
Lecture 11
Page 1

CS 111
Summer 2013

File Systems and Multiple Disks
•  You can usually attach more than one disk to a

machine
–  And often do

•  Would it make sense to have a single file system span
the several disks?
–  Considering the kinds of disk specific information a file

system keeps
–  Like cylinder information

•  Usually more trouble than it’s worth
–  With the exception of RAID . . .

•  Instead, put separate file system on each disk

Lecture 11
Page 2

CS 111
Summer 2013

How About the Other Way Around?

•  Multiple file systems on one disk
•  Divide physical disk into multiple logical disks
–  Often implemented within disk device drivers
–  Rest of system sees them as separate disk drives

•  Typical motivations
–  Permit multiple OS to coexist on a single disk

•  E.g., a notebook that can boot either Windows or Linux

–  Separation for installation, back-up and recovery
•  E.g., separate personal files from the installed OS file system

–  Separation for free-space
•  Running out of space on one file system doesn't affect others

Lecture 11
Page 3

CS 111
Summer 2013

Working With Multiple File
Systems

•  So you might have multiple independent file systems
on one machine
–  Each handling its own disk layout, free space, and other

organizational issues

•  How will the overall system work with those several
file systems?

•  Treat them as totally independent namespaces?
•  Or somehow stitch the separate namespaces together?
•  Key questions:

1.  How does an application specify which file it wants?
2.  How does the OS find that file?

Lecture 11
Page 4

CS 111
Summer 2013

Finding Files With Multiple
File Systems

•  Finding files is easy if there is only one file system
–  Any file we want must be on that one file system
–  Directories enable us to name files within a file system

•  What if there are multiple file systems available?
–  Somehow, we have to say which one our file is on

•  How do we specify which file system to use?
–  One way or another, it must be part of the file name
–  It may be implicit (e.g., same as current directory)
–  Or explicit (e.g., every name specifies it)
–  Regardless, we need some way of specifying which file

system to look into for a given file name

Lecture 11
Page 5

CS 111
Summer 2013

Options for Naming With
Multiple Partitions

•  Could specify the physical device it resides on
– E.g., /devices/pci/pci1000,4/disk/lun1/partition2
•  That would get old real quick

•  Could assign logical names to our partitions
– E.g., “A:”, “C:”, “D:”
•  You only have to think physical when you set them up
•  But you still have to be aware multiple volumes exist

•  Could weave a multi-file-system name space
– E.g., Unix mounts

Lecture 11
Page 6

CS 111
Summer 2013

Unix File System Mounts
•  Goal:
– To make many file systems appear to be one giant

one
– Users need not be aware of file system boundaries

•  Mechanism:
– Mount device on directory
– Creates a warp from the named directory to the

top of the file system on the specified device
– Any file name beneath that directory is interpreted

relative to the root of the mounted file system

Lecture 11
Page 7

CS 111
Summer 2013

Unix Mounted File System
Example

file system 4 file system 2 file system 3

root file system

/bin /opt /export

user1 user2

mount filesystem2 on /export/user1
mount filesystem3 on /export/user2
mount filesystem4 on /opt

Lecture 11
Page 8

CS 111
Summer 2013

How Does This Actually Work?

•  Mark the directory that was mounted on
•  When file system opens that directory, don’t

treat it as an ordinary directory
–  Instead, consult a table of mounts to figure out

where the root of the new file system is
•  Go to that device and open its root directory
•  And proceed from there

Lecture 11
Page 9

CS 111
Summer 2013

File System Performance Issues

•  Key factors in file system performance
– Disk issues
•  Head movement
•  Block size

•  Possible optimizations for file systems
– Read-ahead
– Delayed writes
– Caching (general and special purpose)

Lecture 11
Page 10

CS 111
Summer 2013

File Systems and Disk Drives

•  The physics of disk drives impact the
performance of file systems
– Which is unfortunate

•  OS designers want to hide that impact
•  To do so, they must hide variable disk delays
– Preferably without making everything go at the

slowest possible delay
•  This requires many optimizations

Lecture 11
Page 11

CS 111
Summer 2013

Optimizing Disk I/O
•  Don't start I/O until disk is on-cylinder or near sector
–  I/O ties up the controller, locking out other operations
–  Other drives seek while one drive is doing I/O

•  Minimize head motion
–  Do all possible reads in current cylinder before moving
–  Make minimum number of trips in small increments

•  Encourage efficient data requests
–  Have lots of requests to choose from
–  Encourage cylinder locality
–  Encourage largest possible block sizes
–  All by OS design choices, not influencing programs/users

Lecture 11
Page 12

CS 111
Summer 2013

Head Motion and File System
Performance

•  File system organization affects head motion
–  If blocks in a single file are spread across the disk
–  If files are spread randomly across the disk
–  If files and “meta-data” are widely separated

•  All files are not used equally often
– 5% of the files account for 90% of disk accesses
– File locality should translate into head cylinder

locality
•  How do we use these factors to reduce head

motion?

Lecture 11
Page 13

CS 111
Summer 2013

Ways To Reduce Head Motion
•  Keep blocks of a file together
–  Easiest to do on original write
–  Try to allocate each new block close to the last one
–  Especially keep them in the same cylinder

•  Keep metadata close to files
–  Again, easiest to do at creation time

•  Keep files in the same directory close together
–  On the assumption directory implies locality of reference

•  If performing compaction, move popular files close
together

Lecture 11
Page 14

CS 111
Summer 2013

File System Performance and
Block Size

•  Larger block sizes result in efficient transfers
–  DMA is very fast, once it gets started
–  Per request set-up and head-motion is substantial

•  They also result in internal fragmentation
–  Expected waste: ½ block per file

•  As disks get larger, speed outweighs wasted space
–  File systems support ever-larger block sizes

•  Clever schemes can reduce fragmentation
–  E.g., use smaller block size for the last block of a file

Lecture 11
Page 15

CS 111
Summer 2013

Read Early, Write Late

•  If we read blocks before we actually need
them, we don’t have to wait for them
– But how can we know which blocks to read early?

•  If we write blocks long after we told the
application it was done, we don’t have to wait
– But are there bad consequences of delaying those

writes?
•  Some optimizations depend on good answers

to these questions

Lecture 11
Page 16

CS 111
Summer 2013

Read-Ahead
•  Request blocks from the disk before any

process asked for them
•  Reduces process wait time
•  When does it make sense?
– When client specifically requests sequential access
– When client seems to be reading sequentially

•  What are the risks?
– May waste disk access time reading unwanted

blocks
– May waste buffer space on unneeded blocks

Lecture 11
Page 17

CS 111
Summer 2013

Delayed Writes
•  Don’t wait for disk write to complete to tell

application it can proceed
•  Written block is in a buffer in memory
•  Wait until it’s “convenient” to write it to disk
–  Handle reads from in-memory buffer

•  Benefits:
–  Applications don’t wait for disk writes
–  Writes to disk can be optimally ordered
–  If file is deleted soon, may never need to perform disk I/O

•  Potential problems:
–  Lost writes when system crashes
–  Buffers holding delayed writes can’t be re-used

Lecture 11
Page 18

CS 111
Summer 2013

Caching and Performance

•  Big performance wins are possible if caches
work well
– They typically contain the block you’re looking for

•  Should we have one big LRU cache for all
purposes?

•  Should we have some special-purpose caches?
–  If so, is LRU right for them?

Lecture 11
Page 19

CS 111
Summer 2013

Common Types of Disk Caching
•  General block caching
– Popular files that are read frequently
– Files that are written and then promptly re-read
– Provides buffers for read-ahead and deferred write

•  Special purpose caches
– Directory caches speed up searches of same dirs
–  Inode caches speed up re-uses of same file

•  Special purpose caches are more complex
– But they often work much better

Lecture 11
Page 20

CS 111
Summer 2013

Performance Gain For Different
Types of Caches

General Block Cache

Special Purpose Cache

Cache size (bytes)

Per
formance

Lecture 11
Page 21

CS 111
Summer 2013

Why Are Special Purpose
Caches More Effective?

•  They match caching granularity to their need
–  E.g., cache inodes or directory entries
–  Rather than full blocks

•  Why does that help?
•  Consider an example:
–  A block might contain 100 directory entries, only four of

which are regularly used
–  Caching the other 96 as part of the block is a waste of

cache space
–  Caching 4 entries allows more popular entries to be cached
–  Tending to lead to higher hit ratios

Lecture 11
Page 22

CS 111
Summer 2013

File Systems Reliability
•  File systems are meant to store data

persistently
•  Meaning they are particularly sensitive to

errors that screw things up
– Other elements can sometimes just reset and restart
– But if a file is corrupted, that’s really bad

•  How can we ensure our file system’s integrity
is not compromised?

Lecture 11
Page 23

CS 111
Summer 2013

Causes of System Data Loss
•  OS or computer stops with writes still pending
–  .1-100/year per system

•  Defects in media render data unreadable
–  .1 – 10/year per system

•  Operator/system management error
–  .01-.1/year per system

•  Bugs in file system and system utilities
–  .01-.05/year per system

•  Catastrophic device failure
–  .001-.01/year per system

Lecture 11
Page 24

CS 111
Summer 2013

Dealing With Media Failures
•  Most media failures are for a small section of the

device, not huge extents of it
•  Don't use known bad sectors
–  Identify all known bad sectors (factory list, testing)
–  Assign them to a “never use” list in file system
–  Since they aren't free, they won't be used by files

•  Deal promptly with newly discovered bad blocks
–  Most failures start with repeated “recoverable” errors
–  Copy the data to another block ASAP
–  Assign new block to file in place of failing block
–  Assign failing block to the “never use” list

Lecture 11
Page 25

CS 111
Summer 2013

Problems Involving System Failure

•  Delayed writes lead to many problems when
the system crashes

•  Other kinds of corruption can also damage file
systems

•  We can combat some of these problems using
ordered writes

•  But we may also need mechanisms to check
file system integrity
– And fix obvious problems

Lecture 11
Page 26

CS 111
Summer 2013

Deferred Writes – Promise and
Dangers

•  Deferring disk writes can be a big performance win
–  When user updates files in small increments
–  When user repeatedly updates the same data

•  It may also make sense for meta-data
–  Writing to a file may update an indirect block many times
–  Unpacking a zip creates many files in same directory
–  It also allocates many consecutive inodes

•  But deferring writes can also create big problems
–  If the system crashes before the writes are done
–  Some user data may be lost
–  Or even some meta-data updates may be lost

Lecture 11
Page 27

CS 111
Summer 2013

Performance and Integrity
•  It is very important that file system be fast
– File system performance drives system

performance
•  It is absolutely vital that they be robust
– Files are used to store important data
•  E.g., student projects, grades, video games, …

•  We must know that our files are safe
– That the files will not disappear after they are

written
– That the data will not be corrupted

Lecture 11
Page 28

CS 111
Summer 2013

Deferred Writes – A Worst Case
Scenario

•  Process allocates a new block for file A
–  We get a new block (x) from the free list
–  We write the updated inode for file A

•  Including a pointer to x

–  We defer free-list write-back (which happens all the time)
•  The system crashes, and after it reboots
–  A new process wants a new block for file B
–  We get block x from the (stale) free list

•  Two different files now contain the same block
–  When file A is written, file B gets corrupted
–  When file B is written, file A gets corrupted

Lecture 11
Page 29

CS 111
Summer 2013

Ordering Writes
•  Many file system corruption problems can be solved

by carefully ordering related writes
•  Write out data before writing pointers to it
–  Unreferenced objects can be garbage collected
–  Pointers to incorrect data/meta-data are much more serious

•  Write out deallocations before allocations
–  Disassociate resources from old files ASAP
–  Free list can be corrected by garbage collection
–  Improperly shared blocks more serious than unlinked ones

•  But it may reduce disk I/O efficiency
–  Creating more head motion than elevator scheduling

Lecture 11
Page 30

CS 111
Summer 2013

Backup – The Ultimate Solution
•  All files should be regularly backed up
•  Permits recovery from catastrophic failures
•  Complete vs. incremental back-ups
•  Desirable features
– Ability to back-up a running file system
– Ability to restore individual files
– Ability to back-up w/o human assistance

•  Should be considered as part of FS design
–  I.e., make file system backup-friendly

