
Lecture 14
Page 1

CS 111
Summer 2013

Distributed Computing
CS 111

Operating Systems
Peter Reiher

Lecture 14
Page 2

CS 111
Summer 2013

Outline

•  Goals and vision of distributed computing
•  Basic architectures
– Symmetric multiprocessors
– Single system image distributed systems
– Cloud computing systems
– User-level distributed computing

Lecture 14
Page 3

CS 111
Summer 2013

Goals of Distributed Computing
•  Better services
–  Scalability

•  Some applications require more resources than one computer has
•  Should be able to grow system capacity to meet growing demand

–  Availability
•  Disks, computers, and software fail, but services should be 24x7!

–  Improved ease of use, with reduced operating expenses
•  Ensuring correct configuration of all services on all systems

•  New services
–  Applications that span multiple system boundaries
–  Global resource domains, services decoupled from systems
–  Complete location transparency

Lecture 14
Page 4

CS 111
Summer 2013

Important Characteristics of
Distributed Systems

•  Performance
–  Overhead, scalability, availability

•  Functionality
–  Adequacy and abstraction for target applications

•  Transparency
–  Compatibility with previous platforms
–  Scope and degree of location independence

•  Degree of coupling
–  How many things do distinct systems agree on?
–  How is that agreement achieved?

Lecture 14
Page 5

CS 111
Summer 2013

Loosely and Tightly Coupled
Systems

•  Tightly coupled systems
–  Share a global pool of resources
–  Agree on their state, coordinate their actions

•  Loosely coupled systems
–  Have independent resources
–  Only coordinate actions in special circumstances

•  Degree of coupling
–  Tight coupling: global coherent view, seamless fail-over

•  But very difficult to do right

–  Loose coupling: simple and highly scalable
•  But a less pleasant system model

Lecture 14
Page 6

CS 111
Summer 2013

Globally Coherent Views
•  Everyone sees the same thing
•  Usually the case on single machines
•  Harder to achieve in distributed systems
•  How to achieve it?
– Have only one copy of things that need single view
•  Limits the benefits of the distributed system
•  And exaggerates some of their costs

– Ensure multiple copies are consistent
•  Requiring complex and expensive consensus protocols

•  Not much of a choice

Lecture 14
Page 7

CS 111
Summer 2013

Major Classes of Distributed
Systems

•  Symmetric Multi-Processors (SMP)
–  Multiple CPUs, sharing memory and I/O devices

•  Single-System Image (SSI) & Cluster Computing
–  A group of computers, acting like a single computer

•  Loosely coupled, horizontally scalable systems
–  Coordinated, but relatively independent systems
–  Cloud computing is the most widely used version

•  Application level distributed computing
–  Application level protocols
–  Distributed middle-ware platforms

Lecture 14
Page 8

CS 111
Summer 2013

Symmetric Multiprocessors (SMP)
•  What are they and what are their goals?
•  SMP price/performance
•  OS design for SMP systems
•  SMP parallelism
– The memory bandwidth problem

•  Non-Uniform Memory Architectures (NUMA)

Lecture 14
Page 9

CS 111
Summer 2013

SMP Systems
•  Computers composed of multiple identical compute

engines
–  Each computer in SMP system usually called a node

•  Sharing memories and devices
•  Could run same or different code on all nodes
–  Each node runs at its own pace
–  Though resource contention can cause nodes to block

•  Examples:
– BBN Butterfly parallel processor
– More recently, multi-way Intel servers

Lecture 14
Page 10

CS 111
Summer 2013

SMP Goals

•  Price performance
– Lower price per MIP than single machine

•  Scalability
– Economical way to build huge systems
– Possibility of increasing machine’s power just by

adding more nodes
•  Perfect application transparency
– Runs the same on 16 nodes as on one
– Except faster

Lecture 14
Page 11

CS 111
Summer 2013

A Typical SMP Architecture

shared memory & device busses

memory

device
controller

device
controller

device
controller

CPU 1

cache

CPU 2

cache

CPU 3

cache

CPU 4

cache

interrupt
controller

Lecture 14
Page 12

CS 111
Summer 2013

The SMP Price/Performance
Argument

•  A computer is much more than a CPU
–  Mother-board, disks, controllers, power supplies, case
–  CPU might cost 10-15% of the cost of the computer

•  Adding CPUs to a computer is very cost-effective
–  A second CPU yields cost of 1.1x, performance 1.9x
–  A third CPU yields cost of 1.2x, performance 2.7x

•  Same argument also applies at the chip level
–  Making a machine twice as fast is ever more difficult
–  Adding more cores to the chip gets ever easier

•  Massive multi-processors are an obvious direction

Lecture 14
Page 13

CS 111
Summer 2013

SMP Operating Systems
•  One processor boots with power on
–  It controls the starting of all other processors

•  Same OS code runs in all processors
– One physical copy in memory, shared by all CPUs

•  Each CPU has its own registers, cache, MMU
– They cooperatively share memory and devices

•  ALL kernel operations must be Multi-Thread-
Safe
– Protected by appropriate locks/semaphores
– Very fine grained locking to avoid contention

Lecture 14
Page 14

CS 111
Summer 2013

Handling Kernel Synchronization
•  Multiple processors are sharing one OS copy
•  What needs to be synchronized?
– Every potentially sharable OS data structure
•  Process descriptors, file descriptors, data buffers,

message queues, etc.
•  All of the devices

•  Could we just lock the entire kernel, instead?
– Yes, but it would be a bottleneck
– Remember lock contention?
– Avoidable by not using coarse-grained locking

Lecture 14
Page 15

CS 111
Summer 2013

SMP Parallelism
•  Scheduling and load sharing
–  Each CPU can be running a different process
–  Just take the next ready process off the run-queue
–  Processes run in parallel
–  Most processes don't interact (other than inside kernel)

•  If they do, poor performance caused by excessive synchronization

•  Serialization
–  Mutual exclusion achieved by locks in shared memory
–  Locks can be maintained with atomic instructions
–  Spin locks acceptable for VERY short critical sections
–  If a process blocks, that CPU finds next ready process

Lecture 14
Page 16

CS 111
Summer 2013

The Challenge of SMP
Performance

•  Scalability depends on memory contention
–  Memory bandwidth is limited, can't handle all CPUs
–  Most references better be satisfied from per-CPU cache
–  If too many requests go to memory, CPUs slow down

•  Scalability depends on lock contention
–  Waiting for spin-locks wastes time
–  Context switches waiting for kernel locks waste time

•  This contention wastes cycles, reduces throughput
–  2 CPUs might deliver only 1.9x performance
–  3 CPUs might deliver only 2.7x performance

Lecture 14
Page 17

CS 111
Summer 2013

Managing Memory Contention

•  Each processor has its own cache
–  Cache reads don’t cause memory contention
–  Writes are more problematic

•  Locality of reference often solves the problems
–  Different processes write to different places

•  Keeping everything coherent still requires a smart
memory controller

•  Fast n-way memory controllers are very expensive
–  Without them, memory contention taxes performance
–  Cost/complexity limits how many CPUs we can add

Lecture 14
Page 18

CS 111
Summer 2013

NUMA

•  Non-Uniform Memory Architectures
•  Another approach to handling memory in SMPs
•  Each CPU gets its own memory, which is on the bus
–  Each CPU has fast path to its own memory

•  Connected by a Scalable Coherent Interconnect
–  A very fast, very local network between memories
–  Accessing memory over the SCI may be 3-20x slower

•  These interconnects can be highly scalable

Lecture 14
Page 19

CS 111
Summer 2013

A Sample NUMA SMP
Architecture

PCI bus

device
controller

device
controller

CPU n+1

cache
local

memory

PCI bridge

CC NUMA
interface

PCI bus

device
controller

device
controller

CPU n

cache
local

memory

PCI bridge

CC NUMA
interface

Scalable Coherent Interconnect

Lecture 14
Page 20

CS 111
Summer 2013

OS Design for NUMA Systems
•  All about local memory hit rates
–  Each processor must use local memory almost exclusively
–  Every outside reference costs us 3-20x performance
–  We need 75-95% hit rate just to break even

•  How can the OS ensure high hit-rates?
–  Replicate shared code pages in each CPU’s memory
–  Assign processes to CPUs, allocate all memory there
–  Migrate processes to achieve load balancing
–  Spread kernel resources among all the CPUs
–  Attempt to preferentially allocate local resources
–  Migrate resource ownership to CPU that is using it

Lecture 14
Page 21

CS 111
Summer 2013

The Key SMP Scaling Problem

•  True shared memory is expensive for large
numbers of processors

•  NUMA systems require a high degree of
system complexity to perform well
– Otherwise, they’re always accessing remote

memory at very high costs
•  So there is a limit to the technology for both

approaches
•  Which explains why SMP is not ubiquitous

Lecture 14
Page 22

CS 111
Summer 2013

Single System Image Approaches
•  Built a distributed system out of many more-

or-less traditional computers
– Each with typical independent resources
– Each running its own copy of the same OS
– Usually a fixed, known pool of machines

•  Connect them with a good local area network
•  Use software techniques to allow them to work

cooperatively
– Often while still offering many benefits of

independent machines to the local users

Lecture 14
Page 23

CS 111
Summer 2013

Motivations for Single System
Image Computing

•  High availability, service survives node/link failures
•  Scalable capacity (overcome SMP contention

problems)
–  You’re connecting with a LAN, not a special hardware

switch
–  LANs can host hundreds of nodes

•  Good application transparency
•  Examples:
–  Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI
–  Enterprise database servers

Lecture 14
Page 24

CS 111
Summer 2013

Why Did This Sound
Like a Good Idea?

•  Programs don’t run on hardware, they run on
top of an operating system

•  All the resources that processes see are already
virtualized

•  Don’t just virtualize a single system’s
resources, virtualize many systems’ resources

•  Applications that run in such a cluster are
(automatically and transparently) distributed

Lecture 14
Page 25

CS 111
Summer 2013

The SSI Vision

Virtual computer with 4x MIPS & memory

one large virtual file system

disk 1A

disk 1B

disk 2A

disk 2B

disk 3A

disk 3B

disk 4A

disk 4B

one global pool of
devices

physical systems

CD1

LP2

CD3

LP3

SCN4

CD1

CD3

LP2

LP3

SCN4

 secondary replicas

 primary copies

proc 101
proc 103
proc 106

lock 1A

proc 202
proc 204
proc 205

proc 301
proc 305
proc 306

lock 3B

proc 403
proc 405
proc 407

processes
 101, 103, 106,
+ 202, 204, 205,
+ 301, 305, 306,
+ 403, 405, 407

locks
 1A, 3B

Lecture 14
Page 26

CS 111
Summer 2013

OS Design for SSI Clusters

•  All nodes agree on the state of all OS resources
–  File systems, processes, devices, locks, IPC ports
–  Any process can operate on any object, transparently

•  They achieve this by exchanging messages
–  Advising one another of all changes to resources

•  Each OS’s internal state mirrors the global state

–  To execute node-specific requests
•  Node-specific requests automatically forwarded to right node

•  The implementation is large, complex, and difficult
•  The exchange of messages can be very expensive

Lecture 14
Page 27

CS 111
Summer 2013

SSI Performance
•  Clever implementation can minimize overhead
–  10-20% overall is not uncommon, can be much worse

•  Complete transparency
–  Even very complex applications “just work”
–  They do not have to be made “network aware”

•  Good robustness
–  When one node fails, others notice and take-over
–  Often, applications won't even notice the failure
–  Each node hardware-independent

•  Failures of one node don’t affect others, unlike some SMP failures

•  Very nice for application developers and customers
–  But they are complex, and not particularly scalable

Lecture 14
Page 28

CS 111
Summer 2013

An Example of SSI Complexity
•  Keeping track of which nodes are up
•  Done in the Locus Operating System through

“topology change”
•  Need to ensure that all nodes know of the identity of

all nodes that are up
•  By running a process to figure it out
•  Complications:
–  Who runs the process? What if he’s down himself?
–  Who do they tell the results to?
–  What happens if things change while you’re running it?
–  What if the system is partitioned?

Lecture 14
Page 29

CS 111
Summer 2013

Is It Really That Bad?

•  Nodes fail and recovery rarely
•  So something like topology change doesn’t run that

often
•  But consider a more common situation
•  Two processes have the same file open
–  What if they’re on different machines?
–  What if they are parent and child, and share a file pointer?

•  Basic read operations require distributed agreement
–  Or, alternately, we compromise the single image
–  Which was the whole point of the architecture

Lecture 14
Page 30

CS 111
Summer 2013

Scaling and SSI

•  Scaling limits proved not to be hardware
driven
– Unlike SMP machines

•  Instead, driven by algorithm complexity
– Consensus algorithms, for example

•  Design philosophy essentially requires
distributed cooperation
–  So this factor limits scalability

Lecture 14
Page 31

CS 111
Summer 2013

Lessons Learned From SSI

•  Consensus protocols are expensive
–  They converge slowly and scale poorly

•  Systems have a great many resources
–  Resource change notifications are expensive

•  Location transparency encouraged non-locality
–  Remote resource use is much more expensive

•  A very complicated operating system design
–  Distributed objects are much more complex to manage
–  Complex optimizations to reduce the added overheads
–  New modes of failure with complex recovery procedures

