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Loosely Coupled Systems 
•  Characterization: 

– A parallel group of independent computers  
– Serving similar but independent requests 
– Minimal coordination and cooperation required 

•  Motivation: 
– Scalability and price performance 
– Availability – if protocol permits stateless servers 
– Ease of management, reconfigurable capacity 

•  Examples: 
– Web servers, app servers 
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Horizontal Scalability 

•  Each node largely independent 
•  So you can add capacity just by adding a node 

“on the side” 
•  Scalability can be limited by network, instead 

of hardware or algorithms 
– Or, perhaps, by a load balancer 

•  Reliability is high 
– Failure of one of N nodes just reduces capacity 
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Elements of Loosely Coupled 
Architecture  

•  Farm of independent servers 
–  Servers run same software, serve different requests 
–  May share a common back-end database 

•  Front-end switch 
–  Distributes incoming requests among available servers 
–  Can do both load balancing and fail-over 

•  Service protocol 
–  Stateless servers and idempotent operations 
–  Successive requests may be sent to different servers 
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Horizontally Scaled Performance 
•  Individual servers are very inexpensive 

–  Blade servers may be only $100-$200 each 
•  Scalability is excellent 

–  100 servers deliver approximately 100x performance 

•  Service availability is excellent 
–  Front-end automatically bypasses failed servers 
–  Stateless servers and client retries fail-over easily 

•  The challenge is managing thousands of servers 
–  Automated installation, global configuration services 
–  Self monitoring, self-healing systems 
–  Scaling limited by management, not HW or algorithms 
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What About the Centralized 
Resources? 

•  The load balancer appears to be centralized 
•  And what about the back-end databases? 
•  Are these single points of failure for this 

architecture? 
•  And also limits on performance? 
•  Yes, but . . . 
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Handling the Limiting Factors 

•  The centralized pieces can be special hardware 
– There are very few of them 
– So they can use aggressive hardware redundancy 

•  Expensive, but only for a limited set 

– They can also be high performance machines 
•  Some of them have very simple functionality 

– Like the load balancer 
•  With proper design, their roles can be 

minimized, decreasing performance problems 
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Limited Transparency Clusters 

•  Single System Image clusters had problems 
–  All nodes had to agree on state of all objects 
–  Lots of messages, lots of complexity, poor scalability 

•  What if they only had to agree on a few objects? 
–  Like cluster membership and global locks 
–  Fewer objects, fewer operations, much less traffic 
–  Objects could be designed for distributed use 

•  Leases, commitment transactions, dynamic server binding 

•  Simpler, better performance, better scalability 
–  Combines best features of SSI and horizontally scaled 

loosely coupled systems 
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Example: Beowulf Clusters 

•  A technology for building high performance 
parallel machines out of commodity parts 

•  One server machine controlling things 
•  Lots of pretty dumb client machines handling 

processing 
•  A LAN technology connecting them 

– Standard message passing between machines 

•  Applications must be written for parallelization 
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Beowulf High Performance 
Computing Cluster 
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Cloud Computing 
•  The most recent twist on distributed computing 
•  Set up a large number of machines all 

identically configured 
•  Connect them to a high speed LAN 

– And to the Internet 
•  Accept arbitrary jobs from remote users 
•  Run each job on one or more nodes 
•  Entire facility probably running mix of single 

machine and distributed jobs, simultaneously 
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Distributed Computing and  
Cloud Computing 

•  In one sense, these are orthogonal 
•  Each job submitted might or might not be 

distributed 
•  Many of the hard problems of the distributed 

ones are the user’s problem, not the system’s 
– E.g., proper synchronization and locking 

•  But the cloud facility must make 
communications easy 
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What Runs in a Cloud? 
•  In principle, anything 
•  But general distributed computing is hard 
•  So much of the work is run using special tools 
•  These tools support particular kinds of parallel/

distributed processing 
•  Either embarrassingly parallel jobs 
•  Or those using a method like map-reduce 
•  Things where the user need not be a distributed 

systems expert 
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Embarrassingly Parallel Jobs 
•  Problems where it’s really, really easy to 

parallelize them 
•  Probably because the data sets are easily 

divisible 
•  And exactly the same things are done on each 

piece 
•  So you just parcel them out among the nodes 

and let each go independently 
•  Everyone finishes at more or less same time 
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The Most Embarrassing of 
Embarrassingly Parallel Jobs 

•  Say you have a large computation 
•  You need to perform it N times, with slightly 

different inputs each time 
•  Each iteration is expected to take the same 

time 
•  If you have N cloud machines, write a script to 

send one of the N jobs to each 
•  You get something like N times speedup  
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Map-Reduce 
•  A computational technique for performing 

operations on large quantities of data 
•  Basically:  

– Divide the data into pieces 
– Farm each piece out to a machine 
– Collect the results and combine them 

•  For example, searching a large data set for 
occurrences of a phrase 

•  Originally developed by Google 
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Map-Reduce in Cloud Computing 
•  A master node divides the problem among N 

cloud machines 
•  Each cloud machine performs the map 

operation on its data set 
•  When all complete, the master performs the 

reduce operation on each node’s results 
•  Can be divided further 

– E.g., a node given a piece of a problem can divide 
it into smaller pieces and farm those out 

– Then it does a reduce before returning to its master 



Lecture 14 
Page 18 

CS 111 
Summer 2013  

Do-It-Yourself Distributed 
Computing in the Cloud 

•  Generally, you can submit any job you want to 
the cloud 

•  If you want to run a SSI or horizontally scaled 
loosely coupled system, be their guest 
– Assuming you pay, of course 

•  They’ll offer basic system tools 
•  You’ll do the distributed system heavy lifting 
•  Wouldn’t it be nice if you had some 

middleware to help . . . ? 
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Distribution at the  
Application Level 

•  This course has focused on the OS as a “platform” 
–  OS services have evolved to meet application needs 
–  SMP creates a scalable distributed OS platform 
–  SSI clusters are a robust distributed OS platform 

•  There are limitations to such a platform 
–  Architectural limitations on scalability 
–  A legacy of single-system semantics 
–  Heterogeneity is a fundamental fact of life 

•  Who said “applications must be written to an OS?” 
–  Perhaps there are other, more suitable, platforms 
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A Different Paradigm 

•  We tried to make remote services appear local 
– This failed for the reasons that Deutch laid out 

•  We don't want to distinguish local from remote  
– Doing so is awkward, constraining, and poor 

abstraction 
•  What’s our other option? 
•  What if we made all services seem remote? 
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Embracing Remote Services 

•  Design interactions for remote services 
•  Provide: 

– Discovery 
– Rendezvous 
– Leases 
– Rebinding 
– And other features to deal with Deutsch's fallacies 

•  And then provide efficient local implementations 
–  Minimizing performance penalty for local resources 
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Alternatives to Distributed 
Operating Systems 

•  Network aware applications 
–  That register themselves with network name services 
–  Exchange services by sending messages 
–  Monitor the comings and goings of their partners 

•  Distributed middleware 
–  To provide convenient, distributed objects and services 
–  Examples: 

•  Platforms:   RPC, COM/.NET, Java Beans 
•  Environments:   Erlang, Rational Rose, Ruby on Rails 
•  Services:    TIBCO pub/sub messaging 
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RPC As an Underlying Paradigm 
•  Procedure calls are already a fundamental paradigm 

–  Primary unit of computation in most languages 
–  Unit of information hiding in most methodologies 
–  Primary level of interface specification 

•  RPC is a natural boundary between client and server 
–  Turn procedure calls into message send/receives 

•  A few limitations 
–  No implicit parameters/returns (e.g., global variables) 
–  No call-by-reference parameters 
–  Much slower than procedure calls (TANSTAAFL) 
–  Partial failure far more likely than local procedure calls 
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Key Features of RPC 
•  Client application links against local procedures 

–  Calls local procedures, gets results 
•  All RPC implementation is inside those procedures 
•  Client application does not know about RPC 

–  Does not know about formats of messages 
–  Does not worry about sends, timeouts, resents 
–  Does not know about external data representation 

•  All of this is generated automatically by RPC tools 
–  Canonical versions of converting calls to messages 

•  The key to the tools is the interface specification 
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Objects – Another Key Paradigm 
•  Not inherently distributed, but . . . 
•  A dominant application development paradigm 
•  Good interface/implementation separation 

–  All we can know about object is through its methods 
–  Implementation and private data opaquely encapsulated 

•  Powerful programming model 
–  Polymorphism ... methods adapt themselves to clients 
–  Inheritance ... build complex objects from simple ones 
–  Instantiation ... trivial to create distinct object instances 

•  Objects are not intrinsically location sensitive 
–  You don’t reference them, you call them 
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Local Objects and Distributed 
Computing 

•  Local objects are supported by compilers, 
inside an address space 
– Compiler generates code to instantiate new objects 
– Compiler generates calls for method invocations 

•  This doesn't work in a distributed environment 
– All objects are no longer in a single address space 
– Different machines use different binary 

representations 
– You can’t make a call across machine boundaries 
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Merging the Paradigms 

•  Implement method calls with RPC, instead of 
local procedure calls 

•  The concept of an object hides what’s inside, 
anyway 
– You shouldn’t use global variables and calls by 

reference with them, anyway 
•  The mechanics are a bit more complicated than 

simply RPC, though 
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Invoking Remote Object Methods 

•  Compile OO program with proxy object 
implementation 
–  Defines the same interface (methods and properties) 
–  All method invocations go through the local proxy 

•  Local implementation is proxy for remote server 
–  Translate parameters into a standard representation 
–  Send request message to remote object server 
–  Get response and translate it to local representation 
–  Return result to caller 

•  Client cannot tell that object is not local  
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Dynamic Object Binding 
•  How can we compile to a binary when some of the 

objects (and their implementations) are remote? 
•  Local objects are compiled into an application and are 

fully known at compile time 
•  Distributed objects must be bound at some later time 
•  These objects are provided by servers 

–  The available servers change from minute to minute 
–  New object classes can be created in real time 
–  So the “later time” is run time 

•  We need a run-time object “match-maker” 
–  Like DLLs on steroids 
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Object Request Brokers (ORBs) 
•  ORBs are the matchmakers 
•  A local portal to the domain of available objects 
•  A registry for available object implementations 

–  Object implementers register with the broker 
•  Meeting place for object clients and implementers 

–  Clients go to broker to obtain services of new objects 
•  A local interface to remote object components 

–  Clients reference all remote objects through local ORB 
•  A router between local and remote requests 

–  ORBs pass messages between clients and servers 
•  A repository for object interface definitions 
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But Still TANSTAAFL 
•  Moving distribution out of OS doesn’t change 

the fact that distributed computing is complex 
•  It avoids having to ensure that everything local 

is invisibly distributed 
•  But those remote application-level objects still: 

– Need synchronization 
– Need to reach consensus 
– Need to handle partial failures 

•  Advantage is you can customize it to your 
needs 
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Evolution of System Services 
•  Operating systems started out on single computers 

–  This biased the definition of system services 
•  Networking was added on afterwards 

–  Some system services are still networking-naïve 
–  New APIs were required to exploit networking 
–  Many applications remained networking-impaired 

•  New programming paradigms embrace the network 
–  Focus on services and interfaces, not implementations 
–  Goal is to make distributed applications easier to write 

•  Increasingly, system services offered by the network 
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The Changing Role of  
Operating Systems 

•  Traditionally, operating systems: 
–  Abstracted heterogeneous hardware into useful services 
–  Managed system resources for user-mode processes 
–  Ensured resource integrity and trusted resource sharing 
–  Provided a powerful platform for application developers 

•  Now, 
–  The notion of a self-contained system is fading 
–  New programming platforms: 

•  Are instruction set and operating system independent 
•  Encompass and embrace distributed computing 
•  Provide much higher level objects and services 

•  But they still depend on powerful underlying 
operating systems 
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Distributed Systems - Summary 

•  Different distributed system models support: 
–  Different degrees of transparency 

•  Do applications see a network or single system image? 

–  Different degrees of coupling 
•  Making multiple computers cooperate is difficult 
•  Doing it without shared memory is even worse 

•  Distributed systems always face a trade-off between 
performance, independence, and robustness 
–  Cooperating redundant nodes offer higher availability 
–  Communication and coordination are expensive 
–  Mutual dependency creates more modes of failure 


