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File Systems and Multiple Disks 
•  You can usually attach more than one disk to a 

machine 
–  And often do 

•  Would it make sense to have a single file system span 
the several disks? 
–  Considering the kinds of disk specific information a file 

system keeps 
–  Like cylinder information 

•  Usually more trouble than it’s worth 
–  With the exception of RAID . . . 

•  Instead, put separate file system on each disk 
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How About the Other Way Around? 

•  Multiple file systems on one disk 
•  Divide physical disk into multiple logical disks 
–  Often implemented within disk device drivers 
–  Rest of system sees them as separate disk drives 

•  Typical motivations 
–  Permit multiple OS to coexist on a single disk 

•  E.g., a notebook that can boot either Windows or Linux 

–  Separation for installation, back-up and recovery 
•  E.g., separate personal files from the installed OS file system 

–  Separation for free-space 
•  Running out of space on one file system doesn't affect others 
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Working With Multiple File 
Systems 

•  So you might have multiple independent file systems 
on one machine 
–  Each handling its own disk layout, free space, and other 

organizational issues 

•  How will the overall system work with those several 
file systems? 

•  Treat them as totally independent namespaces? 
•  Or somehow stitch the separate namespaces together? 
•  Key questions:  

1.  How does an application specify which file it wants? 
2.  How does the OS find that file? 
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Finding Files With Multiple  
File Systems 

•  Finding files is easy if there is only one file system 
–  Any file we want must be on that one file system 
–  Directories enable us to name files within a file system 

•  What if there are multiple file systems available? 
–  Somehow, we have to say which one our file is on 

•  How do we specify which file system to use? 
–  One way or another, it must be part of the file name 
–  It may be implicit (e.g., same as current directory) 
–  Or explicit (e.g., every name specifies it) 
–  Regardless, we need some way of specifying which file 

system to look into for a given file name 
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Options for Naming With  
Multiple Partitions 

•  Could specify the physical device it resides on 
– E.g., /devices/pci/pci1000,4/disk/lun1/partition2 
•  That would get old real quick 

•  Could assign logical names to our partitions 
– E.g., “A:”, “C:”, “D:” 
•  You only have to think physical when you set them up 
•  But you still have to be aware multiple volumes exist 

•  Could weave a multi-file-system name space 
– E.g., Unix mounts 
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Unix File System Mounts 
•  Goal: 
– To make many file systems appear to be one giant 

one 
– Users need not be aware of file system boundaries 

•  Mechanism: 
– Mount device on directory 
– Creates a warp from the named directory to the  

top of the file system on the specified device 
– Any file name beneath that directory is interpreted 

relative to the root of the mounted file system 
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Unix Mounted File System 
Example 

file system 4 file system 2 file system 3 

root file system 

/bin /opt /export 

user1 user2 

mount filesystem2 on /export/user1 
mount filesystem3 on /export/user2 
mount filesystem4 on /opt 
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How Does This Actually Work? 

•  Mark the directory that was mounted on  
•  When file system opens that directory, don’t 

treat it as an ordinary directory 
–  Instead, consult a table of mounts to figure out 

where the root of the new file system is 
•  Go to that device and open its root directory 
•  And proceed from there 
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File System Performance Issues 

•  Key factors in file system performance 
– Disk issues 
•  Head movement 
•  Block size 

•  Possible optimizations for file systems 
– Read-ahead 
– Delayed writes 
– Caching (general and special purpose) 
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File Systems and Disk Drives 

•  The physics of disk drives impact the 
performance of file systems 
– Which is unfortunate 

•  OS designers want to hide that impact 
•  To do so, they must hide variable disk delays 
– Preferably without making everything go at the 

slowest possible delay 
•  This requires many optimizations 
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Optimizing Disk I/O 
•  Don't start I/O until disk is on-cylinder or near sector 
–  I/O ties up the controller, locking out other operations 
–  Other drives seek while one drive is doing I/O 

•  Minimize head motion 
–  Do all possible reads in current cylinder before moving 
–  Make minimum number of trips in small increments 

•  Encourage efficient data requests 
–  Have lots of requests to choose from 
–  Encourage cylinder locality 
–  Encourage largest possible block sizes 
–  All by OS design choices, not influencing programs/users 
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Head Motion and File System 
Performance 

•  File system organization affects head motion 
–  If blocks in a single file are spread across the disk 
–  If files are spread randomly across the disk 
–  If files and “meta-data” are widely separated 

•  All files are not used equally often 
– 5% of the files account for 90% of disk accesses 
– File locality should translate into head cylinder 

locality 
•  How do we use these factors to reduce head 

motion? 
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Ways To Reduce Head Motion 
•  Keep blocks of a file together 
–  Easiest to do on original write 
–  Try to allocate each new block close to the last one 
–  Especially keep them in the same cylinder 

•  Keep metadata close to files 
–  Again, easiest to do at creation time 

•  Keep files in the same directory close together 
–  On the assumption directory implies locality of reference 

•  If performing compaction, move popular files close 
together 



Lecture 11 
Page 14 

CS 111 
Summer 2013  

File System Performance and 
Block Size 

•  Larger block sizes result in efficient transfers 
–  DMA is very fast, once it gets started 
–  Per request set-up and head-motion is substantial 

•  They also result in internal fragmentation 
–  Expected waste: ½ block per file 

•  As disks get larger, speed outweighs wasted space 
–  File systems support ever-larger block sizes 

•  Clever schemes can reduce fragmentation 
–  E.g., use smaller block size for the last block of a file 



Lecture 11 
Page 15 

CS 111 
Summer 2013  

Read Early, Write Late 

•  If we read blocks before we actually need 
them, we don’t have to wait for them 
– But how can we know which blocks to read early? 

•  If we write blocks long after we told the 
application it was done, we don’t have to wait 
– But are there bad consequences of delaying those 

writes? 
•  Some optimizations depend on good answers 

to these questions 
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Read-Ahead 
•  Request blocks from the disk before any 

process asked for them 
•  Reduces process wait time 
•  When does it make sense? 
– When client specifically requests sequential access 
– When client seems to be reading sequentially 

•  What are the risks? 
– May waste disk access time reading unwanted 

blocks 
– May waste buffer space on unneeded blocks 
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Delayed Writes 
•  Don’t wait for disk write to complete to tell 

application it can proceed 
•  Written block is in a buffer in memory 
•  Wait until it’s “convenient” to write it to disk 
–  Handle reads from in-memory buffer  

•  Benefits: 
–  Applications don’t wait for disk writes 
–  Writes to disk can be optimally ordered 
–  If file is deleted soon, may never need to perform disk I/O 

•  Potential problems: 
–  Lost writes when system crashes 
–  Buffers holding delayed writes can’t be re-used 
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Caching and Performance 

•  Big performance wins are possible if caches 
work well 
– They typically contain the block you’re looking for 

•  Should we have one big LRU cache for all 
purposes? 

•  Should we have some special-purpose caches? 
–  If so, is LRU right for them? 
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Common Types of Disk Caching 
•  General block caching 
– Popular files that are read frequently 
– Files that are written and then promptly re-read 
– Provides buffers for read-ahead and deferred write 

•  Special purpose caches 
– Directory caches speed up searches of same dirs 
–  Inode caches speed up re-uses of same file 

•  Special purpose caches are more complex 
– But they often work much better 
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Performance Gain For Different 
Types of Caches 

General Block Cache 

Special Purpose Cache 

Cache size (bytes) 

 
Per
formance 
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Why Are Special Purpose  
Caches More Effective? 

•  They match caching granularity to their need 
–  E.g., cache inodes or directory entries 
–  Rather than full blocks 

•  Why does that help? 
•  Consider an example: 
–  A block might contain 100 directory entries, only four of 

which are regularly used 
–  Caching the other 96 as part of the block is a waste of 

cache space 
–  Caching 4 entries allows more popular entries to be cached 
–  Tending to lead to higher hit ratios 
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File Systems Reliability 
•  File systems are meant to store data 

persistently 
•  Meaning they are particularly sensitive to 

errors that screw things up 
– Other elements can sometimes just reset and restart 
– But if a file is corrupted, that’s really bad 

•  How can we ensure our file system’s integrity 
is not compromised? 
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Causes of System Data Loss 
•  OS or computer stops with writes still pending 
–  .1-100/year per system 

•  Defects in media render data unreadable 
–  .1 – 10/year per system 

•  Operator/system management error 
–  .01-.1/year per system 

•  Bugs in file system and system utilities 
–  .01-.05/year per system 

•  Catastrophic device failure 
–  .001-.01/year per system 
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Dealing With Media Failures 
•  Most media failures are for a small section of the 

device, not huge extents of it 
•  Don't use known bad sectors 
–  Identify all known bad sectors (factory list, testing) 
–  Assign them to a “never use” list in file system 
–  Since they aren't free, they won't be used by files 

•  Deal promptly with newly discovered bad blocks 
–  Most failures start with repeated “recoverable” errors 
–  Copy the data to another block ASAP 
–  Assign new block to file in place of failing block 
–  Assign failing block to the “never use” list 
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Problems Involving System Failure 

•  Delayed writes lead to many problems when 
the system crashes 

•  Other kinds of corruption can also damage file 
systems 

•  We can combat some of these problems using 
ordered writes 

•  But we may also need mechanisms to check 
file system integrity 
– And fix obvious problems 
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Deferred Writes – Promise and 
Dangers 

•  Deferring disk writes can be a big performance win 
–  When user updates files in small increments 
–  When user repeatedly updates the same data 

•  It may also make sense for meta-data 
–  Writing to a file may update an indirect block many times 
–  Unpacking a zip creates many files in same directory 
–  It also allocates many consecutive inodes 

•  But deferring writes can also create big problems 
–  If the system crashes before the writes are done 
–  Some user data may be lost 
–  Or even some meta-data updates may be lost 



Lecture 11 
Page 27 

CS 111 
Summer 2013  

Performance and Integrity 
•  It is very important that file system be fast 
– File system performance drives system 

performance 
•  It is absolutely vital that they be robust 
– Files are used to store important data  
•  E.g., student projects, grades, video games, … 

•  We must know that our files are safe 
– That the files will not disappear after they are 

written 
– That the data will not be corrupted 
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Deferred Writes – A Worst Case 
Scenario 

•  Process allocates a new block for file A 
–  We get a new block (x) from the free list 
–  We write the updated inode for file A 

•  Including a pointer to x 

–  We defer free-list write-back (which happens all the time) 
•  The system crashes, and after it reboots 
–  A new process wants a new block for file B 
–  We get block x from the (stale) free list 

•  Two different files now contain the same block 
–  When file A is written, file B gets corrupted 
–  When file B is written, file A gets corrupted 
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Ordering Writes 
•  Many file system corruption problems can be solved 

by carefully ordering related writes 
•  Write out data before writing pointers to it 
–  Unreferenced objects can be garbage collected 
–  Pointers to incorrect data/meta-data are much more serious 

•  Write out deallocations before allocations 
–  Disassociate resources from old files ASAP 
–  Free list can be corrected by garbage collection 
–  Improperly shared blocks more serious than unlinked ones 

•  But it may reduce disk I/O efficiency 
–  Creating more head motion than elevator scheduling 
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Backup – The Ultimate Solution 
•  All files should be regularly backed up 
•  Permits recovery from catastrophic failures 
•  Complete vs. incremental back-ups 
•  Desirable features 
– Ability to back-up a running file system 
– Ability to restore individual files 
– Ability to back-up w/o human assistance 

•  Should be considered as part of FS design 
–  I.e., make file system backup-friendly 


