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Outline 

•  Goals and vision of distributed computing 
•  Basic architectures 
– Symmetric multiprocessors 
– Single system image distributed systems 
– Cloud computing systems 
– User-level distributed computing 
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Goals of Distributed Computing 
•  Better services 
–  Scalability 

•  Some applications require more resources than one computer has 
•  Should be able to grow system capacity to meet growing demand 

–  Availability 
•  Disks, computers, and software fail, but services should be 24x7! 

–  Improved ease of use, with reduced operating expenses 
•  Ensuring correct configuration of all services on all systems 

•  New services 
–  Applications that span multiple system boundaries 
–  Global resource domains, services decoupled from systems 
–  Complete location transparency 
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Important Characteristics of 
Distributed Systems 

•  Performance 
–  Overhead, scalability, availability 

•  Functionality 
–  Adequacy and abstraction for target applications 

•  Transparency 
–  Compatibility with previous platforms 
–  Scope and degree of location independence 

•  Degree of coupling 
–  How many things do distinct systems agree on? 
–  How is that agreement achieved? 



Lecture 14 
Page 5 

CS 111 
Summer 2013  

Loosely and Tightly Coupled 
Systems 

•  Tightly coupled systems 
–  Share a global pool of resources 
–  Agree on their state, coordinate their actions 

•  Loosely coupled systems 
–  Have independent resources 
–  Only coordinate actions in special circumstances 

•  Degree of coupling 
–  Tight coupling: global coherent view, seamless fail-over 

•  But very difficult to do right 

–  Loose coupling: simple and highly scalable 
•  But a less pleasant system model 
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Globally Coherent Views 
•  Everyone sees the same thing 
•  Usually the case on single machines 
•  Harder to achieve in distributed systems 
•  How to achieve it? 
– Have only one copy of things that need single view 
•  Limits the benefits of the distributed system 
•  And exaggerates some of their costs 

– Ensure multiple copies are consistent 
•  Requiring complex and expensive consensus protocols 

•  Not much of a choice 
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Major Classes of Distributed 
Systems 

•  Symmetric Multi-Processors (SMP) 
–  Multiple CPUs, sharing memory and I/O devices 

•  Single-System Image (SSI) & Cluster Computing 
–  A group of computers, acting like a single computer 

•  Loosely coupled, horizontally scalable systems 
–  Coordinated, but relatively independent systems 
–  Cloud computing is the most widely used version 

•  Application level distributed computing 
–  Application level protocols 
–  Distributed middle-ware platforms 
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Symmetric Multiprocessors (SMP) 
•  What are they and what are their goals?  
•  SMP price/performance 
•  OS design for SMP systems 
•  SMP parallelism 
– The memory bandwidth problem 

•  Non-Uniform Memory Architectures (NUMA) 
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SMP Systems 
•  Computers composed of multiple identical compute 

engines 
–  Each computer in SMP system usually called a node 

•  Sharing memories and devices 
•  Could run same or different code on all nodes 
–  Each node runs at its own pace 
–  Though resource contention can cause nodes to block 

•  Examples: 
– BBN Butterfly parallel processor 
– More recently, multi-way Intel servers 



Lecture 14 
Page 10 

CS 111 
Summer 2013  

SMP Goals 

•  Price performance  
– Lower price per MIP than single machine 

•  Scalability  
– Economical way to build huge systems 
– Possibility of increasing machine’s power just by 

adding more nodes 
•  Perfect application transparency 
– Runs the same on 16 nodes as on one 
– Except faster 



Lecture 14 
Page 11 

CS 111 
Summer 2013  

A Typical SMP Architecture 

shared memory & device busses 

memory 

device 
controller 

device 
controller 

device 
controller 

CPU 1 

cache 

CPU 2 

cache 

CPU 3 

cache 

CPU 4 

cache 

interrupt 
controller 



Lecture 14 
Page 12 

CS 111 
Summer 2013  

The SMP Price/Performance 
Argument 

•  A computer is much more than a CPU 
–  Mother-board, disks, controllers, power supplies, case 
–  CPU might cost 10-15% of the cost of the computer 

•  Adding CPUs to a computer is very cost-effective 
–  A second CPU yields cost of 1.1x, performance 1.9x 
–  A third CPU yields cost of 1.2x, performance 2.7x 

•  Same argument also applies at the chip level 
–  Making a machine twice as fast is ever more difficult 
–  Adding more cores to the chip gets ever easier 

•  Massive multi-processors are an obvious direction 
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SMP Operating Systems 
•  One processor boots with power on 
–  It controls the starting of all other processors 

•  Same OS code runs in all processors 
– One physical copy in memory, shared by all CPUs 

•  Each CPU has its own registers, cache, MMU 
– They cooperatively share memory and devices 

•  ALL kernel operations must be Multi-Thread-
Safe 
– Protected by appropriate locks/semaphores 
– Very fine grained locking to avoid contention 
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Handling Kernel Synchronization 
•  Multiple processors are sharing one OS copy 
•  What needs to be synchronized? 
– Every potentially sharable OS data structure 
•  Process descriptors, file descriptors, data buffers, 

message queues, etc. 
•  All of the devices 

•  Could we just lock the entire kernel, instead? 
– Yes, but it would be a bottleneck 
– Remember lock contention? 
– Avoidable by not using coarse-grained locking 
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SMP Parallelism 
•  Scheduling and load sharing 
–  Each CPU can be running a different process 
–  Just take the next ready process off the run-queue 
–  Processes run in parallel 
–  Most processes don't interact (other than inside kernel) 

•  If they do, poor performance caused by excessive synchronization 

•  Serialization 
–  Mutual exclusion achieved by locks in shared memory 
–  Locks can be maintained with atomic instructions 
–  Spin locks acceptable for VERY short critical sections 
–  If a process blocks, that CPU finds next ready process 
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The Challenge of SMP 
Performance 

•  Scalability depends on memory contention 
–  Memory bandwidth is limited, can't handle all CPUs 
–  Most references better be satisfied from per-CPU cache 
–  If too many requests go to memory, CPUs slow down 

•  Scalability depends on lock contention 
–  Waiting for spin-locks wastes time 
–  Context switches waiting for kernel locks waste time 

•  This contention wastes cycles, reduces throughput 
–  2 CPUs might deliver only 1.9x performance 
–  3 CPUs might deliver only 2.7x performance  
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Managing Memory Contention 

•  Each processor has its own cache 
–  Cache reads don’t cause memory contention 
–  Writes are more problematic 

•  Locality of reference often solves the problems 
–  Different processes write to different places 

•  Keeping everything coherent still requires a smart 
memory controller  

•  Fast n-way memory controllers are very expensive 
–  Without them, memory contention taxes performance 
–  Cost/complexity limits how many CPUs we can add 
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NUMA 

•  Non-Uniform Memory Architectures 
•  Another approach to handling memory in SMPs 
•  Each CPU gets its own memory, which is on the bus 
–  Each CPU has fast path to its own memory 

•  Connected by a Scalable Coherent Interconnect 
–  A very fast, very local network between memories 
–  Accessing memory over the SCI may be 3-20x slower 

•  These interconnects can be highly scalable 
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A Sample NUMA SMP 
Architecture 
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OS Design for NUMA Systems 
•  All about local memory hit rates 
–  Each processor must use local memory almost exclusively 
–  Every outside reference costs us 3-20x performance 
–  We need 75-95% hit rate just to break even 

•  How can the OS ensure high hit-rates? 
–  Replicate shared code pages in each CPU’s memory 
–  Assign processes to CPUs, allocate all memory there 
–  Migrate processes to achieve load balancing 
–  Spread kernel resources among all the CPUs 
–  Attempt to preferentially allocate local resources 
–  Migrate resource ownership to CPU that is using it 
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The Key SMP Scaling Problem 

•  True shared memory is expensive for large 
numbers of processors 

•  NUMA systems require a high degree of 
system complexity to perform well 
– Otherwise, they’re always accessing remote 

memory at very high costs 
•  So there is a limit to the technology for both 

approaches 
•  Which explains why SMP is not ubiquitous 
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Single System Image Approaches 
•  Built a distributed system out of many more-

or-less traditional computers 
– Each with typical independent resources 
– Each running its own copy of the same OS 
– Usually a fixed, known pool of machines 

•  Connect them with a good local area network 
•  Use software techniques to allow them to work 

cooperatively 
– Often while still offering many benefits of 

independent machines to the local users  
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Motivations for Single System 
Image Computing 

•  High availability, service survives node/link failures 
•  Scalable capacity (overcome SMP contention 

problems) 
–  You’re connecting with a LAN, not a special hardware 

switch 
–  LANs can host hundreds of nodes 

•  Good application transparency 
•  Examples: 
–  Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI 
–  Enterprise database servers 
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Why Did This Sound  
Like a Good Idea? 

•  Programs don’t run on hardware, they run on 
top of an operating system   

•  All the resources that processes see are already 
virtualized   

•  Don’t just virtualize a single system’s 
resources, virtualize many systems’ resources 

•  Applications that run in such a cluster are 
(automatically and transparently) distributed 
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The SSI Vision 
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OS Design for SSI Clusters 

•  All nodes agree on the state of all OS resources 
–  File systems, processes, devices, locks, IPC ports 
–  Any process can operate on any object, transparently 

•  They achieve this by exchanging messages 
–  Advising one another of all changes to resources 

•  Each OS’s internal state mirrors the global state 

–  To execute node-specific requests 
•  Node-specific requests automatically forwarded to right node 

•  The implementation is large, complex, and difficult 
•  The exchange of messages can be very expensive 



Lecture 14 
Page 27 

CS 111 
Summer 2013  

SSI Performance 
•  Clever implementation can minimize overhead 
–  10-20% overall is not uncommon, can be much worse 

•  Complete transparency 
–  Even very complex applications “just work” 
–  They do not have to be made “network aware” 

•  Good robustness 
–  When one node fails, others notice and take-over 
–  Often, applications won't even notice the failure 
–  Each node hardware-independent 

•  Failures of one node don’t affect others, unlike some SMP failures 

•  Very nice for application developers and customers 
–  But they are complex, and not particularly scalable 
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An Example of SSI Complexity 
•  Keeping track of which nodes are up 
•  Done in the Locus Operating System through 

“topology change” 
•  Need to ensure that all nodes know of the identity of 

all nodes that are up 
•  By running a process to figure it out 
•  Complications: 
–  Who runs the process?  What if he’s down himself? 
–  Who do they tell the results to? 
–  What happens if things change while you’re running it? 
–  What if the system is partitioned? 
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Is It Really That Bad? 

•  Nodes fail and recovery rarely 
•  So something like topology change doesn’t run that 

often 
•  But consider a more common situation 
•  Two processes have the same file open 
–  What if they’re on different machines? 
–  What if they are parent and child, and share a file pointer? 

•  Basic read operations require distributed agreement 
–  Or, alternately, we compromise the single image 
–  Which was the whole point of the architecture 
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Scaling and SSI 

•  Scaling limits proved not to be hardware 
driven 
– Unlike SMP machines 

•  Instead, driven by algorithm complexity 
– Consensus algorithms, for example 

•  Design philosophy essentially requires 
distributed cooperation 
–   So this factor limits scalability 
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Lessons Learned From SSI 

•  Consensus protocols are expensive 
–  They converge slowly and scale poorly 

•  Systems have a great many resources 
–  Resource change notifications are expensive 

•  Location transparency encouraged non-locality 
–  Remote resource use is much more expensive 

•  A very complicated operating system design 
–  Distributed objects are much more complex to manage 
–  Complex optimizations to reduce the added overheads 
–  New modes of failure with complex recovery procedures 


