
Lecture 11 
Page 1 

CS 111 
Summer 2013  

File Systems: Memory 
Management, Naming and 

Reliability 
CS 111 

Operating Systems  
Peter Reiher 



Lecture 11 
Page 2 

CS 111 
Summer 2013  

Outline 

•  Managing disk space for file systems 
•  File naming and directories 
•  File volumes 
•  File system performance issues 
•  File system reliability 



Lecture 11 
Page 3 

CS 111 
Summer 2013  

Free Space and Allocation Issues 

•  How do I keep track of a file system’s free 
space? 

•  How do I allocate new disk blocks when 
needed? 
– And how do I handle deallocation? 



Lecture 11 
Page 4 

CS 111 
Summer 2013  

The Allocation/Deallocation 
Problem 

•  File systems usually aren’t static 
•  You create and destroy files 
•  You change the contents of files 

– Sometimes extending their length in the process 
•  Such changes convert unused disk blocks to 

used blocks (or visa versa) 
•  Need correct, efficient ways to do that 
•  Typically implies a need to maintain a free list 

of unused disk blocks 



Lecture 11 
Page 5 

CS 111 
Summer 2013  

Creating a New File 
•  Allocate a free file control block 

– For UNIX 
•  Search the super-block free I-node list 
•  Take the first free I-node 

– For DOS  
•  Search the parent directory for an unused directory entry  

•  Initialize the new file control block 
– With file type, protection, ownership, ... 

•  Give new file a name  
– Naming issues will be discussed in the next lecture 



Lecture 11 
Page 6 

CS 111 
Summer 2013  

Extending a File 

•  Application requests new data be assigned to a file 
–  May be an explicit allocation/extension request 
–  May be implicit (e.g., write to a currently non-existent 

block – remember sparse files?) 

•  Find a free chunk of space 
–  Traverse the free list to find an appropriate chunk 
–  Remove the chosen chunk from the free list 

•  Associate it with the appropriate address in the file 
–  Go to appropriate place in the file or extent descriptor 
–  Update it to point to the newly allocated chunk 



Lecture 11 
Page 7 

CS 111 
Summer 2013  

Deleting a File 
•  Release all the space that is allocated to the file 

– For UNIX, return each block to the free block list 
– DOS does not free space 

•  It uses garbage collection 
•  So it will search out deallocated blocks and add them to 

the free list at some future time 

•  Deallocate the file control lock 
– For UNIX, zero inode and return it to free list 
– For DOS, zero the first byte of the name in the 

parent directory 
•   Indicating that the directory entry is no longer in use  



Lecture 11 
Page 8 

CS 111 
Summer 2013  

Free Space Maintenance 
•  File system manager manages the free space 
•  Getting/releasing blocks should be fast operations 

–  They are extremely frequent 
–  We'd like to avoid doing I/O as much as possible 

•  Unlike memory, it matters what block we choose 
–  Best to allocate new space in same cylinder as file’s 

existing space 
–  User may ask for contiguous storage 

•  Free-list organization must address both concerns 
–  Speed of allocation and deallocation 
–  Ability to allocate contiguous or near-by space 



Lecture 11 
Page 9 

CS 111 
Summer 2013  

DOS File System Free  
Space Management 

•  Search for free clusters in desired cylinder 
–  We can map clusters to cylinders 

•  The BIOS Parameter Block describes the device geometry 

–  Look at first cluster of file to choose the desired cylinder 
–  Start search at first cluster of desired cylinder 
–  Examine each FAT entry until we find a free one 

•  If no free clusters, we must garbage collect 
–  Recursively search all directories for existing files 
–  Enumerate all of the clusters in each file 
–  Any clusters not found in search can be marked as free 
–  This won’t be fast . . . 



Lecture 11 
Page 10 

CS 111 
Summer 2013  

Extending a DOS File 

•  Note cluster number of current last cluster in file 
•  Search the FAT to find a free cluster 

–  Free clusters are indicated by a FAT entry of zero 
–  Look for a cluster in the same cylinder as previous cluster 
–  Put -1 in its FAT entry to indicate that this is the new EOF 
–  This has side effect of marking the new cluster as “not 

free” 

•  Chain new cluster on to end of the file 
–  Put the number of new cluster into FAT entry for last 

cluster 



Lecture 11 
Page 11 

CS 111 
Summer 2013  

DOS Free Space 
boot 
block 

File Allocation 
Table data clusters BIOS 

parms 

## ## ## ## 0 0 ## … 0 ## 

Each FAT entry corresponds to a cluster, and contains the 
number of the next cluster.   

A value of zero indicates a cluster that is not allocated to any 
file, and is therefore free. 

-1 



Lecture 11 
Page 12 

CS 111 
Summer 2013  

The BSD File System  
Free Space Management 

•  BSD is another version of Unix 
•  The details of its inodes are similar to those of 

Unix System V 
– As previously discussed 

•  Other aspects are somewhat different 
–  Including free space management 
– Typically more advanced 

•  Uses bit map approach to managing free space 
– Keeping cylinder issues in mind 



Lecture 11 
Page 13 

CS 111 
Summer 2013  

The BSD Approach 
•  Instead of all control information at start of disk, 
•  Divide file system into cylinder groups 

–  Each cylinder group has its own control information 
•  The cylinder group summary 

–  Active cylinder group summaries are kept in memory 
–  Each cylinder group has its own inodes and blocks 
–  Free block list is a bit-map in cylinder group summary 

•  Enables significant reductions in head motion 
–  Data blocks in file can be allocated in same cylinder 
–  Inode and its data blocks in same cylinder group 
–  Directories and their files in same cylinder group 



Lecture 11 
Page 14 

CS 111 
Summer 2013  

BSD Cylinder Groups  
and Free Space 

I-nodes data blocks 

file system & 
cylinder group 
parameters 

free block 
bit-map 

free I-node 
bit-map 

cylinders 

cylinder 
groups 

0                 100                200               300             400 



Lecture 11 
Page 15 

CS 111 
Summer 2013  

Bit Map Free Lists 

block #1 
(in use) 

block #2 
(in use) 

block #3 
(free) 

block #4 
(in use) 

block #5 
(free) 

block #6 
(free) 

1 0 0 0 1 1 … 

Actual data blocks 

BSD Unix file systems use bit-maps to keep 
track of both free blocks and free I-nodes in 

each cylinder group 



Lecture 11 
Page 16 

CS 111 
Summer 2013  

Extending a BSD/Unix File 
•  Determine the cylinder group for the file’s inode 

–  Calculated from the inode’s identifying number 
•  Find the cylinder for the previous block in the file 
•  Find a free block in the desired cylinder 

–  Search the free-block bit-map for a free block in the right 
cylinder 

–  Update the bit-map to show the block has been allocated 

•  Update the inode to point to the new block 
–  Go to appropriate block pointer in inode/indirect block 
–  If new indirect block is needed, allocate/assign it first 
–  Update inode/indirect to point to new block 



Lecture 11 
Page 17 

CS 111 
Summer 2013  

Unix File Extension 

1st 

2nd 

1st 

block pointers 
(in I-node) 

2nd 

10th 
11th 
12th 
13th 

3rd 
4th 
5th 
6th 
7th 
8th 
9th 

C.G. 
summary 

Free 
I-node 
bit map 

Free 
block 

bit map 

1.  Determine cylinder group and 
get its information 
2.  Consult the cylinder group free 
block bit map to find a good block 
3.  Allocate the block to the file 

3d 

3.1  Set appropriate block pointer 
to it 
3.2  Update the free block bit map 

✔ 



Lecture 11 
Page 18 

CS 111 
Summer 2013  

Naming in File Systems  

•  Each file needs some kind of handle to allow 
us to refer to it 

•  Low level names (like inode numbers) aren’t 
usable by people or even programs 

•  We need a better way to name our files 
– User friendly 
– Allowing for easy organization of large numbers of 

files 
– Readily realizable in file systems 



Lecture 11 
Page 19 

CS 111 
Summer 2013  

File Names and Binding 
•  File system knows files by descriptor structures 
•  We must provide more useful names for users 
•  The file system must handle name-to-file mapping 

–  Associating names with new files 
–  Finding the underlying representation for a given name 
–  Changing names associated with existing files 
–  Allowing users to organize files using names 

•  Name spaces – the total collection of all names 
known by some naming mechanism 
– Sometimes all names that could be created by the 

mechanism 



Lecture 11 
Page 20 

CS 111 
Summer 2013  

Name Space Structure 
•  There are many ways to structure a name space 

– Flat name spaces 
•  All names exist in a single level 

– Hierarchical name spaces 
•  A graph approach 
•  Can be a strict tree 
•  Or a more general graph (usually directed) 

•  Are all files on the machine under the same 
name structure? 

•  Or are there several independent name spaces? 



Lecture 11 
Page 21 

CS 111 
Summer 2013  

Some Issues in Name  
Space Structure 

•  How many files can have the same name? 
–  One per file system ... flat name spaces 
–  One per directory ... hierarchical name spaces 

•  How many different names can one file have? 
–  A single “true name” 
–  Only one “true name”, but aliases are allowed 
–  Arbitrarily many 
–  What’s different about “true names”? 

•  Do different names have different characteristics? 
–  Does deleting one name make others disappear too? 
–  Do all names see the same access permissions? 



Lecture 11 
Page 22 

CS 111 
Summer 2013  

Flat Name Spaces 
•  There is one naming context per file system 

– All file names must be unique within that context 

•  All files have exactly one true name 
– These names are probably very long 

•  File names may have some structure 
– E.g., CAC101.CS111.SECTION1.SLIDES.LECTURE_13 

– This structure may be used to optimize searches 
– The structure is very useful to users but has no 

meaning to the file system 
•  Not widely used in modern file systems 



Lecture 11 
Page 23 

CS 111 
Summer 2013  

Hierarchical Name Spaces 
•  Essentially a graphical organization 
•  Typically organized using directories  

–  A file containing references to other files 
–  A non-leaf node in the graph 
–  It can be used as a naming context 

•  Each process has a current directory 
•  File names are interpreted relative to that directory 

•  Nested directories can form a tree 
–  A file name describes a path through that tree 
–  The directory tree expands from a “root” node 

•  A name beginning from root is called “fully qualified” 
–  May actually form a directed graph 

•  If files are allowed to have multiple names 



Lecture 11 
Page 24 

CS 111 
Summer 2013  

A Rooted Directory Tree 
root 

user_1 user_2 user_3 

file_a 

(/user_1/file_a) 

file_b 

(/user_2/file_b) 

file_c 

(/user_3/file_c) 

dir_a 

(/user_1/dir_a) 

dir_a 

(/user_3/dir_a) 

file_a 

(/user_1/dir_a/file_a) 
file_b 

(/user_3/dir_a/file_b) 



Lecture 11 
Page 25 

CS 111 
Summer 2013  

Directories Are Files 
•  Directories are a special type of file 

–  Used by OS to map file names into the associated files 
•  A directory contains multiple directory entries  

–  Each directory entry describes one file and its name 

•  User applications are allowed to read directories 
–  To get information about each file 
–  To find out what files exist 

•  Usually only the OS is allowed to write them 
–  Users can cause writes through special system calls 
–  The file system depends on the integrity of directories 



Lecture 11 
Page 26 

CS 111 
Summer 2013  

Traversing the Directory Tree 
•  Some entries in directories point to child 

directories 
– Describing a lower level in the hierarchy 

•  To name a file at that level, name the parent 
directory and the child directory, then the file 
– With some kind of delimiter separating the file 

name components 
•  Moving up the hierarchy is often useful 

– Directories usually have special entry for parent 
– Many file systems use the name “..” for that 



Lecture 11 
Page 27 

CS 111 
Summer 2013  

Example: The DOS File System 

•  File & directory names separated by back-slashes 
–  E.g., \user_3\dir_a\file_b 

•  Directory entries are the file descriptors 
–  As such, only one entry can refer to a particular file 

•  Contents of a DOS directory entry 
–  Name (relative to this directory) 
–  Type (ordinary file, directory, ...) 
–  Location of first cluster of file 
–  Length of file in bytes 
–  Other privacy and protection attributes  



Lecture 11 
Page 28 

CS 111 
Summer 2013  

DOS File System Directories 

user_1 256 bytes 9 DIR … 

Root directory, starting in cluster #1 

file name length 1st cluster type … 

user_2 512 bytes 31 DIR … 

user_3 284 bytes 114 DIR … 

Directory /user_3, starting in cluster #114 

file name length 1st cluster type … 

.. 256 bytes 1 DIR … 

dir_a 512 bytes 62 DIR … 

file_c 1824 bytes 102 FILE … 



Lecture 11 
Page 29 

CS 111 
Summer 2013  

File Names Vs. Path Names 

•  In flat name spaces, files had “true names” 
–  That name is recorded in some central location  
–  Name structure (a.b.c) is a convenient convention 

•  In DOS, a file is described by a directory entry 
–  Local name is specified in that directory entry 
–  Fully qualified name is the path to that directory entry 

•  E.g., start from root, to user_3, to dir_a, to file_b 

–  But DOS files still have only one name 

•  What if files had no intrinsic names of their own? 
–  All names came from directory paths 



Lecture 11 
Page 30 

CS 111 
Summer 2013  

Example:  Unix Directories 
•  A file system that allows multiple file names 

–  So there is no single “true” file name, unlike DOS 

•  File names separated by slashes 
–  E.g., /user_3/dir_a/file_b 

•  The actual file descriptors are the inodes 
–  Directory entries only point to inodes 
–  Association of a name with an inode is called a hard link 
–  Multiple directory entries can point to the same inode 

•  Contents of a Unix directory entry 
–  Name (relative to this directory) 
–  Pointer to the inode of the associated file 



Lecture 11 
Page 31 

CS 111 
Summer 2013  

Unix Directories 

user_1 9 

file name inode # 

user_2 31 

user_3 114 

Directory /user_3, inode #114 

dir_a 

file_c 

. 1 

.. 1 

Root directory, inode #1 

194 

307 

. 114 

.. 1 

file name inode # 

Here’s a “..” entry, 
pointing to the parent 
directory 

But what’s this “.” 
entry? 

It’s a directory entry 
that points to the 
directory itself! 

We’ll see why that’s 
useful later 



Lecture 11 
Page 32 

CS 111 
Summer 2013  

Multiple File Names In Unix 
•  How do links relate to files? 

–  They’re the names only 

•  All other metadata is stored in the file inode 
–  File owner sets file protection (e.g., read-only) 

•  All links provide the same access to the file 
–  Anyone with read access to file can create new link 
–  But directories are protected files too 

•  Not everyone has read or search access to every directory 

•  All links are equal 
–  There is nothing special about the first (or owner's) link 



Lecture 11 
Page 33 

CS 111 
Summer 2013  

Links and De-allocation 
•  Files exist under multiple names 
•  What do we do if one name is removed? 
•  If we also removed the file itself, what about 

the other names? 
– Do they now point to something non-existent? 

•  The Unix solution says the file exists as long 
as at least one name exists 

•  Implying we must keep and maintain a 
reference count of links 
–  In the file inode, not in a directory 



Lecture 11 
Page 34 

CS 111 
Summer 2013  

Unix Hard Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 

Note that we now 
associate names with links 
rather than with files. 

/user_1/file_a and 

/user_3/dir_a/file_b 

are both links to the same 
inode 



Lecture 11 
Page 35 

CS 111 
Summer 2013  

Hard Links, Directories, and Files 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

29 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 



Lecture 11 
Page 36 

CS 111 
Summer 2013  

Symbolic Links 
•  A different way of giving files multiple names 
•  Symbolic links implemented as a special type of file 

–  An indirect reference to some other file 
–  Contents is a path name to another file 

•  OS recognizes symbolic links 
–  Automatically opens associated file instead 
–  If file is inaccessible or non-existent, the open fails 

•  Symbolic link is not a reference to the inode 
–  Symbolic links will not prevent deletion 
–  Do not guarantee ability to follow the specified path 
–  Internet URLs are similar to symbolic links 



Lecture 11 
Page 37 

CS 111 
Summer 2013  

Symbolic Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 
(/user_1/file_a) 

The link count for 
this file is still 1, 
though 



Lecture 11 
Page 38 

CS 111 
Summer 2013  

Symbolic Links, Files, and 
Directories 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

46 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 

/user_1/file_a 

inode #46, symlink Link count 
still equals 1! 


