
Lecture 13
Page 1

CS 111
Summer 2013

Remote File Access:
Problems and Solutions

•  Authentication and authorization
•  Performance
•  Synchronization
•  Robustness

Lecture 13
Page 2

CS 111
Summer 2013

Authorization and Authentication

•  Authorization is determined if someone is
allowed to do something

•  Authentication is determining who someone is
•  Both are required for good file system security
– Be sure who someone is first
– Then see if that entity can do what he asked for

•  Both are more challenging when file system
spans multiple machines

Lecture 13
Page 3

CS 111
Summer 2013

Problems in Authentication/
Authorization

•  How does remote server know requestor identity?
–  User isn’t logged into his machine

•  Where should we enforce access control rules?
–  On the requesting client side?

•  That’s who really knows who the client is

–  On the responding server side?
•  That’s who has responsibility to protect the data

–  On both?
•  Name space issues
–  Do the client and server agree on who’s who?

Lecture 13
Page 4

CS 111
Summer 2013

Approaches to These
Security Issues

•  User-session protocols (e.g., CIFS)
– RFS session establishment includes authentication
•  So server authenticates requesting client

– Server performs all authorization checks

•  Peer-to-peer protocols (e.g., NFS)
– Server trusts client to enforce authorization control
– And to authenticate the user

•  Third party authentication (e.g., Kerberos)
– Server checks authorization based on credentials

Lecture 13
Page 5

CS 111
Summer 2013

Performance Issues

•  Performance of the remote file system now
dependent on many more factors
– Not just the local CPU, bus, memory, and disk

•  Also on the same hardware on the server that
stores the files
– Which often is servicing many clients

•  And on the network in between
– Which can have wide or narrow bandwidth

Lecture 13
Page 6

CS 111
Summer 2013

Some Performance Solutions
•  Appropriate transport and session protocols
– Minimize messages, maximize throughput

•  Partition the work
– Minimize number of remote requests
– Spread load over more processors and disks

•  Client-side pre-fetching and caching
– Fetching whole file at a once is more efficient
– Block caching for read-ahead and deferred writes
– Reduces disk I/O and network I/O (vs. server

cache)

Lecture 13
Page 7

CS 111
Summer 2013

Protocol-Related Solutions

•  Minimize messages
– Allow any key operation to be performed with a

single request and a single response
– Combine short messages and responses into a

single packet
•  Maximize throughput
– Design for large data transfers per message
– Use minimal flow control between client and

server

Lecture 13
Page 8

CS 111
Summer 2013

Partitioning the Work
Open file instances, offsets

Device driver

Device driver integration layer

Block caching

Data packing and unpacking

Logical to physical block mapping

Directory searching

Clearly on
server side

Clearly on
client side

Either side
(or both)

Authentication/authorization

On-disk data representation

Specialized caching (directories, file descriptors)

Lecture 13
Page 9

CS 111
Summer 2013

Server Load Balancing
•  If multiple servers can handle the same

file requests, we can load balance
–  Improving performance for multiple clients

•  Provide a pool of servers
– All with access to the same data
• E.g., they all have copies of all the same files

– Spread client traffic across all of the servers
• E.g., using a load-balancing front-end router

– Increase capacity by adding servers to pool
• With potentially linear scalability

– Works best if requests are idempotent

Lecture 13
Page 10

CS 111
Summer 2013

Client-Side Caching
•  Benefits
– Avoids network latencies
– Clients can cache name-to-handle bindings
•  Eliminating repetition of the same search

– Clients can cache blocks of file data
•  Eliminating the need to re-fetch them from the server

•  Dangers
– Multiple clients, each with his own cache
– Cache invalidation issues

•  Challenges
– Serializing concurrent writes from multiple clients
– Keeping client side caches up-to date
•  Without sending N messages per update

Lecture 13
Page 11

CS 111
Summer 2013

The Cache Invalidation Issue
•  Two (or more) clients cache the same block
•  One of them updates it
•  What about the other one?
•  Server could notify every client of every write
– Very inefficient

•  Server could track which clients to notify
– Higher server overhead

•  Clients could obtain lock on files before update
•  Clients could verify cache validity before use

Lecture 13
Page 12

CS 111
Summer 2013

Synchronization Issues

•  Distributed synchronization is slow and difficult
–  Provide a centralized synchronization server

•  All locks are granted by a single server
•  Changes are not official until he acknowledges them
•  He notifies other nodes of “interesting” changes

•  Distributed systems have complex failure modes
–  Locks are granted as revocable leases

•  Update transaction must be accompanied by valid lease

–  Versioned files can detect stale information
–  All cached information should have a “time to live”

•  A tradeoff between performance and consistency

Lecture 13
Page 13

CS 111
Summer 2013

Robustness Issues

•  Three major components in remote file system
operations
– The client machine
– The server machine
– The network in between

•  All can fail
– Leading to potential problems for the remote file

system’s data and users

Lecture 13
Page 14

CS 111
Summer 2013

Robustness Solution Approaches
•  Network errors – support client retries
– Have file system protocol uses idempotent requests
– Have protocol support all-or-none transactions

•  Client failures – support server-side recovery
– Automatic back-out of uncommitted transactions
– Automatic expiration of timed-out lock leases

•  Server failures – support server fail-over
– Replicated (parallel or back-up) servers
– Stateless remote file system protocols
– Automatic client-server rebinding

Lecture 13
Page 15

CS 111
Summer 2013

Idempotent Operations
•  Operations that can be repeated many times

with same effect as if done once
–  If server does not respond, client repeats request
–  If server gets request multiple times, no harm done

•  Examples:
– Read block 100 of file X
– Write block 100 of file X with contents Y
– Delete file X, version v

•  Examples of non-idempotent operations:
– Read next block of current file
– Append contents Y to end of file X

Lecture 13
Page 16

CS 111
Summer 2013

State-full and Stateless Protocols
•  A state-full protocol has a notion of a “session”
– Context for a sequence of operations
– Each operation depends on previous operations
– Server is expected to remember session state
– Examples: TCP (message sequence numbers)

•  A stateless protocol does not assume server
retains “session state”
– Client supplies necessary context on each request
– Each operation is complete and unambiguous
– Example: HTTP

Lecture 13
Page 17

CS 111
Summer 2013

Server Fail-Over
•  When is handling server failure by switching

to another server feasible?
–  If the other server can access the required data
•  Because files are replicated to multiple servers
•  Because new server can access old server’s disks

–  If the protocol allows stateless servers
•  Client will not expect server to remember anything

–  If clients can be re-bound to a new server
•  IP address fail-over may make this automatic
•  RFS client layer might rebind w/o telling application
•  Idempotent requests can be re-sent with no danger

Lecture 13
Page 18

CS 111
Summer 2013

Remote File System Examples

•  Common Internet File System (classic client/
server)

•  Network File System (peer-to-peer file
sharing)

•  Andrew File System (cache-only clients)
•  Hyper-Text Transfer Protocol (a different

approach)

Lecture 13
Page 19

CS 111
Summer 2013

Common Internet File System

•  Originally a proprietary Microsoft Protocol
– Newer versions (CIFS 1.0) are IETF standard

•  Designed to enable “work group” computing
– Group of PCs sharing same data, printers
– Any PC can export its resources to the group
– Work group is the union of those resources

•  Designed for PC clients and NT servers
– Originally designed for FAT and NT file systems
– Now supports clients and servers of all types

Lecture 13
Page 20

CS 111
Summer 2013

CIFS Architecture

•  Standard remote file access architecture
•  State-full per-user client/server sessions
–  Password or challenge/response authentication
–  Server tracks open files, offsets, updates
–  Makes server fail-over much more difficult

•  Opportunistic locking
–  Client can cache file if nobody else using/writing it
–  Otherwise all reads/writes must be synchronous

•  Servers regularly advertise what they export
–  Enabling clients to “browse” the workgroup

Lecture 13
Page 21

CS 111
Summer 2013

Benefits of Opportunistic Locking

•  A big performance win
•  Getting permission from server before each

write is a huge expense
–  In both time and server loading

•  If no conflicting file use 99.99% of the time,
opportunistic locks greatly reduce overhead

•  When they can’t be used, CIFS does provide
correct centralized serialization

Lecture 13
Page 22

CS 111
Summer 2013

CIFS Pros and Cons

•  Performance/Scalability
–  Opportunistic locks enable good performance
–  Otherwise, forced synchronous I/O is slow

•  Transparency
–  Very good, especially the global name space

•  Conflict Prevention
–  File/record locking and synchronous writes work well

•  Robustness
–  State-full servers make seamless fail-over impossible

Lecture 13
Page 23

CS 111
Summer 2013

The Network File System (NFS)
•  Transparent, heterogeneous file system sharing
– Local and remote files are indistinguishable

•  Peer-to-peer and client-server sharing
– Disk-full clients can export file systems to others
– Able to support diskless (or dataless) clients
– Minimal client-side administration

•  High efficiency and high availability
– Read performance competitive with local disks
– Scalable to huge numbers of clients
– Seamless fail-over for all readers and some writers

Lecture 13
Page 24

CS 111
Summer 2013

The NFS Protocol
•  Relies on idempotent operations and stateless server
–  Built on top of a remote procedure call protocol
–  With eXternal Data Representation, server binding
–  Versions of RPC over both TCP or UDP
–  Optional encryption (may be provided at lower level)

•  Scope – basic file operations only
–  Lookup (open), read, write, read-directory, stat
–  Supports client or server-side authentication
–  Supports client-side caching of file contents
–  Locking and auto-mounting done with another protocol

Lecture 13
Page 25

CS 111
Summer 2013

NFS Authentication
•  How can we trust NSF clients to authenticate

themselves?
•  NFS not not designed for direct use by user

applications
•  It permits one operating system instance to

access files belonging to another OS instance
•  If we trust the remote OS to see the files, might

as well trust it to authenticate the user
•  Obviously, don’t use NFS if you don’t trust the

remote OS . . .

Lecture 13
Page 26

CS 111
Summer 2013

NFS Replication
•  NFS file systems can be replicated
–  Improves read performance and availability
– Only one replica can be written to

•  Client-side agent (in OS) handles fail-over
– Detects server failure, rebinds to new server

•  Limited transparency for server failures
– Most readers will not notice failure (only brief

delay)
– Users of changed files may get “stale handle” error
– Active locks may have to be re-obtained

Lecture 13
Page 27

CS 111
Summer 2013

NFS and Updates
•  An NFS server does not prevent conflicting updates
–  As with local file systems, this is application’s job

•  Auxiliary server/protocol for file and record locking
–  All leases are maintained on the lock server
–  All lock/unlock operations handed by lock server

•  Client/network failure handling
–  Server can break locks if client dies or times out
–  “Stale-handle” errors inform client of broken lock
–  Client response to these errors are application specific

•  Lock server failure handling is very complex

Lecture 13
Page 28

CS 111
Summer 2013

NFS Pros and Cons
•  Transparency/Heterogeneity
– Local/remote transparency is excellent
– NFS works with all major OSes and FSes

•  Performance
– Read performance may be better than local disk
– Replication provides scalable read bandwidth
– Write performance slower than local disk

•  Robustness
– Transparent fail-over capability for readers
– Recoverable fail-over capability for writers

Lecture 13
Page 29

CS 111
Summer 2013

NFS Vs. CIFS
•  Functionality
– NFS is much more portable (platforms, OS, FS)
– CIFS provides much better write serialization

•  Performance and robustness
– NFS provides much greater read scalability
– NFS has much better fail-over characteristics

•  Security
– NFS supports more security models
– CIFS gives the server better authorization control

Lecture 13
Page 30

CS 111
Summer 2013

The Andrew File System

•  AFS
•  Developed at CMU
•  Designed originally to support student and

faculty use
– Generally, large numbers of users of a single

organization
•  Uses a client/server model
•  Makes use of whole-file caching

Lecture 13
Page 31

CS 111
Summer 2013

AFS Basics
•  Designed for scalability, performance
– Large numbers of clients and very few servers
– Needed performance of local file systems
– Very low per-client load imposed on servers
– No administration or back-up for client disks

•  Master files reside on a file server
– Local file system is used as a local cache
– Local reads satisfied from cache when possible
– Files are only read from server if not in cache

•  Simple synchronization of updates

Lecture 13
Page 32

CS 111
Summer 2013

AFS Architecture

EX
T3 FS

block I/O

A
ndrew

 R
elay

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

remote server
file system

client server

TCP

block I/O

EX
T3 FS

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

TCP

Andrew Agent

local FS
(cache only)

Andrew cache
mangaer

Lecture 13
Page 33

CS 111
Summer 2013

AFS Replication
•  One replica at server, possibly many at clients
•  Check for local copies in cache at open time
–  If no local copy exists, fetch it from server
–  If local copy exists, see if it is still up-to-date

•  Compare file size and modification time with server

–  Optimizations reduce overhead of checking
•  Subscribe/broadcast change notifications
•  Time-to-live on cached file attributes and contents

•  Send updates to server when file is closed
–  Wait for all changes to be completed
–  File may be deleted before it is closed

•  E.g., temporary files that servers need not know about

Lecture 13
Page 34

CS 111
Summer 2013

AFS Reconciliation
•  Client sends updates to server when local copy

closed
•  Server notifies all clients of change
– Warns them to invalidate their local copy
– Warns them of potential write conflicts

•  Server supports only advisory file locking
– Distributed file locking is extremely complex

•  Clients are expected to handle conflicts
– Noticing updates to files open for write access
– Notification/reconciliation strategy is unspecified

Lecture 13
Page 35

CS 111
Summer 2013

AFS Pros and Cons
•  Performance and Scalability
–  All file access by user/applications is local
–  Update checking (with time-to-live) is relatively cheap
–  Both fetch and update propagation are very efficient
–  Minimal per-client server load (once cache filled)

•  Robustness
–  No server fail-over, but have local copies of most files

•  Transparency
–  Mostly perfect - all file access operations are local
–  Pray that we don't have any update conflicts

Lecture 13
Page 36

CS 111
Summer 2013

AFS vs. NFS

•  Basic designs
–  Both designed for continuous connection client/server
–  NFS supports diskless clients without local file systems

•  Performance
–  AFS generates much less network traffic, server load
–  They yield similar client response times

•  Ease of use
–  NFS provides for better transparency
–  NFS has enforced locking and limited fail-over

•  NFS requires more support in operating system

Lecture 13
Page 37

CS 111
Summer 2013

HTTP
•  A different approach, for a different purpose
•  Stateless protocol with idempotent operations
–  Implemented atop TCP (or other reliable transport)
–  Whole file transport (not remote data access)

•  get file, put file, delete file, post form-contents

–  Anonymous file access, but secure (SSL) transfers
–  Keep-alive sessions (for performance only)

•  A truly global file namespace (URLs)
–  Client and in-network caching to reduce server load
–  A wide range of client redirection options

Lecture 13
Page 38

CS 111
Summer 2013

HTTP Architecture
•  Not a traditional remote file access mechanism
•  We do not try to make it look like local file access
–  Apps are written to HTTP or other web-aware APIs
–  No interception and translation of local file operations
–  But URLs can be constructed for local files

•  Server is entirely implemented in user-mode
–  Authentication via SSL or higher level dialogs
–  All data is assumed readable by all clients

•  HTTP servers provide more than remote file access
–  POST operations invoke server-side processing

•  No attempt to provide write locking or serialization

Lecture 13
Page 39

CS 111
Summer 2013

HTTP Pros and Cons
•  Transparency
–  Universal namespace for heterogeneous data
–  Requires use of new APIs and namespace
–  No attempt at compatibility with old semantics

•  Performance
–  Simple implementations, efficient transport
–  Unlimited read throughput scalability
–  Excellent caching and load balancing

•  Robustness
–  Automatic retrys, seamless fail-over, easy redirects
–  Not much attempt to handle issues related to writes

Lecture 13
Page 40

CS 111
Summer 2013

HTTP vs. NFS/CIFS

•  The file model and services provided by HTTP are
much weaker than those provided by CIFS or NFS

•  So why would anyone choose to use HTTP for
remote file access?

•  It’s easy to use, provides excellent performance,
scalability and availability, and is ubiquitous

•  If I don’t need per-user authorization, walk-able name
spaces, and synchronized updates,
–  Why pay the costs of more elaborate protocols?
–  If I do need, them, though, . . .

Lecture 13
Page 41

CS 111
Summer 2013

Conclusion
•  Be clear about your remote file system requirements
–  Different priorities lead to different tradeoffs & designs

•  The remote file access protocol is the key
–  It determines the performance and robustness
–  It imposes or presumes security mechanisms
–  It is designed around synchronization & fail-over

mechanisms

•  Stateless protocols with idempotent ops are limiting
–  But very rewarding if you can accept those limitations

•  Read-only content is a pleasure to work with
–  Synchronized and replicated updates are very hard

