-

\

CS 111
Summer 2013

" Remote File Access:

KProblems and Solutionsj

 Authentication and authorization
e Performance
* Synchronization

e Robustness

Lecture 13
Page 1

e Authorization 1s determined if someone 1s
allowed to do something

* Authentication 1s determining who someone 1s

* Both are required for good file system security
— Be sure who someone i1s first

— Then see 1f that entity can do what he asked for

* Both are more challenging when file system
spans multiple machines

CS 111 Lecture 13
Summer 2013 Page 2

/ Problems in Authentication/ \
Authorization

* How does remote server know requestor 1dentity?

— User 1sn’t logged into his machine

* Where should we enforce access control rules?

— On the requesting client side?

* That’s who really knows who the client is

— On the responding server side?
* That’s who has responsibility to protect the data

— On both?
* Name space 1ssues

\ — Do the client and server agree on who’s who? /

CS 111 Lecture 13
Summer 2013 Page 3

/~ Approaches to These N

\

Security Issues
* User-session protocols (e.g., CIFS)
— RFS session establishment includes authentication

* So server authenticates requesting client
— Server performs all authorization checks
* Peer-to-peer protocols (e.g., NFS)

— Server trusts client to enforce authorization control
— And to authenticate the user

* Third party authentication (e.g., Kerberos)

— Server checks authorization based on credentials /

CS 111 Lecture 13
Summer 2013 Page 4

* Performance of the remote file system now
dependent on many more factors

— Not just the local CPU, bus, memory, and disk

 Also on the same hardware on the server that
stores the files

— Which often 1s servicing many clients

 And on the network 1in between

— Which can have wide or narrow bandwidth

\

CS 111
Summer 2013

/ - Performance Issues | \

Lecture 13
Page 5

/ Some Performance Solutions \

* Appropriate transport and session protocols

— Minimize messages, maximize throughput

* Partition the work

— Minimize number of remote requests

— Spread load over more processors and disks
* Client-side pre-fetching and caching

— Fetching whole file at a once 1s more efficient
— Block caching for read-ahead and deferred writes

— Reduces disk I/O and network 1/O (vs. server)
s cache) Lectue 1

Summer 2013 Page 6

/ Protocol-Related Solutions \

* Minimize messages

— Allow any key operation to be performed with a
single request and a single response

— Combine short messages and responses 1nto a
single packet
* Maximize throughput
— Design for large data transfers per message

— Use minimal flow control between client and
\ server /

CS 111 Lecture 13
Summer 2013 Page 7

/ Partitioning the Work \

Open file instances, offsets Clearly on

client side
Data packing and unpacking

Authentication/authorization

Directory searching

Either side
Block caching (or both)
Specialized caching (directories, file descriptors)
Logical to physical block mapping
On-disk data representation
Device driver integration layer Clearly on
server side
\ Device driver /
CS 111 Lecture 13
Summer 2013

Page 8

/ Server Load Balancing \

* If multiple servers can handle the same
file requests, we can load balance
— Improving performance for multiple clients

* Provide a pool of servers

— All with access to the same data
* E.g., they all have copies of all the same files

— Spread client traffic across all of the servers

* E.g., using a load-balancing front-end router
—Increase capacity by adding servers to pool
\ * With potentially linear scalability y
s — Works best 1f requests are idempotent Lectur 13

Summer 2013 Page 9

/" Client-Side Caching

\

 Benefits
— Avoids network latencies

— Clients can cache name-to-handle bindings
* Eliminating repetition of the same search

— Clients can cache blocks of file data
* Eliminating the need to re-fetch them from the server
* Dangers
— Multiple clients, each with his own cache
— Cache 1mvalidation 1ssues

* Challenges
— Serializing concurrent writes from multiple clients

— Keeping client side caches up-to date y
* Without sending N messages per update

CS 111 Lecture 13
Summer 2013 Page 10

/ The Cache Invalidation Issue \

* Two (or more) clients cache the same block
* One of them updates it

* What about the other one?

* Server could notify every client of every write
— Very 1nefficient

* Server could track which clients to notify

— Higher server overhead

* Clients could obtain lock on files before update

\¢ Clients could verify cache validity before use /

CS 111 Lecture 13
Summer 2013 Page 11

4 ‘Synchronization Issues | N

* Distributed synchronization is slow and difficult

— Provide a centralized synchronization server
* All locks are granted by a single server
* Changes are not official until he acknowledges them
* He notifies other nodes of “interesting” changes

* Distributed systems have complex failure modes

— Locks are granted as revocable leases
» Update transaction must be accompanied by valid lease

— Versioned files can detect stale information

— All cached information should have a “time to live”

\ A tradeoff between performance and consistency /

CS 111 Lecture 13
Summer 2013 Page 12

/" [Robustness Issues |)

__

* Three major components in remote file system
operations

la mh

— The client machine

T

— The server machine

7

— The network 1n between

 All can fail

— Leading to potential problems for the remote file
system’s data and users

\ /

CS 111 Lecture 13
Summer 2013 Page 13

/Robustness Solution Approaches\

* Network errors — support client retries
— Have file system protocol uses idempotent requests

— Have protocol support all-or-none transactions

* Client failures — support server-side recovery
— Automatic back-out of uncommitted transactions

— Automatic expiration of timed-out lock leases

* Server failures — support server fail-over

— Replicated (parallel or back-up) servers

\ — Stateless remote file system protocols)

s — Automatic client-server rebinding Lecture 13

Summer 2013 Page 14

/ Idempotent Operations \

\

* Operations that can be repeated many times
with same effect as 1f done once

— If server does not respond, client repeats request

— If server gets request multiple times, no harm done
* Examples:

— Read block 100 of file X

— Write block 100 of file X with contents Y

— Delete file X, version v

* Examples of non-idempotent operations:

— Read next block of current file
— Append contents Y to end of file X /

CS 111 Lecture 13
Summer 2013 Page 15

/State-full and Stateless Protocols\

* A state-full protocol has a notion of a “session”
— Context for a sequence of operations
— Each operation depends on previous operations
— Server is expected to remember session state

— Examples: TCP (message sequence numbers)

* A stateless protocol does not assume server
retains ““session state”

— Client supplies necessary context on each request

— Each operation 1s complete and unambiguous
\ Example: HTTP /

CS 111 Lecture 13
Summer 2013 Page 16

-

\

CS 111
Summer 2013

Server Fail-Over \

* When 1s handling server failure by switching
to another server feasible?

— If the other server can access the required data

* Because files are replicated to multiple servers

 Because new server can access old server’s disks

— If the protocol allows stateless servers

* Client will not expect server to remember anything

— If clients can be re-bound to a new server

[P address fail-over may make this automatic
* RFS client layer might rebind w/o telling application
* Idempotent requests can be re-sent with no danger

/

Lecture 13
Page 17

\

CS 111

Summer 2013

/ [Remote File System Examples}\

Common Internet File System (classic client/
Server)

Network File System (peer-to-peer file
sharing)

Andrew File System (cache-only clients)

Hyper-Text Transfer Protocol (a different
approach)

Lecture 13
Page 18

__

__

* Originally a proprietary Microsoft Protocol
— Newer versions (CIFS 1.0) are IETF standard

* Designed to enable “work group” computing
— Group of PCs sharing same data, printers
— Any PC can export its resources to the group
— Work group is the union of those resources

* Designed for PC clients and NT servers

— Originally designed for FAT and NT file systems
\ Now supports clients and servers of all types /

CS 111 Lecture 13
Summer 2013 Page 19

/ CIFS Architecture \

e Standard remote file access architecture

State-full per-user client/server sessions
— Password or challenge/response authentication
— Server tracks open files, offsets, updates

— Makes server fail-over much more difficult

* Opportunistic locking
— Client can cache file if nobody else using/writing it
— Otherwise all reads/writes must be synchronous

* Servers regularly advertise what they export
\ — Enabling clients to “browse” the workgroup /

CS 111 Lecture 13
Summer 2013 Page 20

/Beneﬁts of Opportunistic Locking\

\

CS 111

Summer 2013

A big performance win

Getting permission from server before each
write 1s a huge expense

— In both time and server loading

If no conflicting file use 99.99% of the time,
opportunistic locks greatly reduce overhead

When they can’t be used, CIFS does provide
correct centralized serialization

Lecture 13
Page 21

/ CIFS Pros and Cons \

* Performance/Scalability

— Opportunistic locks enable good performance
— Otherwise, forced synchronous 1/0O 1s slow

* Transparency
— Very good, especially the global name space

 (Contlict Prevention

— File/record locking and synchronous writes work well

Robustness

— State-full servers make seamless fail-over impossible

\ /

CS 111 Lecture 13
Summer 2013 Page 22

/" The Network File System (NFS)

\

» Transparent, heterogeneous file system sharing

— Local and remote files are indistinguishable

* Peer-to-peer and client-server sharing
— Disk-full clients can export file systems to others
— Able to support diskless (or dataless) clients

— Minimal client-side administration

* High efficiency and high availability

— Read performance competitive with local disks

— Scalable to huge numbers of clients
— Seamless fail-over for all readers and some writers /

CS 111 Lecture 13
Summer 2013 Page 23

/ The NFS Protocol \

* Relies on idempotent operations and stateless server
— Built on top of a remote procedure call protocol
— With eXternal Data Representation, server binding
— Versions of RPC over both TCP or UDP
— Optional encryption (may be provided at lower level)

* Scope — basic file operations only
— Lookup (open), read, write, read-directory, stat
— Supports client or server-side authentication
— Supports client-side caching of file contents

— Locking and auto-mounting done with another protocol

/

CS 111 Lecture 13
Summer 2013 Page 24

/ NFS Authentication \

e How can we trust NSF clients to authenticate
themselves?

* NFS not not designed for direct use by user
applications

* [t permits one operating system instance to
access files belonging to another OS instance

* If we trust the remote OS to see the files, might
as well trust 1t to authenticate the user

* Obviously, don’t use NFS 1f you don’t trust the)
s remote OS . . . Lecture 13

Summer 2013 Page 25

-

\

s — Active locks may have to be re-obtained

Summer 2013

NFS Replication

* NFS file systems can be replicated
— Improves read performance and availability

— Only one replica can be written to
* Client-side agent (in OS) handles fail-over
— Detects server failure, rebinds to new server
* Limited transparency for server failures

— Most readers will not notice failure (only brief

delay)

— Users of changed files may get “stale handle” error

~

/

Lecture 13

Page 26

/ NFS and Updates \

* An NFS server does not prevent conflicting updates
— As with local file systems, this is application’s job

* Auxiliary server/protocol for file and record locking
— All leases are maintained on the lock server

— All lock/unlock operations handed by lock server

* Client/network failure handling
— Server can break locks if client dies or times out
— “Stale-handle” errors inform client of broken lock

— Client response to these errors are application specific

* Lock server failure handling is very complex)

CS 111 Lecture 13
Summer 2013 Page 27

/ NFS Pros and Cons \

* Transparency/Heterogeneity
— Local/remote transparency 1s excellent
— NFS works with all major OSes and FSes
* Performance
— Read performance may be better than local disk
— Replication provides scalable read bandwidth

— Write performance slower than local disk

e Robustness

\ — Transparent fail-over capability for readers)
s — Recoverable fail-over capability for writers Lecture 13

Summer 2013 Page 28

/ NFES Vs. CIFS \

* Functionality
— NFS 1s much more portable (platforms, OS, FS)

— CIFS provides much better write serialization

e Performance and robustness

— NFS provides much greater read scalability

— NFS has much better fail-over characteristics

* Security

— NFS supports more security models

\ — CIFS gives the server better authorization control /

CS 111 Lecture 13
Summer 2013 Page 29

/" The Andrew File System

__

 AFS
* Developed at CMU

* Designed originally to support student and
faculty use

— Generally, large numbers of users of a single
organization

e Uses a client/server model

* Makes use of whole-file caching

CS 111 Lecture 13
Summer 2013 Page 30

/ AFS Basics \

* Designed for scalability, performance
— Large numbers of clients and very few servers
— Needed performance of local file systems
— Very low per-client load imposed on servers
— No administration or back-up for client disks

* Master files reside on a file server
— Local file system is used as a local cache
— Local reads satisfied from cache when possible

— Files are only read from server 1f not in cache

\,

«* Simple synchronization of updates o

Summer 2013 Page 31

AFS Architecture

client

Andrew cache
mangaer

Ke[oy maipuy

Y

block I/O

\

CS 111

SCrver

Andrew Agent

blocl

« [/0

Summer 2013

/

Lecture 13
Page 32

/ AFS Replication \

* One replica at server, possibly many at clients

* Check for local copies in cache at open time
— If no local copy exists, fetch it from server
— If local copy exists, see if 1t 1s still up-to-date

* Compare file size and modification time with server

— Optimizations reduce overhead of checking
* Subscribe/broadcast change notifications

 Time-to-live on cached file attributes and contents

* Send updates to server when file 1s closed
— Wait for all changes to be completed

\ — File may be deleted before it 1s closed /

o * E.g., temporary files that servers need not know about ol

Summer 2013 Page 33

/ AFS Reconciliation \

\

* Client sends updates to server when local copy
closed

* Server notifies all clients of change
— Warns them to invalidate their local copy
— Warns them of potential write conflicts

* Server supports only advisory file locking
— Distributed file locking is extremely complex

* Clients are expected to handle conflicts

— Noticing updates to files open for write access

s — Notification/reconciliation strategy 1s unspecified.ceure 13

Summer 2013 Page 34

/ AFS Pros and Cons

* Performance and Scalability
— All file access by user/applications is local
— Update checking (with time-to-live) 1s relatively cheap
— Both fetch and update propagation are very efficient
— Minimal per-client server load (once cache filled)

* Robustness
— No server fail-over, but have local copies of most files

* Transparency

— Mostly perfect - all file access operations are local

\ — Pray that we don't have any update conflicts

CS 111

~

/

Lecture 13

Summer 2013

Page 35

/ AFS vs. NFS

* Basic designs
— Both designed for continuous connection client/server

— NFS supports diskless clients without local file systems

* Performance
— AFS generates much less network traffic, server load

— They yield similar client response times

* Ease of use
— NFS provides for better transparency

— NFS has enforced locking and limited fail-over

* NFS requires more support in operating system

CS 111

~

/

Lecture 13

Summer 2013

Page 36

* A different approach, for a different purpose

* Stateless protocol with idempotent operations
— Implemented atop TCP (or other reliable transport)

— Whole file transport (not remote data access)
» get file, put file, delete file, post form-contents

— Anonymous file access, but secure (SSL) transfers
— Keep-alive sessions (for performance only)

* A truly global file namespace (URLs)

— Client and mn-network caching to reduce server load

— A wide range of client redirection options

\ /

CS 111 Lecture 13
Summer 2013 Page 37

/ HTTP Architecture \

 Not a traditional remote file access mechanism

* We do not try to make 1t look like local file access
— Apps are written to HTTP or other web-aware APIs
— No interception and translation of local file operations

— But URLSs can be constructed for local files

* Server 1s entirely implemented 1in user-mode
— Authentication via SSL or higher level dialogs
— All data 1s assumed readable by all clients

 HTTP servers provide more than remote file access

— POST operations invoke server-side processing

\

1t No attempt to provide write locking or serialization ... ;

Summer 2013

/

Page 38

/ HTTP Pros and Cons \

* Transparency

— Universal namespace for heterogeneous data
— Requires use of new APIs and namespace

— No attempt at compatibility with old semantics

e Performance

— Simple implementations, efficient transport
— Unlimited read throughput scalability

— Excellent caching and load balancing

 Robustness

— Automatic retrys, seamless fail-over, easy redirects

\ — Not much attempt to handle issues related to writes)

CS 111 Lecture 13
Summer 2013 Page 39

/ HTTP vs. NFS/CIFS \

* The file model and services provided by HTTP are
much weaker than those provided by CIFS or NFS

* So why would anyone choose to use HTTP for
remote file access?

* It’s easy to use, provides excellent performance,
scalability and availability, and 1s ubiquitous

* If I don’t need per-user authorization, walk-able name
spaces, and synchronized updates,

— Why pay the costs of more elaborate protocols?
\ — If I do need, them, though, . . . /

CS 111 Lecture 13
Summer 2013 Page 40

/ [Conclusion} \

* Be clear about your remote file system requirements

— Different priorities lead to different tradeoffs & designs
* The remote file access protocol is the key

— It determines the performance and robustness
— It imposes or presumes security mechanisms

— It is designed around synchronization & fail-over
mechanisms

 Stateless protocols with idempotent ops are limiting

— But very rewarding if you can accept those limitations

* Read-only content 1s a pleasure to work with
\ — Synchronized and replicated updates are very hard /

CS 111 Lecture 13
Summer 2013 Page 41

