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Outline 

•  Managing disk space for file systems 
•  File naming and directories 
•  File volumes 
•  File system performance issues 
•  File system reliability 
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Free Space and Allocation Issues 

•  How do I keep track of a file system’s free 
space? 

•  How do I allocate new disk blocks when 
needed? 
– And how do I handle deallocation? 
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The Allocation/Deallocation 
Problem 

•  File systems usually aren’t static 
•  You create and destroy files 
•  You change the contents of files 

– Sometimes extending their length in the process 
•  Such changes convert unused disk blocks to 

used blocks (or visa versa) 
•  Need correct, efficient ways to do that 
•  Typically implies a need to maintain a free list 

of unused disk blocks 
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Creating a New File 
•  Allocate a free file control block 

– For UNIX 
•  Search the super-block free I-node list 
•  Take the first free I-node 

– For DOS  
•  Search the parent directory for an unused directory entry  

•  Initialize the new file control block 
– With file type, protection, ownership, ... 

•  Give new file a name  
– Naming issues will be discussed in the next lecture 
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Extending a File 

•  Application requests new data be assigned to a file 
–  May be an explicit allocation/extension request 
–  May be implicit (e.g., write to a currently non-existent 

block – remember sparse files?) 

•  Find a free chunk of space 
–  Traverse the free list to find an appropriate chunk 
–  Remove the chosen chunk from the free list 

•  Associate it with the appropriate address in the file 
–  Go to appropriate place in the file or extent descriptor 
–  Update it to point to the newly allocated chunk 
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Deleting a File 
•  Release all the space that is allocated to the file 

– For UNIX, return each block to the free block list 
– DOS does not free space 

•  It uses garbage collection 
•  So it will search out deallocated blocks and add them to 

the free list at some future time 

•  Deallocate the file control lock 
– For UNIX, zero inode and return it to free list 
– For DOS, zero the first byte of the name in the 

parent directory 
•   Indicating that the directory entry is no longer in use  
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Free Space Maintenance 
•  File system manager manages the free space 
•  Getting/releasing blocks should be fast operations 

–  They are extremely frequent 
–  We'd like to avoid doing I/O as much as possible 

•  Unlike memory, it matters what block we choose 
–  Best to allocate new space in same cylinder as file’s 

existing space 
–  User may ask for contiguous storage 

•  Free-list organization must address both concerns 
–  Speed of allocation and deallocation 
–  Ability to allocate contiguous or near-by space 
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DOS File System Free  
Space Management 

•  Search for free clusters in desired cylinder 
–  We can map clusters to cylinders 

•  The BIOS Parameter Block describes the device geometry 

–  Look at first cluster of file to choose the desired cylinder 
–  Start search at first cluster of desired cylinder 
–  Examine each FAT entry until we find a free one 

•  If no free clusters, we must garbage collect 
–  Recursively search all directories for existing files 
–  Enumerate all of the clusters in each file 
–  Any clusters not found in search can be marked as free 
–  This won’t be fast . . . 
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Extending a DOS File 

•  Note cluster number of current last cluster in file 
•  Search the FAT to find a free cluster 

–  Free clusters are indicated by a FAT entry of zero 
–  Look for a cluster in the same cylinder as previous cluster 
–  Put -1 in its FAT entry to indicate that this is the new EOF 
–  This has side effect of marking the new cluster as “not 

free” 

•  Chain new cluster on to end of the file 
–  Put the number of new cluster into FAT entry for last 

cluster 
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DOS Free Space 
boot 
block 

File Allocation 
Table data clusters BIOS 

parms 

## ## ## ## 0 0 ## … 0 ## 

Each FAT entry corresponds to a cluster, and contains the 
number of the next cluster.   

A value of zero indicates a cluster that is not allocated to any 
file, and is therefore free. 

-1 
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The BSD File System  
Free Space Management 

•  BSD is another version of Unix 
•  The details of its inodes are similar to those of 

Unix System V 
– As previously discussed 

•  Other aspects are somewhat different 
–  Including free space management 
– Typically more advanced 

•  Uses bit map approach to managing free space 
– Keeping cylinder issues in mind 
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The BSD Approach 
•  Instead of all control information at start of disk, 
•  Divide file system into cylinder groups 

–  Each cylinder group has its own control information 
•  The cylinder group summary 

–  Active cylinder group summaries are kept in memory 
–  Each cylinder group has its own inodes and blocks 
–  Free block list is a bit-map in cylinder group summary 

•  Enables significant reductions in head motion 
–  Data blocks in file can be allocated in same cylinder 
–  Inode and its data blocks in same cylinder group 
–  Directories and their files in same cylinder group 
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BSD Cylinder Groups  
and Free Space 

I-nodes data blocks 

file system & 
cylinder group 
parameters 

free block 
bit-map 

free I-node 
bit-map 

cylinders 

cylinder 
groups 

0                 100                200               300             400 
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Bit Map Free Lists 

block #1 
(in use) 

block #2 
(in use) 

block #3 
(free) 

block #4 
(in use) 

block #5 
(free) 

block #6 
(free) 

1 0 0 0 1 1 … 

Actual data blocks 

BSD Unix file systems use bit-maps to keep 
track of both free blocks and free I-nodes in 

each cylinder group 
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Extending a BSD/Unix File 
•  Determine the cylinder group for the file’s inode 

–  Calculated from the inode’s identifying number 
•  Find the cylinder for the previous block in the file 
•  Find a free block in the desired cylinder 

–  Search the free-block bit-map for a free block in the right 
cylinder 

–  Update the bit-map to show the block has been allocated 

•  Update the inode to point to the new block 
–  Go to appropriate block pointer in inode/indirect block 
–  If new indirect block is needed, allocate/assign it first 
–  Update inode/indirect to point to new block 
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Unix File Extension 

1st 

2nd 

1st 

block pointers 
(in I-node) 

2nd 

10th 
11th 
12th 
13th 

3rd 
4th 
5th 
6th 
7th 
8th 
9th 

C.G. 
summary 

Free 
I-node 
bit map 

Free 
block 

bit map 

1.  Determine cylinder group and 
get its information 
2.  Consult the cylinder group free 
block bit map to find a good block 
3.  Allocate the block to the file 

3d 

3.1  Set appropriate block pointer 
to it 
3.2  Update the free block bit map 

✔ 
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Naming in File Systems  

•  Each file needs some kind of handle to allow 
us to refer to it 

•  Low level names (like inode numbers) aren’t 
usable by people or even programs 

•  We need a better way to name our files 
– User friendly 
– Allowing for easy organization of large numbers of 

files 
– Readily realizable in file systems 
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File Names and Binding 
•  File system knows files by descriptor structures 
•  We must provide more useful names for users 
•  The file system must handle name-to-file mapping 

–  Associating names with new files 
–  Finding the underlying representation for a given name 
–  Changing names associated with existing files 
–  Allowing users to organize files using names 

•  Name spaces – the total collection of all names 
known by some naming mechanism 
– Sometimes all names that could be created by the 

mechanism 
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Name Space Structure 
•  There are many ways to structure a name space 

– Flat name spaces 
•  All names exist in a single level 

– Hierarchical name spaces 
•  A graph approach 
•  Can be a strict tree 
•  Or a more general graph (usually directed) 

•  Are all files on the machine under the same 
name structure? 

•  Or are there several independent name spaces? 
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Some Issues in Name  
Space Structure 

•  How many files can have the same name? 
–  One per file system ... flat name spaces 
–  One per directory ... hierarchical name spaces 

•  How many different names can one file have? 
–  A single “true name” 
–  Only one “true name”, but aliases are allowed 
–  Arbitrarily many 
–  What’s different about “true names”? 

•  Do different names have different characteristics? 
–  Does deleting one name make others disappear too? 
–  Do all names see the same access permissions? 
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Flat Name Spaces 
•  There is one naming context per file system 

– All file names must be unique within that context 

•  All files have exactly one true name 
– These names are probably very long 

•  File names may have some structure 
– E.g., CAC101.CS111.SECTION1.SLIDES.LECTURE_13 

– This structure may be used to optimize searches 
– The structure is very useful to users but has no 

meaning to the file system 
•  Not widely used in modern file systems 
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Hierarchical Name Spaces 
•  Essentially a graphical organization 
•  Typically organized using directories  

–  A file containing references to other files 
–  A non-leaf node in the graph 
–  It can be used as a naming context 

•  Each process has a current directory 
•  File names are interpreted relative to that directory 

•  Nested directories can form a tree 
–  A file name describes a path through that tree 
–  The directory tree expands from a “root” node 

•  A name beginning from root is called “fully qualified” 
–  May actually form a directed graph 

•  If files are allowed to have multiple names 
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A Rooted Directory Tree 
root 

user_1 user_2 user_3 

file_a 

(/user_1/file_a) 

file_b 

(/user_2/file_b) 

file_c 

(/user_3/file_c) 

dir_a 

(/user_1/dir_a) 

dir_a 

(/user_3/dir_a) 

file_a 

(/user_1/dir_a/file_a) 
file_b 

(/user_3/dir_a/file_b) 
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Directories Are Files 
•  Directories are a special type of file 

–  Used by OS to map file names into the associated files 
•  A directory contains multiple directory entries  

–  Each directory entry describes one file and its name 

•  User applications are allowed to read directories 
–  To get information about each file 
–  To find out what files exist 

•  Usually only the OS is allowed to write them 
–  Users can cause writes through special system calls 
–  The file system depends on the integrity of directories 



Lecture 11 
Page 26 

CS 111 
Summer 2013  

Traversing the Directory Tree 
•  Some entries in directories point to child 

directories 
– Describing a lower level in the hierarchy 

•  To name a file at that level, name the parent 
directory and the child directory, then the file 
– With some kind of delimiter separating the file 

name components 
•  Moving up the hierarchy is often useful 

– Directories usually have special entry for parent 
– Many file systems use the name “..” for that 
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Example: The DOS File System 

•  File & directory names separated by back-slashes 
–  E.g., \user_3\dir_a\file_b 

•  Directory entries are the file descriptors 
–  As such, only one entry can refer to a particular file 

•  Contents of a DOS directory entry 
–  Name (relative to this directory) 
–  Type (ordinary file, directory, ...) 
–  Location of first cluster of file 
–  Length of file in bytes 
–  Other privacy and protection attributes  



Lecture 11 
Page 28 

CS 111 
Summer 2013  

DOS File System Directories 

user_1 256 bytes 9 DIR … 

Root directory, starting in cluster #1 

file name length 1st cluster type … 

user_2 512 bytes 31 DIR … 

user_3 284 bytes 114 DIR … 

Directory /user_3, starting in cluster #114 

file name length 1st cluster type … 

.. 256 bytes 1 DIR … 

dir_a 512 bytes 62 DIR … 

file_c 1824 bytes 102 FILE … 
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File Names Vs. Path Names 

•  In flat name spaces, files had “true names” 
–  That name is recorded in some central location  
–  Name structure (a.b.c) is a convenient convention 

•  In DOS, a file is described by a directory entry 
–  Local name is specified in that directory entry 
–  Fully qualified name is the path to that directory entry 

•  E.g., start from root, to user_3, to dir_a, to file_b 

–  But DOS files still have only one name 

•  What if files had no intrinsic names of their own? 
–  All names came from directory paths 



Lecture 11 
Page 30 

CS 111 
Summer 2013  

Example:  Unix Directories 
•  A file system that allows multiple file names 

–  So there is no single “true” file name, unlike DOS 

•  File names separated by slashes 
–  E.g., /user_3/dir_a/file_b 

•  The actual file descriptors are the inodes 
–  Directory entries only point to inodes 
–  Association of a name with an inode is called a hard link 
–  Multiple directory entries can point to the same inode 

•  Contents of a Unix directory entry 
–  Name (relative to this directory) 
–  Pointer to the inode of the associated file 
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Unix Directories 

user_1 9 

file name inode # 

user_2 31 

user_3 114 

Directory /user_3, inode #114 

dir_a 

file_c 

. 1 

.. 1 

Root directory, inode #1 

194 

307 

. 114 

.. 1 

file name inode # 

Here’s a “..” entry, 
pointing to the parent 
directory 

But what’s this “.” 
entry? 

It’s a directory entry 
that points to the 
directory itself! 

We’ll see why that’s 
useful later 
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Multiple File Names In Unix 
•  How do links relate to files? 

–  They’re the names only 

•  All other metadata is stored in the file inode 
–  File owner sets file protection (e.g., read-only) 

•  All links provide the same access to the file 
–  Anyone with read access to file can create new link 
–  But directories are protected files too 

•  Not everyone has read or search access to every directory 

•  All links are equal 
–  There is nothing special about the first (or owner's) link 
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Links and De-allocation 
•  Files exist under multiple names 
•  What do we do if one name is removed? 
•  If we also removed the file itself, what about 

the other names? 
– Do they now point to something non-existent? 

•  The Unix solution says the file exists as long 
as at least one name exists 

•  Implying we must keep and maintain a 
reference count of links 
–  In the file inode, not in a directory 
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Unix Hard Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 

Note that we now 
associate names with links 
rather than with files. 

/user_1/file_a and 

/user_3/dir_a/file_b 

are both links to the same 
inode 
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Hard Links, Directories, and Files 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

29 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 
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Symbolic Links 
•  A different way of giving files multiple names 
•  Symbolic links implemented as a special type of file 

–  An indirect reference to some other file 
–  Contents is a path name to another file 

•  OS recognizes symbolic links 
–  Automatically opens associated file instead 
–  If file is inaccessible or non-existent, the open fails 

•  Symbolic link is not a reference to the inode 
–  Symbolic links will not prevent deletion 
–  Do not guarantee ability to follow the specified path 
–  Internet URLs are similar to symbolic links 
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Symbolic Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 
(/user_1/file_a) 

The link count for 
this file is still 1, 
though 



Lecture 11 
Page 38 

CS 111 
Summer 2013  

Symbolic Links, Files, and 
Directories 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

46 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 

/user_1/file_a 

inode #46, symlink Link count 
still equals 1! 


