
Lecture 12
Page 1

CS 111
Summer 2013

A New View of System
Architecture

•  Old view is that we build systems
– Which are capable of running programs that their

owners want executed
– Each system is largely self-contained and only

worries about its own concerns and needs
•  New view is that system is only a conduit for

services
– Which are largely provided over the network

Lecture 12
Page 2

CS 111
Summer 2013

The New Architectural Vision
•  Customers want services, not systems
–  We design and build systems to provide services

•  Services are built up from protocols
–  Service is delivered to customers via a network
–  Service is provided by collaborating servers
–  Which are run by remote providers, often as a business

•  The fundamental unit of service is a node
–  Provides defined services over defined protocols
–  Language, OS, ISA are mere implementation details

•  A node is not a single machine
–  It may be a collection of collaborating machines
–  Maybe widely distributed

Lecture 12
Page 3

CS 111
Summer 2013

Benefits of This View

•  Moves away from computer users as computer
experts
– Which most of them aren’t, and don’t want to be

•  A more realistic view of what modern
machines are for

•  Abstracts many of the ugly details of networks
and distributed systems below human level

•  Clarifies what we should really be concerned
about

Lecture 12
Page 4

CS 111
Summer 2013

Dangers of This Vision

•  Requires a lot of complex stuff under the
covers

•  Many problems we are expected to solve are
difficult
– Perhaps unsolvable, in some cases

•  Higher degree of proper automated behavior is
required

Lecture 12
Page 5

CS 111
Summer 2013

Performance, Availability,
Scalability

•  Used to be an easy answer for achieving these:
– Moore’s law (and its friends)

•  The machines (and everything else) got faster
and cheaper
– So performance got better
– More people could afford machines that did

particular things
– Problems too big to solve today fell down when

speeds got fast enough

Lecture 12
Page 6

CS 111
Summer 2013

The Old Way Vs. The New Way
•  The old way – better components (4-40%/year)
– Find and optimize all avoidable overhead
– Get the OS to be as reliable as possible
– Run on the fastest and newest hardware

•  The new way – better systems (1000x)
– Add more $150 blades and a bigger switch
– Spreading the work over many nodes is a huge win
•  Performance – may be linear with the number of blades
•  Availability – service continues despite node failures

Lecture 12
Page 7

CS 111
Summer 2013

Benefits of the New Approach

•  Allows us to leap past many hard problems
– E.g., don’t worry about how to add the sixth nine

of reliability to your machine
•  Generally a lot cheaper
– Adding more of something is just some dollars
–  Instead of having some brilliant folks create a new

solution

Lecture 12
Page 8

CS 111
Summer 2013

Dangers of the New Solution

•  Adds a different set of hard problems
– Like solving distributed and parallel processing

problems
•  Your performance is largely out of your hands
– E.g., will your service provider choose to spring

for a bunch of new hardware?
•  Behaviors of large scale systems not

necessarily well understood
– Especially in pathological conditions

Lecture 12
Page 9

CS 111
Summer 2013

The Rise of Middleware
•  Traditionally, there was the OS and your application
–  With little or nothing between them

•  Since your application was “obviously” written to run
on your OS

•  Now, the same application must run on many
machines, with different OSes

•  Enabled by powerful middleware
–  Which offer execution abstractions at higher levels than the

OS
–  Essentially, powerful virtual machines that hide grubby

physical machines and their OSes

Lecture 12
Page 10

CS 111
Summer 2013

The OS and Middleware
•  Old model – the OS was the platform
– Applications are written for an operating system
– OS implements resources to enable applications

•  New model – the OS enables the platform
– Applications are written to a middleware layer
•  E.g., Enterprise Java Beans, Component Object Model,

etc.

– Object management is user-mode and distributed
•  E.g., CORBA, SOAP

– OS APIs less relevant to applications developers
•  The network is the computer

Lecture 12
Page 11

CS 111
Summer 2013

Benefits of the Rise of Middleware

•  Easy portability
– Make the middleware run on whatever
– Then the applications written to the middleware

will run there
•  Middleware interfaces offer better abstractions
– Allowing quicker creation of more powerful

programs

Lecture 12
Page 12

CS 111
Summer 2013

Dangers of the Rise of Middleware

•  Not always easy to provide totally transparent
portability

•  The higher level abstractions can hide some of
the power of simple machines
– Particularly in performance

Lecture 12
Page 13

CS 111
Summer 2013

Networking and Distributed
Systems

•  Challenges of distributed computing
•  Distributed synchronization
•  Distributed consensus

Lecture 12
Page 14

CS 111
Summer 2013

What Is Distributed Computing?
•  Having more than one computer work cooperatively

on some task
•  Implies the use of some form of communication
–  Usually networking

•  Adding the second computer immensely complicates
all problems
–  And adding a third makes it worse

•  Ideally, with total transparency
–  Entirely hide the fact that the computation/service is being

offered by a distributed system

Lecture 12
Page 15

CS 111
Summer 2013

Challenges of Distributed
Computing

•  Heterogeneity
–  Different CPUs have different data representation
–  Different OSes have different object semantics and

operations

•  Intermittent Connectivity
–  Remote resources will not always be available
–  We must recover from failures in mid-computation
–  We must be prepared for conflicts when we reconnect

•  Distributed Object Coherence
–  Object management is easy with one in-memory copy
–  How do we ensure multiple hosts agree on state of object?

Lecture 12
Page 16

CS 111
Summer 2013

Deutsch's “Seven Fallacies of
Network Computing”

1. The network is reliable
2. There is no latency (instant response time)
3. The available bandwidth is infinite
4. The network is secure
5. The topology of the network does not change
6. There is one administrator for the whole network
7. The cost of transporting additional data is zero
Bottom Line: true transparency is not achievable

Lecture 12
Page 17

CS 111
Summer 2013

Distributed Synchronization

•  As we’ve already seen, synchronization is
crucial in proper computer system behavior

•  When things don’t happen in the required
order, we get bad results

•  Distributed computing has all the
synchronization problems of single machines

•  Plus genuinely independent interpreters and
memories

Lecture 12
Page 18

CS 111
Summer 2013

Why Is Distributed
Synchronization Harder?

•  Spatial separation
– Different processes run on different systems
– No shared memory for (atomic instruction) locks
– They are controlled by different operating systems

•  Temporal separation
– Can’t “totally order” spatially separated events
– “Before/simultaneous/after” become fuzzy

•  Independent modes of failure
– One partner can die, while others continue

Lecture 12
Page 19

CS 111
Summer 2013

How Do We Manage
Distributed Synchronization?

•  Distributed analogs to what we do in a single
machine

•  But they are constrained by the fundamental
differences of distributed environments

•  They tend to be:
– Less efficient
– More fragile and error prone
– More complex
– Often all three

Lecture 12
Page 20

CS 111
Summer 2013

Leases
•  A relative of locks
•  Obtained from an entity that manages a resource
–  Gives client exclusive right to update the file
–  The lease “cookie” must be passed to server with an update
–  Lease can be released at end of critical section

•  Only valid for a limited period of time
–  After which the lease cookie expires

•  Updates with stale cookies are not permitted

–  After which new leases can be granted

•  Handles a wide range of failures
–  Process, node, network

Lecture 12
Page 21

CS 111
Summer 2013

A Lease Example

Resource
Manager

Client
A

Client
B

X

Request lease on file X

Lease on file X granted

Client A
has leased
file X till 2

PM

Update file X

X

Request lease on file X

REJECTED!

REJECTED!

Lecture 12
Page 22

CS 111
Summer 2013

What Is This Lease?
•  It’s essentially a ticket that allows the leasee to

do something
–  In our example, update file X

•  In other words, it’s a bunch of bits
•  But proper synchronization requires that only

the manager create one
•  So it can’t be forgeable
•  How do we create an unforgeable bunch of

bits?

Lecture 12
Page 23

CS 111
Summer 2013

What’s Good About Leases?

•  The resource manager controls access centrally
– So we don’t need to keep multiple copies of a lock

up to date
– Remember, easiest to synchronize updates to data

if only one party can write it
•  The manager uses his own clock for leases
– So we don’t need to synchronize clocks

•  What if a lease holder dies, losing its lease?
– No big deal, the lease would expire eventually

Lecture 12
Page 24

CS 111
Summer 2013

Atomic Transactions
•  What if we want guaranteed uninterrupted, all-or-

none execution?
•  That requires true atomic transactions
•  Solves multiple-update race conditions
–  All updates are made part of a transaction

•  Updates are accumulated, but not actually made

–  After all updates are made, transaction is committed
–  Otherwise the transaction is aborted

•  E.g., if client, server, or network fails before the commit

•  Resource manager guarantees “all-or-none”
–  Even if it crashes in the middle of the updates

Lecture 12
Page 25

CS 111
Summer 2013

Atomic Transaction Example

send startTransaction

client

server

send updateOne

send updateTwo

send updateThree

updateOne

updateTwo

updateThree

send commit

Lecture 12
Page 26

CS 111
Summer 2013

What If There’s a Failure?

send startTransaction

client

server

send updateOne

send updateTwo

updateOne

updateTwo

send abort

(or timeout)

Lecture 12
Page 27

CS 111
Summer 2013

Providing Transactions
•  Basic mechanism is a journal
•  Don’t actually perform operations as they are

submitted
•  Instead, save them in a journal
•  On commit, first write the journal to persistent

storage
– This is true commit action

•  Then run through journal and make updates
•  Some obvious complexities

Lecture 12
Page 28

CS 111
Summer 2013

Transactions Spanning Multiple
Machines

•  Journals are fine if the data is all on one
resource manager

•  What if we need to atomically update data on
multiple machines?

•  Just keeping a journal on one machine not
enough

•  How do we achieve the all-or-nothing effect
when each machine acts asynchronously?
– And can fail at any moment?

Lecture 12
Page 29

CS 111
Summer 2013

Commitment Protocols

•  Used to implement distributed commitment
–  Provide for atomic all-or-none transactions
–  Simultaneous commitment on multiple hosts

•  Challenges
–  Asynchronous conflicts from other hosts
–  Nodes fail in the middle of the commitment process

•  Multi-phase commitment protocol:
–  Confirm no conflicts from any participating host
–  All participating hosts are told to prepare for commit
–  All participating hosts are told to “make it so”

Lecture 12
Page 30

CS 111
Summer 2013

Three Phase Commit
send canCommit

OK

abort

receive canCommit

no wait send ack

send startCommit

prep

all ack

abort

nak
timeout

wait

receive startCommit

prep

receive Commit

send ack

all ack

send Commit

abort
timeout

nak
timeout

abort

Commit confirm send ack

Coordinator

Participant(s)

timeout

Lecture 12
Page 31

CS 111
Summer 2013

Why Three Phases?
•  There’s a two phase commit protocol, too
•  Why two phases to prepare to commit?
– The first phase asks whether there are conflicts or

other problems that would prevent a commitment
–  If problems exist, we won’t even attempt commit
– The second phase is only entered if all nodes agree

that commitment is possible
–  It is the actual “prepare to commit”
– Acknowledgement of which means that all nodes

are really ready to commit

Lecture 12
Page 32

CS 111
Summer 2013

Distributed Consensus
•  Achieving simultaneous, unanimous

agreement
– Even in the presence of node & network failures
– Requires agreement, termination, validity, integrity
– Desired: bounded time

•  Consensus algorithms tend to be complex
– And may take a long time to converge

•  So they tend to be used sparingly
– E.g., use consensus to elect a leader
– Who makes all subsequent decisions by fiat

Lecture 12
Page 33

CS 111
Summer 2013

A Typical Election Algorithm
1.  Each interested member broadcasts his nomination
2.  All parties evaluate the received proposals

according to a fixed and well known rule
–  E.g., largest ID number wins

3.  After a reasonable time for proposals, each voter
acknowledges the best proposal it has seen

4.  If a proposal has a majority of the votes, the
proposing member broadcasts a resolution claim

5.  Each party that agrees with the winner’s claim
acknowledges the announced resolution

6.  Election is over when a quorum acknowledges the
result

Lecture 12
Page 34

CS 111
Summer 2013

Cluster Membership
•  A cluster is a group of nodes …
–  All of whom are in communication with one another
–  All of whom agree on an elected cluster master
–  All of whom abide by the cluster master’s decisions

•  He may (centrally) arbitrate all issues directly
•  He may designate other nodes to make some decisions

•  Useful idea because it formalizes set of parties who
are working together

•  Highly available service clusters
–  Cluster master assigns work to all of the other nodes
–  If a node falls out of the cluster, its work is reassigned

Lecture 12
Page 35

CS 111
Summer 2013

Maintaining Cluster Membership

•  Primarily through heartbeats
•  “I’m still alive” messages, exchanged in cluster
•  Cluster master monitors the other nodes
–  Regularly confirm each node is working properly
–  Promptly detect any node falling out of the cluster
–  Promptly reassign work to surviving nodes

•  Some nodes must monitor the cluster master
–  To detect the failure of the cluster master
–  To trigger the election of a new cluster master

Lecture 12
Page 36

CS 111
Summer 2013

The Split Brain Problem

•  What if the participating nodes are partitioned?
•  One set can talk to each other, and another set

can also
– But the two sets can’t exchange messages

•  We then have two separate clusters providing
the same service
– Which can lead to big problems, depending on the

situation

Lecture 12
Page 37

CS 111
Summer 2013

Quorums
•  The simplest solution to the split-brain problem is to

require a quorum
–  In a cluster that has been provisioned for N nodes,

becoming the cluster master requires (N/2)+1 votes
–  This completely prevents split-brain

•  It also prevents recovering from the loss of N/2 nodes

•  Some systems use a “quorum device”
–  E.g., a shared (multi-ported) disk

•  Cluster master must be able to reserve/lock this device
•  Device won’t allow simultaneous locking by two different nodes

–  Failure of this device takes down whole system
•  Some systems use special election hardware

Lecture 12
Page 38

CS 111
Summer 2013

Conclusion

•  Networking has become a vital service for
most machines

•  The operating system is increasingly involved
in networking
– From providing mere access to a network device
– To supporting sophisticated distributed systems

•  An increasing trend
•  Future OSes might be primarily all about

networking

