/ A New View of System \
i Architecture 5

* Old view 1s that we build systems

— Which are capable of running programs that their
owners want executed

— Each system 1s largely self-contained and only
worries about 1ts own concerns and needs

* New view 1s that system 1s only a conduit for
SErvices

— Which are largely provided over the network

\

CS 111 Lecture 12
Summer 2013 Page 1

/" The New Architectural Vision

* Customers want services, not systems

— We design and build systems to provide services

* Services are built up from protocols

— Service 1s delivered to customers via a network
— Service 1s provided by collaborating servers
— Which are run by remote providers, often as a business

e The fundamental unit of service 1s a node

— Provides defined services over defined protocols

— Language, OS, ISA are mere implementation details

* Anode 1s not a single machine

\ — It may be a collection of collaborating machines /
csir = Maybe Wldely distributed Lecture 12

Summer 2013 Page 2

/ Benefits of This View \

* Moves away from computer users as computer
experts

— Which most of them aren’t, and don’t want to be

A more realistic view of what modern
machines are for

* Abstracts many of the ugly details of networks
and distributed systems below human level

* Clarifies what we should really be concerned
\ about /

CS 111 Lecture 12
Summer 2013 Page 3

/ Dangers of This Vision

\

CS 111

Summer 2013

Requires a lot of complex stuff under the
COVErS

Many problems we are expected to solve are

difficult

— Perhaps unsolvable, in some cases

Higher degree of proper automated behavior is

required

~

Lecture 12

Page 4

a Péfféiﬁiéiﬁé'é'"'AVHIIQBH'&&, N

* Used to be an easy answer for achieving these:
— Moore’s law (and its friends)

* The machines (and everything else) got faster
and cheaper
— So performance got better

— More people could afford machines that did
particular things

— Problems too big to solve today fell down when
Cs\m speeds got fast enough Lem/ ;

Summer 2013 Page 5

/ The Old Way Vs. The New Way\

* The old way — better components (4-40%/year)
— Find and optimize all avoidable overhead
— Get the OS to be as reliable as possible
— Run on the fastest and newest hardware

* The new way — better systems (1000x)
— Add more $150 blades and a bigger switch

— Spreading the work over many nodes is a huge win

* Performance — may be linear with the number of blades

\ Availability — service continues despite node failures /

CS 111 Lecture 12
Summer 2013 Page 6

/ Benefits of the New Approach \

* Allows us to leap past many hard problems

— E.g., don’t worry about how to add the sixth nine
of reliability to your machine

* Generally a lot cheaper
— Adding more of something 1s just some dollars

— Instead of having some brilliant folks create a new
solution

\ /

CS 111 Lecture 12
Summer 2013 Page 7

/ Dangers of the New Solution \

* Adds a different set of hard problems

— Like solving distributed and parallel processing
problems

* Your performance 1s largely out of your hands

— E.g., will your service provider choose to spring
for a bunch of new hardware?

* Behaviors of large scale systems not
necessarily well understood

\ — Especially in pathological conditions)

CS 111 Lecture 12
Summer 2013 Page 8

The Rise of Middleware

* Traditionally, there was the OS and your application
— With little or nothing between them

* Since your application was “obviously” written to run
on your OS

* Now, the same application must run on many
machines, with different OSes

* Enabled by powerful middleware

— Which offer execution abstractions at higher levels than the

OS
— Essentially, powerful virtual machines that hide grubby
\ physical machines and their OSes /
CS 111 Lecture 12

Summer 2013 Page 9

/ The OS and Middleware \

* Old model — the OS was the platform
— Applications are written for an operating system

— OS 1mplements resources to enable applications
* New model — the OS enables the platform

— Applications are written to a middleware layer

etc.

— Object management is user-mode and distributed
« E.g., CORBA, SOAP

— OS APIs less relevant to applications developers

Cs 111 * The network 1s the computer
Summer 2013 —

* E.g., Enterprise Java Beans, Component Object Model,

/

Lecture 12
Page 10

@eneﬁts of the Rise of Middlewala

* Easy portability
— Make the middleware run on whatever

— Then the applications written to the middleware
will run there

« Middleware interfaces offer better abstractions

— Allowing quicker creation of more powerful
programs

\ /

CS 111 Lecture 12
Summer 2013 Page 11

/Dangers of the Rise of Middlewala

* Not always easy to provide totally transparent
portability

* The higher level abstractions can hide some of
the power of simple machines

— Particularly in performance

\ /

CS 111 Lecture 12
Summer 2013 Page 12

// Networking and Distributed \\

3 Systems
* Challenges of distributed computing

J

* Distributed synchronization

 Distributed consensus

\ /

CS 111 Lecture 12
Summer 2013 Page 13

~ What Is Distributed Computing?

* Having more than one computer work cooperatively
on some task
* Implies the use of some form of communication

— Usually networking

* Adding the second computer immensely complicates
all problems

— And adding a third makes 1t worse

 Ideally, with total transparency

— Entirely hide the fact that the computation/service 1s being
\ offered by a distributed system /

CS 111 Lecture 12
Summer 2013 Page 14

/" Challenges of Distributed ™\
Computing

* Heterogeneity
— Dafferent CPUs have different data representation
— Different OSes have different object semantics and
operations
* Intermittent Connectivity
— Remote resources will not always be available
— We must recover from failures in mid-computation

— We must be prepared for conflicts when we reconnect
* Distributed Object Coherence

\ — Object management is easy with one in-memory copy

csin — How do we ensure multiple hosts agree on state of object?ecure 12
Summer 2013 Page 15

/ Deutsch's “Seven Fallacies of \
Network Computing”

. The network 1s reliable

. There 1s no latency (instant response time)

. The available bandwidth 1s infinite

. The network 1s secure

. The topology of the network does not change

s mh

. There 1s one administrator for the whole network

J ON DN B W N =
h|
P

la mh

. The cost of transporting additional data 1s zero

Bottom Line: true transparency 1s not achievable

\ /

CS 111 Lecture 12
Summer 2013 Page 16

__

* As we’ve already seen, synchronization 1s
crucial in proper computer system behavior

* When things don’t happen in the required
order, we get bad results

* Distributed computing has all the
synchronization problems of single machines

* Plus genuinely independent interpreters and
memories

\ /

CS 111 Lecture 12
Summer 2013 Page 17

-z Why Is Distributed N

\

CS 111

Synchronization Harder?
* Spatial separation
— Different processes run on different systems
— No shared memory for (atomic instruction) locks
— They are controlled by different operating systems
* Temporal separation
— Can’t “totally order” spatially separated events

— “Before/simultaneous/after” become fuzzy

* Independent modes of failure

— One partner can die, while others continue /

Lecture 12

Summer 2013 Page 18

How Do We Manage \

Distributed Synchronization?

* Distributed analogs to what we do 1n a single
machine

* But they are constrained by the fundamental
differences of distributed environments

* They tend to be:
— Less efficient

— More fragile and error prone

— More complex
\" _ Often all three /

CS 111 Lecture 12
Summer 2013 Page 19

/ [.eases \

e A relative of locks

Obtained from an entity that manages a resource
— Gives client exclusive right to update the file
— The lease “cookie” must be passed to server with an update

— Lease can be released at end of critical section

Only valid for a limited period of time
— After which the lease cookie expires

» Updates with stale cookies are not permitted

— After which new leases can be granted

\- Handles a wide range of failures)

— Process, node, network
CS 111 Lecture 12
Summer 2013 Page 20

/ A Lease Example \

G)
Update file X CioTh
Request lease on file X has leased
file X till 2
\f \@ PM
REJECTED!
"~ Lease on file X granted Resource
) Manager
Request lease on file X

_ /

Y
N~
REJECTED!
x
\ —/
CS 111 Lecture 12

Summer 2013 Page 21

/ What Is This Lease? \

* It’s essentially a ticket that allows the leasee to
do something

— In our example, update file X
* In other words, 1t’s a bunch of bits

* But proper synchronization requires that only
the manager create one

* So 1t can’t be forgeable

 How do we create an unforgeable bunch of
\ bits? /

CS 111 Lecture 12
Summer 2013 Page 22

/ What’s Good About Leases? \

* The resource manager controls access centrally

— So we don’t need to keep multiple copies of a lock
up to date

— Remember, easiest to synchronize updates to data
if only one party can write 1t

* The manager uses his own clock for leases

— So we don’t need to synchronize clocks

* What if a lease holder dies, losing 1ts lease?

\ — No big deal, the lease would expire eventually)

CS 111 Lecture 12
Summer 2013 Page 23

/ Atomic Transactions \

* What if we want guaranteed uninterrupted, all-or-
none execution?

* That requires true atomic transactions

* Solves multiple-update race conditions

— All updates are made part of a transaction

* Updates are accumulated, but not actually made
— After all updates are made, transaction 1s committed
— Otherwise the transaction 1s aborted
* E.g., if client, server, or network fails before the commit
* Resource manager guarantees “all-or-none™
Cs\m — Even if 1t crashes in the middle of the updates /

Lecture 12
Summer 2013 Page 24

/ Atomic Transaction Example \
client @

[send startTransaction } ------------------------ ? server
P h 4 N /x
send updateOne | updateOne ~
e v N
send updateTwo | updateTwo
e v N
send updateThree J updateThree — @@
\ 4
send commit

\ /

CS 111 Lecture 12
Summer 2013 Page 25

/ What If There’s a Failure?
client @

[send startTransaction } ------------------------- server
) v . T
send updateOne updateOne ~
(" N\
send updateTwo updateTwo
cemmmeme- >
- Y N I ~
send abort
(or timeout)

\ /

CS 111 Lecture 12
Summer 2013 Page 26

/ Providing Transactions \

* Basic mechanism 1s a journal

* Don’t actually perform operations as they are
submitted

* Instead, save them 1n a journal

* On commiut, first write the journal to persistent
storage

— This 1s true commit action

* Then run through journal and make updates

* Some obvious complexities /

CS 111 Lecture 12
Summer 2013 Page 27

/~Transactions Spanning Multiple ™\
Machines

 Journals are fine if the data 1s all on one
resource manager

* What if we need to atomically update data on
multiple machines?

* Just keeping a journal on one machine not
enough

* How do we achieve the all-or-nothing effect
when each machine acts asynchronously?

\

s — And can fail at any moment? Lecture 12

Summer 2013 Page 28

/ Commitment Protocols \

* Used to implement distributed commitment

— Provide for atomic all-or-none transactions

— Simultaneous commitment on multiple hosts
* Challenges

— Asynchronous conflicts from other hosts

— Nodes fail in the middle of the commitment process
* Multi-phase commitment protocol:

— Confirm no conflicts from any participating host

— All participating hosts are told to prepare for commit

\ — All participating hosts are told to “make 1t so” /

CS 111 Lecture 12
Summer 2013 Page 29

Three Phase Commit

Coordinator @

[send canCommit } ““““““““““““““““““““““““““ 0 Participant(s)

receive canCommit

nak
timeout

all ack

\ 4 A

abort [send startCommit } ------------------------ wait ?bort . » abort
imeou

A

A A
receive startCommit
nak
timeout 2 { send ack]
all ack
[send Commit } ------------------------ abort
) X timeout
\ Y receive Commit
confirm J4-=-------mmmmmmm oo oo oo { send ack]—> Commit /
CS 111 Lecture 12

Summer 2013 Page 30

/ Why Three Phases? \

* There’s a two phase commit protocol, too
* Why two phases to prepare to commit?

— The first phase asks whether there are conflicts or
other problems that would prevent a commitment

— If problems exist, we won’t even attempt commit

— The second phase 1s only entered if all nodes agree
that commitment 1s possible

— It 1s the actual “prepare to commit™

— Acknowledgement of which means that all nodes
\ are really ready to commit .

CS 111 Lecture 12
Summer 2013 Page 31

/" Distributed Consensus

. Achlevmg simultaneous, unanimous
agreement

— Even 1n the presence of node & network failures
— Requires agreement, termination, validity, integrity
— Desired: bounded time

* Consensus algorithms tend to be complex

— And may take a long time to converge

* So they tend to be used sparingly

T E.g., use consensus to elect a leader y

csin _— Who makes all subsequent decisions by fiat Lecture 12

Summer 2013 Page 32

/ A Typical Election Algorithm \

1. Each interested member broadcasts his nomination

2. All parties evaluate the received proposals
according to a fixed and well known rule

— E.g., largest ID number wins

3. After a reasonable time for proposals, each voter
acknowledges the best proposal 1t has seen

4. If a proposal has a majority of the votes, the
proposing member broadcasts a resolution claim

5. [Each party that agrees with the winner’s claim
acknowledges the announced resolution

6. Election is over when a quorum acknowledges the
\ result /

CS 111 Lecture 12
Summer 2013 Page 33

/ Cluster Membership \

* A cluster 1s a group of nodes ...
— All of whom are in communication with one another
— All of whom agree on an elected cluster master

— All of whom abide by the cluster master’s decisions
* He may (centrally) arbitrate all issues directly
* He may designate other nodes to make some decisions

* Useful idea because it formalizes set of parties who
are working together

* Highly available service clusters
— Cluster master assigns work to all of the other nodes

Cs\m — If a node falls out of the cluster, its work 1s reassigned Lecm/ ;.

Summer 2013 Page 34

/ Maintaining Cluster Membership\

* Primarily through heartbeats

“I’'m still alive” messages, exchanged in cluster

* Cluster master monitors the other nodes
— Regularly confirm each node 1s working properly

— Promptly detect any node falling out of the cluster
— Promptly reassign work to surviving nodes

 Some nodes must monitor the cluster master

— To detect the failure of the cluster master

— To trigger the election of a new cluster master

\ /

CS 111 Lecture 12
Summer 2013 Page 35

/ The Split Brain Problem \

* What if the participating nodes are partitioned?

* One set can talk to each other, and another set
can also

— But the two sets can’t exchange messages

* We then have two separate clusters providing
the same service

— Which can lead to big problems, depending on the
situation

\ /

CS 111 Lecture 12
Summer 2013 Page 36

/ Quorums \

* The simplest solution to the split-brain problem i1s to
require a quorum

— In a cluster that has been provisioned for N nodes,
becoming the cluster master requires (N/2)+1 votes

— This completely prevents split-brain
* It also prevents recovering from the loss of N/2 nodes
* Some systems use a “quorum device”
— E.g., a shared (multi-ported) disk

* (Cluster master must be able to reserve/lock this device

* Device won’t allow simultaneous locking by two different nodes

— Failure of this device takes down whole system

* Some systems use special election hardware /

CS 111 Lecture 12
Summer 2013 Page 37

/ [Conclusion} \

* Networking has become a vital service for
most machines

* The operating system 1s increasingly involved
in networking

— From providing mere access to a network device
— To supporting sophisticated distributed systems
* An increasing trend

* Future OSes might be primarily all about
.\ networking

Lecture 12
Summer 2013 Page 38

