-

Summer 2013

Distributed Computing
CS 111
Operating Systems
Peter Rether

~




\

CS 111

Summer 2013

4 “Outline

* Goals and vision of distributed computing

 Basic architectures

— Symmetric multiprocessors

— Single system 1mage distributed systems
— Cloud computing systems

— User-level distributed computing

~

Lecture 14

Page 2



/[ Goals of Distributed Computing}\

e Better services
— Scalability

e Some applications require more resources than one computer has

» Should be able to grow system capacity to meet growing demand
— Availability

* Disks, computers, and software fail, but services should be 24x7!
— Improved ease of use, with reduced operating expenses

* Ensuring correct configuration of all services on all systems

e New services

— Applications that span multiple system boundaries

\ — Global resource domains, services decoupled from systems /

csi1  — Complete location transparency Lecture 14
Summer 2013 Page 3




/" Important Characteristics of =~ ™\

Distributed Systems

* Performance
— Overhead, scalability, availability

* Functionality

— Adequacy and abstraction for target applications
* Transparency

— Compatibility with previous platforms

— Scope and degree of location independence
* Degree of coupling

— How many things do distinct systems agree on?

\ — How is that agreement achieved?

CS 111
Summer 2013

/

Lecture 14
Page 4



/" Loosely and Tightly Coupled ™

Systems
* Tightly coupled systems

— Share a global pool of resources

— Agree on their state, coordinate their actions
* Loosely coupled systems

— Have independent resources

— Only coordinate actions in special circumstances
* Degree of coupling

— Tight coupling: global coherent view, seamless fail-over
* But very difficult to do right

\ — Loose coupling: simple and highly scalable /

s * But a less pleasant system model Lecture 14
Summer 2013 Page 5




/ Globally Coherent Views \

* Everyone sees the same thing
* Usually the case on single machines
* Harder to achieve 1n distributed systems

e How to achieve 1t?

— Have only one copy of things that need single view
* Limits the benefits of the distributed system
* And exaggerates some of their costs

— Ensure multiple copies are consistent

* Requiring complex and expensive consensus protocols

\e Not much of a choice /

CS 111 Lecture 14
Summer 2013 Page 6




/~ Major Classes of Distributed ™\

Systems

* Symmetric Multi-Processors (SMP)
— Multiple CPUs, sharing memory and I/O devices
* Single-System Image (SSI) & Cluster Computing

— A group of computers, acting like a single computer

* Loosely coupled, horizontally scalable systems
— Coordinated, but relatively independent systems
— Cloud computing 1s the most widely used version

* Application level distributed computing

— Application level protocols
\ — Distributed middle-ware platforms /

CS 111 Lecture 14
Summer 2013 Page 7




[/Symmetric Multiprocessors (SMI%

* What are they and what are their goals?
* SMP price/performance
* OS design for SMP systems

* SMP parallelism
— The memory bandwidth problem

* Non-Uniform Memory Architectures (NUMA)

\ /

CS 111 Lecture 14
Summer 2013 Page 8




/ SMP Systems \

\

e Computers composed of multiple identical compute
engines
— Each computer in SMP system usually called a node

* Sharing memories and devices
e Could run same or different code on all nodes

— Each node runs at its own pace

— Though resource contention can cause nodes to block

* Examples:
— BBN Butterfly parallel processor

— More recently, multi-way Intel servers

CS 111

Summer 2013

/

Lecture 14
Page 9



/ SMP Goals \

* Price performance
— Lower price per MIP than single machine

* Scalability
— Economical way to build huge systems
— Possibility of increasing machine’s power just by
adding more nodes
* Perfect application transparency

— Runs the same on 16 nodes as on one
\ - Except faster /

CS 111 Lecture 14
Summer 2013 Page 10




/ A Typical SMP Architecture

\

CS 111
Summer 2013

v y 4 y
CPU 1 CPU 2 CPU 3 CPU 4
cache [ cache ¢ cache [« » cache

interrupt
controller

I

shared memory & device busses

memory

1I

I

1I

device
controller

device
controller

device
controller

/

Lecture 14

Page 11



/ The SMP Price/Performance \

Argument

* A computer 1s much more than a CPU
— Mother-board, disks, controllers, power supplies, case
— CPU might cost 10-15% of the cost of the computer

* Adding CPUs to a computer 1s very cost-effective
— A second CPU yields cost of 1.1x, performance 1.9x
— A third CPU yields cost of 1.2x, performance 2.7x

* Same argument also applies at the chip level
— Making a machine twice as fast 1s ever more difficult

— Adding more cores to the chip gets ever easier

\* Massive multi-processors are an obvious direction

CS 111
Summer 2013

/

Lecture 14
Page 12



/ SMP Operating Systems \

* One processor boots with power on
— It controls the starting of all other processors

* Same OS code runs in all processors
— One physical copy in memory, shared by all CPUs
* Each CPU has its own registers, cache, MMU

— They cooperatively share memory and devices

* ALL kernel operations must be Multi-Thread-
Safe

— Protected by appropriate locks/semaphores

CS 111
Summer 2013

— Very fine grained locking to avoid contention

/

ture 14
Page 13



/Handling Kernel Synchronization\

* Multiple processors are sharing one OS copy

* What needs to be synchronized?
— Every potentially sharable OS data structure

* Process descriptors, file descriptors, data buffers,
message queues, etc.

e All of the devices

* Could we just lock the entire kernel, instead?
— Yes, but it would be a bottleneck
— Remember lock contention?

\ — Avoidable by not using coarse-grained locking )

CS 111 Lecture 14
Summer 2013 Page 14




/ SMP Parallelism \

* Scheduling and load sharing

— Each CPU can be running a different process

— Just take the next ready process off the run-queue

— Processes run in parallel

— Most processes don't interact (other than inside kernel)

* If they do, poor performance caused by excessive synchronization

* Serialization

— Mutual exclusion achieved by locks in shared memory

— Locks can be maintained with atomic instructions

— Spin locks acceptable for VERY short critical sections

\ — If a process blocks, that CPU finds next ready process /

CS 111 Lecture 14
Summer 2013 Page 15




/ The Challenge of SMP \
Performance

* Scalability depends on memory contention
— Memory bandwidth 1s limited, can't handle all CPUs
— Most references better be satisfied from per-CPU cache
— If too many requests go to memory, CPUs slow down
* Scalability depends on lock contention
— Waiting for spin-locks wastes time

— Context switches waiting for kernel locks waste time

* This contention wastes cycles, reduces throughput
— 2 CPUs might deliver only 1.9x performance

\ — 3 CPUs might deliver only 2.7x performance /

CS 111 Lecture 14
Summer 2013 Page 16




/ Managing Memory Contention\

* Each processor has its own cache

— Cache reads don’t cause memory contention
— Writes are more problematic

Locality of reference often solves the problems

— Different processes write to different places

* Keeping everything coherent still requires a smart
memory controller

* Fast n-way memory controllers are very expensive

— Without them, memory contention taxes performance
\ — Cost/complexity limits how many CPUs we can add /

CS 111 Lecture 14
Summer 2013 Page 17




4 NUMA N

* Non-Uniform Memory Architectures

* Another approach to handling memory in SMPs

Each CPU gets i1ts own memory, which is on the bus
— Each CPU has fast path to its own memory

* Connected by a Scalable Coherent Interconnect
— A very fast, very local network between memories

— Accessing memory over the SCI may be 3-20x slower

* These interconnects can be highly scalable

\ /

CS 111 Lecture 14
Summer 2013 Page 18




A Sample NUMA SMP

CPUn

local

cache

memory

I

I

PCI bridge

I

Architecture

CPU n+1

local

memory

I

PCI bridge

I

PCI bus
CC NUMA device device
interface controller controller

U

PCI bus
CC NUMA device device
interface controller controller

I

Scalable Coherent Interconnect

\

CS 111

/

Lecture 14

Summer 2013

Page 19



/ OS Design for NUMA Systems\

* All about local memory hit rates
— Each processor must use local memory almost exclusively
— Every outside reference costs us 3-20x performance
— We need 75-95% hit rate just to break even

* How can the OS ensure high hit-rates?
— Replicate shared code pages in each CPU’s memory
— Assign processes to CPUs, allocate all memory there
— Migrate processes to achieve load balancing
— Spread kernel resources among all the CPUs

\ — Attempt to preferentially allocate local resources /

11— Migrate resource ownership to CPU that 1s using it Lecture 14
Summer 2013 Page 20




/ The Key SMP Scaling Problem\

* True shared memory 1s expensive for large
numbers of processors

* NUMA systems require a high degree of
system complexity to perform well

— Otherwise, they’re always accessing remote
memory at very high costs

* So there 1s a limit to the technology for both
approaches

\» Which explains why SMP is not ubiquitous /

CS 111 Lecture 14
Summer 2013 Page 21




(Single System Image Approache$

* Built a distributed system out of many more-
or-less traditional computers

— Each with typical independent resources
— Each running its own copy of the same OS
— Usually a fixed, known pool of machines

* Connect them with a good local area network

* Use software techniques to allow them to work
cooperatively

T Often while still offering many benefits of /
s Independent machines to the local users Lecture 14

Summer 2013 Page 22




/ Motivations for Single System \
Image Computing

* High availability, service survives node/link failures

* Scalable capacity (overcome SMP contention
problems)

— You’re connecting with a LAN, not a special hardware
switch

— LANSs can host hundreds of nodes
* Good application transparency

* Examples:
— Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI
\ — Enterprise database servers )

CS 111 Lecture 14
Summer 2013 Page 23




Why Did This Sound
L.ike a Good Idea?

* Programs don’t run on hardware, they run on
top of an operating system

* All the resources that processes see are already
virtualized

* Don’t just virtualize a single system’s
resources, virtualize many systems’ resources

* Applications that run in such a cluster are
(automatically and transparently) distributed

\ /

CS 111 Lecture 14
Summer 2013 Page 24




S1011

1

The SSIV

i 1
1 1
|G |
) 1
LS = = |
@ 1
 Q 1
1 O 1
I 1
[ (Q\ Al 1
LS, ) ) 5 - “
nle “
_g.Plv |
[ 1
L2 5 |
[ elo] 1
1 1
1 1

1 “ 1 I
1 1 1
1 “ | “
“ ro < |
1 | ! < “
i | | -~ 1
| - .z |
1 WJ “ 1 ho) “
2 Lo !
! roy |
= .= < 7!

1 [ 3]
1 “ | WJ .Q ks o
1N Ll s = 20
_m “ 1 D] w o >
_M \ o= Mm“
! LR 2 3|
g LS £ 5
3 2 2 |« 5!
_m ! _.m = n
[ “ 1 > N “
- A 4 |
[ Vo ) R !
2 .~ = “
| 2. o “
\ g 288 .- "
M —~ Qe o |
! w - el la) N © !

1
= gB&BE i = |

o MY

2 42dEd <t ” |
mm mm234 ﬁlm m 1m m
L 8  + + + < - “
“ “ “ 1
I e e e e e e e e — I e e e e e e e — e ———— !

Lecture 14
Page 25

Summer 2013



/ OS Design for SSI Clusters \

All nodes agree on the state of all OS resources

— File systems, processes, devices, locks, IPC ports
— Any process can operate on any object, transparently

They achieve this by exchanging messages

— Advising one another of all changes to resources

* Each OS’s internal state mirrors the global state

— To execute node-specific requests

* Node-specific requests automatically forwarded to right node

* The implementation is large, complex, and difficult

\° The exchange of messages can be very expensive )

CS 111 Lecture 14
Summer 2013 Page 26




/ SSI Performance \

* Clever implementation can minimize overhead

— 10-20% overall 1s not uncommon, can be much worse

* Complete transparency
— Even very complex applications “just work”™

— They do not have to be made “network aware”

* Good robustness
— When one node fails, others notice and take-over
— Often, applications won't even notice the failure

— Each node hardware-independent

» Failures of one node don’t affect others, unlike some SMP failures

\- Very nice for application developers and customers /

csi — But they are complex, and not particularly scalable Lecture 14
ummer age




/ An Example of SSI Complexity\

* Keeping track of which nodes are up

* Done in the Locus Operating System through
“topology change”

* Need to ensure that all nodes know of the 1dentity of
all nodes that are up

* By running a process to figure it out

* Complications:
— Who runs the process? What if he’s down himself?
— Who do they tell the results to?
— What happens if things change while you’re running 1t?
\ — What 1f the system 1is partitioned? /

CS 111 Lecture 14
Summer 2013 Page 28




/ Is It Really That Bad? \

* Nodes fail and recovery rarely

* So something like topology change doesn’t run that
often

 But consider a more common situation

* Two processes have the same file open
— What 1f they’re on different machines?
— What if they are parent and child, and share a file pointer?

* Basic read operations require distributed agreement

— Or, alternately, we compromise the single image
— Which was the whole point of the architecture /

CS 111 Lecture 14
Summer 2013 Page 29




/ Scaling and SSI \

* Scaling limits proved not to be hardware
driven
— Unlike SMP machines

* Instead, driven by algorithm complexity
— Consensus algorithms, for example

* Design philosophy essentially requires
distributed cooperation
— So this factor limits scalability

\ /

CS 111 Lecture 14
Summer 2013 Page 30




/ [Lessons LLearned From SSI \

* Consensus protocols are expensive

— They converge slowly and scale poorly

* Systems have a great many resources

— Resource change notifications are expensive

* Location transparency encouraged non-locality

— Remote resource use 1s much more expensive

* A very complicated operating system design

— Distributed objects are much more complex to manage

— Complex optimizations to reduce the added overheads

\ — New modes of failure with complex recovery procedures /

CS 111 Lecture 14
Summer 2013 Page 31




