
Lecture 13
Page 1

CS 111
Summer 2013

Networked and Distributed
File Systems

CS 111
Operating Systems

Peter Reiher

Lecture 13
Page 2

CS 111
Summer 2013

Outline

•  Goals and challenges of providing file systems
over the network

•  Basic architectures
•  Major issues
– Authentication and security
– Performance

•  Examples of networked file systems

Lecture 13
Page 3

CS 111
Summer 2013

Network File Systems:
Goals and Challenges

•  Sometimes the files we want aren’t on our
machine

•  We’d like to be able to access them anyway
•  How do we provide access to remote files?
– Basic goals
– Functionality challenges
– Performance challenges
– Robustness challenges
– Manageability challenges

Lecture 13
Page 4

CS 111
Summer 2013

Basic Goals
•  Transparency
–  Indistinguishable from local files for all uses
–  All clients see all files from anywhere

•  Performance
–  Per-client: at least as fast as local disk
–  Scalability: unaffected by the number of clients

•  Cost
–  Capital: less than local (per client) disk storage
–  Operational: zero, it requires no administration

•  Capacity: unlimited, it is never full
•  Availability: 100%, no failures or service down-time

Lecture 13
Page 5

CS 111
Summer 2013

Functionality Challenges

•  Transparency
– Making remote files look just like local files
•  On a network of heterogenous clients and servers
•  In the face of Deutch’s warnings

– Creating global file name-spaces
•  Security
– WAN scale authentication and authorization

•  Providing ACID properties
– Atomicity, Consistency, Isolation, Durability

Lecture 13
Page 6

CS 111
Summer 2013

Performance Challenges
•  Single client response-time
– Remote requests involve messages and delays

•  Aggregate bandwidth
– Each client puts message processing load on server
– Each client puts disk throughput load on server
– Each message loads server’s NIC and network

•  WAN scale operation
– Where bandwidth is limited and latency is high

•  Aggregate capacity
– How to transparently grow existing file systems

Lecture 13
Page 7

CS 111
Summer 2013

Robustness Challenges
•  All files should always be available, despite …
– Failures of the disk on which they are stored
– Failures of the Remote File Access server
– Regional catastrophes (flood, earthquake, etc.)
– Users having deleted the files

•  Fail-over should be prompt and seamless
– A delay of a few seconds might be acceptable

•  Recovery must be entirely automated
– For time, cost, and correctness reasons

Lecture 13
Page 8

CS 111
Summer 2013

Manageability Challenges
•  Storage management
–  Integrating new storage into the system
–  Diagnosing and replacing failed components

•  Load and capacity balancing
–  Spreading files among volumes and servers
–  Spreading clients among servers

•  Information life cycle management
–  Moving unused files to less expensive storage
–  Archival “compliance,” finding archived data

•  Client configuration
–  Domain services, file servers, name-spaces, authentication

Lecture 13
Page 9

CS 111
Summer 2013

Security Challenges

•  What meaningful security can we provide for
networked file systems?

•  Can we guarantee reasonable access control?
•  How about secrecy of data crossing the network?
•  How can we provide integrity guarantees to remote

users?
•  What if we can’t trust all of the systems requesting

files?
•  What if we can’t trust all of the systems storing files?

Lecture 13
Page 10

CS 111
Summer 2013

Key Characteristics of Network
File System Solutions

•  APIs and transparency
– How do users and processes access remote files?
– How closely do remote files mimic local files?

•  Performance and robustness
– Are remote files as fast and reliable as local ones?

•  Architecture
– How is solution integrated into clients and servers?

•  Protocol and work partitioning
– How do client and server cooperate?

Lecture 13
Page 11

CS 111
Summer 2013

Remote File Systems

•  The simplest form of networked file system
•  Basically, going to a remote machine to fetch

files
•  Perhaps with some degree of abstraction to

hide unpleasant details
•  But generally with a relatively low degree of

transparency
– Remote files are obviously remote

Lecture 13
Page 12

CS 111
Summer 2013

Explicit File Copying
•  User-invoked commands to transfer files
–  Copy to local site, then use as a local file

•  Typical architecture
–  Client-side: interactive command line interface

•  May include powerful features like wild-cards, multi-file transfer,
scheduled delivery, automatic difference detection, GUIs, etc.

–  Server-side: user mode, per client daemon
•  Basically, only this daemon knows file access is remote

•  Many protocols are IETF standards
–  Some are very simple and general (FTP, TFTP)
–  Some assume a target OS and/or file system (rcp, rsync)

Lecture 13
Page 13

CS 111
Summer 2013

Advantages and Disadvantages
•  Advantages
– User-mode client/server implementations
– Efficient transfers (fast and with little overhead)
– User directly controls what is transferred when

•  Disadvantages
– Human interfaces, awkward for programs to use
– Local and remote files are totally different
– Manual transfers are tedious and error prone

•  Contemporary Usage
– As a last resort
– Some special applications (like remote boot)

Lecture 13
Page 14

CS 111
Summer 2013

Remote Access Methods
•  Distinct APIs for accessing remote files
– Standard open/close/read/write are “local only”
– Use different routines to access remote files

•  Distinct user interface for remote files
– Use a browser instead of a shell or finder

•  User-mode implementation
– Client remote access library, browser command
– Protocols and servers similar to rcp/FTP

•  New file naming schemes (e.g., URLs)

Lecture 13
Page 15

CS 111
Summer 2013

Advantages and Disadvantages
•  Advantages
–  User-mode client/server implementations
–  Services can be designed to suit modes of file use
–  Services encapsulate location of actual data

•  Disadvantages
–  Only works for a few programs (e.g., browsers)
–  All other programs (e.g., editors) are “local only”
–  Local and remote files pretty distinct
–  Often no support for writing (or a special interface)

•  Contemporary Usage
–  Many key applications: browsers, e-mail, SQL

Lecture 13
Page 16

CS 111
Summer 2013

Remote File Access Protocols
•  Goal: complete transparency
– Normal file system calls work on remote files
– Support file sharing by multiple clients
– High performance, availability, reliability,

scalability
•  Typical Architecture
– Uses plug-in file system architecture
– Client-side file system is merely a local proxy
– Translates file operations into network requests
– Server-side daemon receives/process requests
– Translates them into real file system operations

Lecture 13
Page 17

CS 111
Summer 2013

Remote File Access Architecture

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

block I/O

CD
drivers

rem
ote FS

virtual file system integration layer

file
operations

directory
operations

file
I/O

socket
I/O

disk
drivers

NIC
driver

UDP

IP

MAC
driver

client server

TCP

flash
drivers

block I/O

EX
T3 FS

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

TCP

remote FS server

Lecture 13
Page 18

CS 111
Summer 2013

The Client Side
•  On Unix/Linux, makes use of VFS interface
•  Allows plug-in of file system implementations
– Each implements a set of basic methods
•  create, delete, open, close, link, unlink, etc.

– Translates logical operations into disk operations

•  Remote file systems can also be implemented
– Translate each standard method into messages
– Forward those requests to a remote file server
– RFS client only knows the RFS protocol
•  Need not know the underlying on-disk implementation

Lecture 13
Page 19

CS 111
Summer 2013

Server Side Implementation
•  RFS Server Daemon
– Receives and decodes messages
– Does requested operations on local file system

•  Can be implemented in user- or kernel-mode
– Kernel daemon may offer better performance
– User-mode is much easier to implement

•  One daemon may serve all incoming requests
– Higher performance, fewer context switches

•  Or could be many per-user-session daemons
– Simpler, and probably more secure

Lecture 13
Page 20

CS 111
Summer 2013

Advantages and Disadvantages
•  Advantages
– Very good application level transparency
– Very good functional encapsulation
– Able to support multi-client file sharing
– Potential for good performance and robustness

•  Disadvantages
– At least part of implementation must be in the OS
– Client and server sides tend to be fairly complex

•  Contemporary use
– Ubiquitous today, and the wave of the future

Lecture 13
Page 21

CS 111
Summer 2013

Clustered File Servers
•  Use several cooperating file servers in one of

the previously discussed ways
•  Can aggregate their bandwidth and storage

capacity
•  Allows client load and file capacity balancing
•  Virtualized storage cluster allows us to respond

to difficult customer demands
–  Infinite bandwidth
– Capacity scalability
– Minimal down-time

Lecture 13
Page 22

CS 111
Summer 2013

Degrees of Distribution
•  Remote file access
– One server owns disks and implements file

systems
– Clients access files via remote access protocols

•  Clustered file servers
– Multiple servers, each owns disks and file systems
– Cooperate to provide a single virtual NAS service

•  Distributed file systems
– N servers and M disks
– Multiple servers can concurrently use same disk
– “Don’t try this one at home, kids”

