/[F 1le Systems and Multiple Disks}\

* You can usually attach more than one disk to a
machine
— And often do

* Would it make sense to have a single file system span
the several disks?

— Considering the kinds of disk specific information a file
system keeps

— Like cylinder information

* Usually more trouble than 1t’s worth
— With the exception of RAID . . .

\o Instead, put separate file system on each disk /

CS 111 Lecture 11
Summer 2013 Page 1

ﬁow About the Other Way Arouncﬁ

* Multiple file systems on one disk

* Divide physical disk into multiple logical disks
— Often implemented within disk device drivers
— Rest of system sees them as separate disk drives

* Typical motivations
— Permit multiple OS to coexist on a single disk
* E.g., a notebook that can boot either Windows or Linux

— Separation for installation, back-up and recovery

* E.g., separate personal files from the installed OS file system

\ — Separation for free-space /

. '
s * Running out of space on one file system doesn't affect others | __ ° |,
Summer 2013 Page 2

/ Working With Multiple File \
Systems

* So you might have miultiple independent file systems
on one machine

— Each handling its own disk layout, free space, and other
organizational issues

How will the overall system work with those several
file systems?

* Treat them as totally independent namespaces?
* Or somehow stitch the separate namespaces together?
* Key questions:

\ 1. How does an application specify which file it wants? /
s 2. How does the OS find that file? Lecture 11

Summer 2013 Page 3

/ Finding Files With Multiple \
File Systems

* Finding files 1s easy if there 1s only one file system
— Any file we want must be on that one file system

— Directories enable us to name files within a file system

* What if there are multiple file systems available?

— Somehow, we have to say which one our file 1s on

* How do we specify which file system to use?
— One way or another, it must be part of the file name
— It may be implicit (e.g., same as current directory)

— Or explicit (e.g., every name specifies it)

\ — Regardless, we need some way of specifying which file /

cs 111 system to look into for a given file name Lecture 11
Summer 2013 Page 4

Options for Naming With \

Multiple Partitions
* Could specity the physical device it resides on

— E.g., /devices/pci/pcil000,4/disk/1lunl/partition?
* That would get old real quick
* Could assign logical names to our partitions
—E.g., “A:”, “C.”, “D.”
* You only have to think physical when you set them up
* But you still have to be aware multiple volumes exist

* Could weave a multi-file-system name space

\ — E.g., Unix mounts)

CS 111 Lecture 11
Summer 2013 Page 5

/ Unix File System Mounts \
* Goal:

— To make many file systems appear to be one giant
one

— Users need not be aware of file system boundaries

e Mechanism:

— Mount device on directory

— Creates a warp from the named directory to the
top of the file system on the specified device

— Any file name beneath that directory 1s interpreted
relative to the root of the mounted file system

CS 111 Lecture 11
Summer 2013 Page 6

/ Unix Mounted File System \
Example

root file system

mount filesystem?2 on /export/userl
mount filesystem3 on /export/user2

mount filesystem4 on /opt % /opt /bin

userl user2

\

o file system 2 file system 3 file system 4 | .cuure 11
Summer 2013 Page 7

/ How Does This Actually Work?\

* Mark the directory that was mounted on

* When file system opens that directory, don’t
treat 1t as an ordinary directory

— Instead, consult a table of mounts to figure out
where the root of the new file system 1s

* (o to that device and open its root directory
* And proceed from there

\ /

CS 111 Lecture 11
Summer 2013 Page 8

/[File System Performance Issues}\

* Key factors 1n file system performance
— Disk 1ssues

e Head movement
* Block size

* Possible optimizations for file systems
— Read-ahead
— Delayed writes

— Caching (general and special purpose)

\ /

CS 111 Lecture 11
Summer 2013 Page 9

/ File Systems and Disk Drives \

* The physics of disk drives impact the
performance of file systems

— Which is unfortunate
* OS designers want to hide that impact

* To do so, they must hide variable disk delays

— Preferably without making everything go at the
slowest possible delay

* This requires many optimizations

\ /

CS 111 Lecture 11
Summer 2013 Page 10

/" Optimizing Disk /O

* Don't start I/O until disk is on-cylinder or near sector
— I/0O ties up the controller, locking out other operations
— Other drives seek while one drive 1s doing I/0
* Minimize head motion
— Do all possible reads in current cylinder before moving
— Make minimum number of trips in small increments
* Encourage efficient data requests
— Have lots of requests to choose from

— Encourage cylinder locality

— Encourage largest possible block sizes
\ — All by OS design choices, not influencing programs/users /

CS 111 Lecture 11
Summer 2013 Page 11

/ Head Motion and File System \

| Performance |
* File system organization affects head motion

— If blocks 1n a single file are spread across the disk
— If files are spread randomly across the disk
— If files and “meta-data™ are widely separated

* All files are not used equally often
— 5% of the files account for 90% of disk accesses

— File locality should translate into head cylinder
locality

* How do we use these factors to reduce head)
CS 111 mOtiOH? Lecture 11

Summer 2013 Page 12

/ Ways To Reduce Head Motion \

* Keep blocks of a file together
— Easiest to do on original write
— Try to allocate each new block close to the last one
— Especially keep them 1n the same cylinder
* Keep metadata close to files
— Again, easiest to do at creation time
* Keep files in the same directory close together
— On the assumption directory implies locality of reference

* If performing compaction, move popular files close
\ together)

CS 111 Lecture 11
Summer 2013 Page 13

/ File System Performance and \
Block Size

Larger block sizes result in efficient transfers

— DMA 1s very fast, once 1t gets started
— Per request set-up and head-motion 1s substantial

They also result in internal fragmentation
— Expected waste: 72 block per file

* As disks get larger, speed outweighs wasted space

— File systems support ever-larger block sizes

* Clever schemes can reduce fragmentation

— E.g., use smaller block size for the last block of a file

\ /

CS 111 Lecture 11
Summer 2013 Page 14

/" Read Early, Write Late ~ \

 If we read blocks before we actually need
them, we don’t have to wait for them

* If we write blocks long after we told the

writes?

* Some optimizations depend on good answers
\ to these questions

CS 111
Summer 2013

— But how can we know which blocks to read early?

application 1t was done, we don’t have to wait

— But are there bad consequences of delaying those

Lecture 11
Page 15

/ Read-Ahead \

* Request blocks from the disk before any
process asked for them

* Reduces process wait time

* When does 1t make sense?
— When client specifically requests sequential access
— When client seems to be reading sequentially

e What are the risks?

— May waste disk access time reading unwanted
blocks

<., — May waste buffer space on unneeded blocks T

Summer 2013 Page 16

Delayed Writes \

* Don’t wait for disk write to complete to tell
application it can proceed

Written block is 1n a buffer in memory

 Wait until it’s “convenient” to write 1t to disk
— Handle reads from in-memory buffer
 Benefits:

— Applications don’t wait for disk writes
— Writes to disk can be optimally ordered
— If file 1s deleted soon, may never need to perform disk I/O

Potential problems:

— Lost writes when system crashes /

csin1— Buffers holding delayed writes can’t be re-used Lecure 11
Summer 2013 age

__

__

* Big performance wins are possible if caches
work well

— They typically contain the block you’re looking for

* Should we have one big LRU cache for all
purposes?

* Should we have some special-purpose caches?
— If so, 1s LRU right for them?

\ /

CS 111 Lecture 11
Summer 2013 Page 18

/Common Types of Disk Caching\

* General block caching
— Popular files that are read frequently
— Files that are written and then promptly re-read
— Provides buffers for read-ahead and deferred write

* Special purpose caches
— Directory caches speed up searches of same dirs

— Inode caches speed up re-uses of same file

* Special purpose caches are more complex
\ —But they often work much better /

CS 111 Lecture 11
Summer 2013 Page 19

/Performance Gain For Different\

Types of Caches

b Special Purpose Cache

F

f

N

Irallll General Block Cache
¢

\ /

cs 111 Cache size (bytes) Lecture 11
Summer 2013 Page 20

Why Are Special Purpose
Caches More Eftective?

* They match caching granularity to their need

— E.g., cache modes or directory entries
— Rather than full blocks

* Why does that help?

* Consider an example:

— A block might contain 100 directory entries, only four of
which are regularly used

— Caching the other 96 as part of the block 1s a waste of
cache space

— Caching 4 entries allows more popular entries to be cached
\ — Tending to lead to higher hit ratios /

CS 111 Lecture 11
Summer 2013 Page 21

/ [File Systems Reliability } \

* File systems are meant to store data
persistently

* Meaning they are particularly sensitive to
errors that screw things up

— Other elements can sometimes just reset and restart
— But if a file 1s corrupted, that’s really bad

* How can we ensure our file system’s integrity
1S not compromised?

\ /

CS 111 Lecture 11
Summer 2013 Page 22

/ Causes of System Data Loss \

* OS or computer stops with writes still pending
— .1-100/year per system

Defects in media render data unreadable
— .1 — 10/year per system

Operator/system management error
— .01-.1/year per system

* Bugs 1n file system and system utilities
— .01-.05/year per system

 Catastrophic device failure
\ — .001-.01/year per system)

CS 111 Lecture 11
Summer 2013 Page 23

/ Dealing With Media Failures \

e Most media failures are for a small section of the
device, not huge extents of it
e Don't use known bad sectors

— Identify all known bad sectors (factory list, testing)
— Assign them to a “never use” list in file system
— Since they aren't free, they won't be used by files

* Deal promptly with newly discovered bad blocks

— Most failures start with repeated “recoverable” errors
— Copy the data to another block ASAP
— Assign new block to file in place of failing block

\ — Assign failing block to the “never use” list /

CS 111 Lecture 11
Summer 2013 Page 24

@oblems Involving System FailuQ

* Delayed writes lead to many problems when
the system crashes

* Other kinds of corruption can also damage file
systems

* We can combat some of these problems using
ordered writes

* But we may also need mechanisms to check
file system integrity

\ And fix obvious problems /

CS 111 Lecture 11
Summer 2013 Page 25

/ Deferred Writes — Promise and \
Dangers

* Deferring disk writes can be a big performance win
— When user updates files in small increments

— When user repeatedly updates the same data

* It may also make sense for meta-data
— Writing to a file may update an indirect block many times
— Unpacking a zip creates many files in same directory
— It also allocates many consecutive inodes

* But deferring writes can also create big problems

— If the system crashes before the writes are done

\ — Some user data may be lost /

csi — Or even some meta-data updates may be lost Lecture 1
ummer age

/ Performance and Integrity \

* It 1s very important that file system be fast
— File system performance drives system
performance
* It 1s absolutely vital that they be robust
— Files are used to store important data
* E.g., student projects, grades, video games, ...
* We must know that our files are safe

— That the files will not disappear after they are
written

— That the data will not be corrupted /

CS 111 Lecture 11
Summer 2013 Page 27

/ Deferred Writes — A Worst Case\
Scenario

 Process allocates a new block for file A

— We get a new block (x) from the free list
— We write the updated inode for file A

* Including a pointer to x
— We defer free-list write-back (which happens all the time)
* The system crashes, and after 1t reboots
— A new process wants a new block for file B
— We get block x from the (stale) free list

 Two different files now contain the same block
\ — When file A 1s written, file B gets corrupted /

csii — When file B is written, file A gets corrupted Lecture 11
Summer 2013 Page 28

/ Ordering Writes \

* Many file system corruption problems can be solved
by carefully ordering related writes

* Write out data before writing pointers to it
— Unreferenced objects can be garbage collected

— Pointers to incorrect data/meta-data are much more serious

* Write out deallocations before allocations
— Disassociate resources from old files ASAP
— Free list can be corrected by garbage collection
— Improperly shared blocks more serious than unlinked ones

* But it may reduce disk I/O efficiency

\ /

— Creating more head motion than elevator scheduling
CS 111 Lecture 11
Summer 2013 Page 29

/ Backup — The Ultimate Solution\

* All files should be regularly backed up
* Permits recovery from catastrophic failures
* Complete vs. incremental back-ups

* Desirable features
— Ability to back-up a running file system
— Ability to restore individual files

— Ability to back-up w/o human assistance

* Should be considered as part of FS design

\ - Le., make file system backup-friendly .

CS 111 Lecture 11
Summer 2013 Page 30

