for object interface definitions

Lecture 14
Page 32

CS 111
Summer 2013

But Still TANSTAAFL
•  Moving distribution out of OS doesn’t change

the fact that distributed computing is complex
•  It avoids having to ensure that everything local

is invisibly distributed
•  But those remote application-level objects still:

– Need synchronization
– Need to reach consensus
– Need to handle partial failures

•  Advantage is you can customize it to your
needs

Lecture 14
Page 33

CS 111
Summer 2013

Evolution of System Services
•  Operating systems started out on single computers

–  This biased the definition of system services
•  Networking was added on afterwards

–  Some system services are still networking-naïve
–  New APIs were required to exploit networking
–  Many applications remained networking-impaired

•  New programming paradigms embrace the network
–  Focus on services and interfaces, not implementations
–  Goal is to make distributed applications easier to write

•  Increasingly, system services offered by the network

Lecture 14
Page 34

CS 111
Summer 2013

The Changing Role of
Operating Systems

•  Traditionally, operating systems:
–  Abstracted heterogeneous hardware into useful services
–  Managed system resources for user-mode processes
–  Ensured resource integrity and trusted resource sharing
–  Provided a powerful platform for application developers

•  Now,
–  The notion of a self-contained system is fading
–  New programming platforms:

•  Are instruction set and operating system independent
•  Encompass and embrace distributed computing
•  Provide much higher level objects and services

•  But they still depend on powerful underlying
operating systems

Lecture 14
Page 35

CS 111
Summer 2013

Distributed Systems - Summary

•  Different distributed system models support:
–  Different degrees of transparency

•  Do applications see a network or single system image?

–  Different degrees of coupling
•  Making multiple computers cooperate is difficult
•  Doing it without shared memory is even worse

•  Distributed systems always face a trade-off between
performance, independence, and robustness
–  Cooperating redundant nodes offer higher availability
–  Communication and coordination are expensive
–  Mutual dependency creates more modes of failure

