-

Summer 2013

File Systems: Memory
Management, Naming and
Reliability
CS 111
Operating Systems
Peter Rether

/ [Outline} \

* Managing disk space for file systems

* File naming and directories
* File volumes

* File system performance issues

* File system reliability

\ /

CS 111 Lecture 11
Summer 2013 Page 2

ﬁ? ree Space and Allocation Issues}\

* I
S

low do I keep track of a file system’s free
pace”?

* H
n

\

CS 111
Summer 2013

low do I allocate new disk blocks when
eeded?

— And how do I handle deallocation?

Lecture 11
Page 3

/ The Allocation/Deallocation \

Problem
* File systems usually aren’t static

* You create and destroy files
* You change the contents of files

— Sometimes extending their length 1n the process

* Such changes convert unused disk blocks to
used blocks (or visa versa)

* Need correct, efficient ways to do that

\° Typically implies a need to maintain a free list)
s Of unused disk blocks L I

Summer 2013 Page 4

/ Creating a New File \

 Allocate a free file control block
— For UNIX

* Search the super-block free I-node list
 Take the first free I-node

— For DOS

 Search the parent directory for an unused directory entry

* Initialize the new file control block
— With file type, protection, ownership, ...

e (G1ve new file a name

\ Naming i1ssues will be discussed 1n the next lecture /

CS 111 Lecture 11
Summer 2013 Page 5

-

Extending a File

* Application requests new data be assigned to a file

— May be an explicit allocation/extension request
— May be implicit (e.g., write to a currently non-existent

block — remember sparse files?)

* Find a free chunk of space
— Traverse the free list to find an appropriate chunk
— Remove the chosen chunk from the free list

* Associate 1t with the appropriate address 1n the file

— Go to appropriate place in the file or extent descriptor

\ — Update 1t to point to the newly allocated chunk

CS 111
Summer 2013

~

/

Lecture 11

Page 6

/ Deleting a File \

* Release all the space that is allocated to the file
— For UNIX, return each block to the free block list

— DOS does not free space
* It uses garbage collection
* So 1t will search out deallocated blocks and add them to
the free list at some future time

 Deallocate the file control lock

— For UNIX, zero inode and return 1t to free list

— For DOS, zero the first byte of the name 1n the
parent directory

* Indicating that the directory entry 1s no longer in use /
CS 111 Lecture 11
Summer 2013 Page 7

/ Free Space Maintenance

* File system manager manages the free space

* Getting/releasing blocks should be fast operations
— They are extremely frequent
— We'd like to avoid doing I/O as much as possible

* Unlike memory, 1t matters what block we choose

— Best to allocate new space in same cylinder as file’s
existing space
— User may ask for contiguous storage

* Free-list organization must address both concerns

\ — Speed of allocation and deallocation
11— Ability to allocate contiguous or near-by space

~

/

Lecture 11

Summer 2013

Page 8

Space Management

+ Search for free clusters in desired cylinder

— We can map clusters to cylinders
* The BIOS Parameter Block describes the device geometry

— Look at first cluster of file to choose the desired cylinder
— Start search at first cluster of desired cylinder
— Examine each FAT entry until we find a free one

* If no free clusters, we must garbage collect
— Recursively search all directories for existing files

— Enumerate all of the clusters in each file

\ — Any clusters not found 1n search can be marked as free

csii — This won’t be fast . . .
Summer 2013

a 'DOS File System Free | N

/

Lecture 11
Page 9

/ Extending a DOS File \

 Note cluster number of current last cluster in file

* Search the FAT to find a free cluster
— Free clusters are indicated by a FAT entry of zero
— Look for a cluster 1n the same cylinder as previous cluster
— Put -1 in its FAT entry to indicate that this is the new EOF

— This has side effect of marking the new cluster as “not
free”

e (Chain new cluster on to end of the file

— Put the number of new cluster into FAT entry for last
\ cluster /

CS 111 Lecture 11
Summer 2013 Page 10

/ DOS Free Space \

boot
block

Each FAT entry corresponds to a cluster, and contains the
number of the next cluster.

A value of zero indicates a cluster that 1s not allocated to any
\ file, and is therefore free. /

CS 111 Lecture 11
Summer 2013 Page 11

/" TheBSD File System ™\
Free Space Management ;

__

e BSD i1s another version of Unix

* The details of its inodes are similar to those of
Unix System V
— As previously discussed

* Other aspects are somewhat different
— Including free space management

— Typically more advanced

* Uses bit map approach to managing free space

/

<« — Keeping cylinder 1ssues in mind .

Summer 2013 Page 12

/ The BSD Approach \

e Instead of all control information at start of disk,

* Divide file system into cylinder groups

— Each cylinder group has 1ts own control information
* The cylinder group summary

— Active cylinder group summaries are kept in memory
— Each cylinder group has its own inodes and blocks
— Free block list 1s a bit-map in cylinder group summary

* Enables significant reductions in head motion

— Data blocks 1n file can be allocated in same cylinder

— Inode and its data blocks 1n same cylinder group

\ — Directories and their files in same cylinder group /

CS 111 Lecture 11
Summer 2013 Page 13

/~ BSD Cylinder Groups ™\
and Free Space

cylinders 0 100 200 300 400

groups §

’
’
v
’
’
’
’
’
’
’
v
v
v

~~§~
S~
~~.
~\~\
~§~~
S~
~<o
S~
\\~~
_

file system & free block
cylinder group ~ bitma
parameters ’
\ free I-node /
Cs 111 bit-map Lecture 11

Summer 2013 Page 14

-

Bit Map Free Lists \

\

CS 111

0 0 1 0 1 1
4 X "
block #1 block #2 block #4
(in use) (in use) (in use)
Actual data blocks

BSD Unix file systems use bit-maps to keep
track of both free blocks and free I-nodes in
each cylinder group

Lecture 11

Summer 2013

/

Page 15

/ Extending a BSD/Unix File \

* Determine the cylinder group for the file’s inode

— Calculated from the inode’s identifying number
* Find the cylinder for the previous block in the file

* Find a free block 1n the desired cylinder

— Search the free-block bit-map for a free block 1n the right
cylinder

— Update the bit-map to show the block has been allocated
* Update the mnode to point to the new block

— Go to appropriate block pointer in inode/indirect block

— If new indirect block 1s needed, allocate/assign it first
\ — Update mode/indirect to point to new block /

CS 111 Lecture 11
Summer 2013 Page 16

-~

block pointers
(in I-node)

\

CS 111

Unix File Extension

o

v

3d

1. Determine cylinder group and
get its information

2. Consult the cylinder group free
block bit map to find a good block
3. Allocate the block to the file

3.1 Set appropriate block pointer

to it

3.2 Update the free block bit map

inx ﬁf ma
A
F

/

Lecture 11
Page 17

Summer 2013

/ [Naming in File Systems} \

 Each file needs some kind of handle to allow
us to refer to 1t

* Low level names (like inode numbers) aren’t
usable by people or even programs

* We need a better way to name our files
— User friendly

— Allowing for easy organization of large numbers of
files

\ - Readily realizable 1n file systems /

CS 111 Lecture 11
Summer 2013 Page 18

/ File Names and Binding \

* File system knows files by descriptor structures
* We must provide more useful names for users

* The file system must handle name-to-file mapping
— Associating names with new files
— Finding the underlying representation for a given name
— Changing names associated with existing files

— Allowing users to organize files using names

* Name spaces — the total collection of all names
known by some naming mechanism

T Sometimes all names that could be created by the y
s mechanism

Summer 2013 Page 19

/" Name Space Structure

* There are many ways to structure a name space
— Flat name spaces
* All names exist in a single level

— Hierarchical name spaces
* A graph approach
* Can be a strict tree

* Or a more general graph (usually directed)

* Are all files on the machine under the same
name structure?

* Or are there several independent name spaces? /

CS 111 Lecture 11
Summer 2013 Page 20

/ Some Issues in Name \
Space Structure

* How many files can have the same name?

— One per file system ... flat name spaces
— One per directory ... hierarchical name spaces

* How many different names can one file have?
— A single “true name”
— Only one “true name”, but aliases are allowed
— Arbitrarily many

— What’s different about “true names”?

Do different names have different characteristics?

\ — Does deleting one name make others disappear too? /

st — Do all names see the same access permissions? Lecture 11
Summer 2013 Page 21

/ Flat Name Spaces \

* There 1s one naming context per file system

— All file names must be unique within that context
* All files have exactly one true name
— These names are probably very long

* File names may have some structure

— E.g.CCACI0TE'S 11 RSECTIONDSLIDECECTURES)

— This structure may be used to optimize searches

— The structure 1s very useful to users but has no
meaning to the file system

CS 111 Lecture 11
Summer 2013 Page 22

\ Not widely used in modern file systems /

/ Hierarchical Name Spaces \

* Essentially a graphical organization

* Typically organized using directories
— A file containing references to other files
— A non-leaf node in the graph

— It can be used as a naming context
* Each process has a current directory
 File names are interpreted relative to that directory

 Nested directories can form a tree

— A file name describes a path through that tree

— The directory tree expands from a “root” node
* A name beginning from root 1s called “fully qualified”

— May actually form a directed graph

 If files are allowed to have multiple names /

CS 111 Lecture 11
Summer 2013 Page 23

/ A Rooted Directory Tree \

root
user 1 user 2 user 3
v
file a dir a file b file ¢ dir a
(/user 1/file a) (/user 1/dir a) (/user 2/file b) (/user 3/file ¢) (/user_3/dir_a)
ﬁle_a file b
(/user l/dir a/file a)

\ (/user 3/dir a/file b) /

CS 111 Lecture 11
Summer 2013 Page 24

/ Directories Are Files \

* Directories are a special type of file

— Used by OS to map file names into the associated files

* A directory contains multiple directory entries
— Each directory entry describes one file and its name

* User applications are allowed to read directories
— To get information about each file

— To find out what files exist

* Usually only the OS 1s allowed to write them

— Users can cause writes through special system calls
\ — The file system depends on the integrity of directories /

CS 111 Lecture 11
Summer 2013 Page 25

/ Traversing the Directory Tree \

* Some entries in directories point to child
directories

— Describing a lower level in the hierarchy

* To name a file at that level, name the parent
directory and the child directory, then the file

— With some kind of delimiter separating the file
name components

* Moving up the hierarchy 1s often useful

— Directories usually have special entry for parent
\ - Many file systems use the name “..” for that /

CS 111 Lecture 11
Summer 2013 Page 26

/ Example: The DOS File System\

* File & directory names separated by back-slashes
— E.g.,, \user 3\dir a\file b
* Directory entries are the file descriptors

— As such, only one entry can refer to a particular file

* Contents of a DOS directory entry
— Name (relative to this directory)
— Type (ordinary file, directory, ...)
— Location of first cluster of file

— Length of file in bytes
\ — Other privacy and protection attributes /

CS 111 Lecture 11
Summer 2013 Page 27

CS 111
Summer 2013

/ DOS File System Directories \

Root directory, starting in cluster #1

file name type length 15t cluster
user 1 DIR | 256 bytes 9
user 2 DIR 512 bytes 31
user 3 DIR | 284 bytes 114

— Directory /user 3, starting in cluster #114

file name type length st cluster
DIR | 256 bytes 1
dir a DIR | 512 bytes 62
file c FILE | 1824 bytes 102
Lecture 11
Page 28

/ File Names Vs. Path Names \

* In flat name spaces, files had “true names”

— That name 1s recorded in some central location

— Name structure (a.b.c) 1s a convenient convention

* In DOS, a file 1s described by a directory entry
— Local name is specified in that directory entry

— Fully qualified name 1s the path to that directory entry
* E.g., start from root, to user 3, to dir_a, to file b

— But DOS files still have only one name

e What if files had no intrinsic names of their own?

\ — All names came from directory paths /

CS 111 Lecture 11
Summer 2013 Page 29

/ Example: Unix Directories \

* A file system that allows multiple file names

— So there 1s no single “true” file name, unlike DOS

* File names separated by slashes
— E.g.,, /user 3/dir a/file b

* The actual file descriptors are the mnodes
— Directory entries only point to inodes

— Association of a name with an inode is called a hard link
— Multiple directory entries can point to the same inode

* Contents of a Unix directory entry

— Name (relative to this directory)

\ — Pointer to the inode of the associated file /

CS 111 Lecture 11
Summer 2013 Page 30

/ Unix Directories \

Root directory, inode #1
inode # file name

But what’s this “.”
entry?

It’s a directory entry

that points to the

directory itself!
We’ll see why that’s
useful later

Directory /user 3, inode #114 +———

1inode # file name

(12

Here’s a “..” entry,
pointing to the parent

directory
/

\

CS 111 Lecture 11
Summer 2013 Page 31

/ Multiple File Names In Unix \

e How do links relate to files?

— They’re the names only

* All other metadata 1s stored in the file inode

— File owner sets file protection (e.g., read-only)

* All links provide the same access to the file

— Anyone with read access to file can create new link
— But directories are protected files too

* Not everyone has read or search access to every directory

* All links are equal

\ — There 1s nothing special about the first (or owner's) link /

CS 111 Lecture 11
Summer 2013 Page 32

/ [Links and De-allocation

\

CS 111

Summer 2013

Files exist under multiple names
What do we do 1f one name 1s removed?

If we also removed the file itself, what about
the other names?
— Do they now point to something non-existent?

The Unix solution says the file exists as long
as at least one name exists

Implying we must keep and maintain a
reference count of links

— In the file inode, not 1n a directory

~

Lecture 11
Page 33

/ Unix Hard Link Example \

Note that we now
associate names with links
rather than with files.

/user 1/file a and
/user 3/dir a/file Db

are both links to the same

inode
/

Lecture 11

CS 111
Summer 2013 Page 34

@Iard Links, Directories, and Files\

inode #1, root directory

inode #9, directory <

— inode #114, directory

— inode #29, file <

. I /

CS 111 Lecture 11
Summer 2013 Page 35

/ Symbolic Links \

* A different way of giving files multiple names

* Symbolic links implemented as a special type of file
— An indirect reference to some other file
— Contents 1s a path name to another file

* OS recognizes symbolic links

— Automatically opens associated file instead

— If file 1s inaccessible or non-existent, the open fails
* Symbolic link 1s not a reference to the imnode

— Symbolic links will not prevent deletion

\ — Do not guarantee ability to follow the specified path /

s, — Internet URLSs are similar to symbolic links Lectime 11
Summer 2013 Page 36

-

\

CS 111
Summer 2013

Symbolic Link Example

file b

" (/user 1/file a)

The link count for
this file 1s still 1,
though

~

/

Lecture 11

Page 37

/ Symbolic Links, Files, and \
Directories

mode #1, root directory

inode #9, directory <

N

\ N — 1node #114, directory

inode #29, fileM N

\
Link count inode #46, symlink +—

\ still equals 1! _ /

CS 111 ecture 11
Summer 2013 Page 38

