
Lecture 10
Page 1

CS 111
Summer 2013

File Systems: Introduction
CS 111

Operating Systems
Peter Reiher

Lecture 10
Page 2

CS 111
Summer 2013

Outline

•  File systems:
– Why do we need them?
– Why are they challenging?

•  Basic elements of file system design
•  Designing file systems for disks

– Basic issues
– Free space, allocation, and deallocation

Lecture 10
Page 3

CS 111
Summer 2013

Introduction

•  Most systems need to store data persistently
– So it’s still there after reboot, or even power down

•  Typically a core piece of functionality for the
system
– Which is going to be used all the time

•  Even the operating system itself needs to be
stored this way

•  So we must store some data persistently

Lecture 10
Page 4

CS 111
Summer 2013

Our Persistent Data Options

•  Use raw disk blocks to store the data
– Those make no sense to users
– Not even easy for OS developers to work with

•  Use a database to store the data
– Probably more structure (and possibly overhead)

than we need or can afford
•  Use a file system

– Some organized way of structuring persistent data
– Which makes sense to users and programmers

Lecture 10
Page 5

CS 111
Summer 2013

File Systems
•  Originally the computer equivalent of a physical

filing cabinet
•  Put related sets of data into individual containers
•  Put them all into an overall storage unit
•  Organized by some simple principle

–  E.g., alphabetically by title
–  Or chronologically by date

•  Goal is to provide:
–  Persistence
–  Ease of access
–  Good performance

Lecture 10
Page 6

CS 111
Summer 2013

The Basic File System Concept

•  Organize data into natural coherent units
– Like a paper, a spreadsheet, a message, a program

•  Store each unit as its own self-contained entity
– A file
– Store each file in a way allowing efficient access

•  Provide some simple, powerful organizing
principle for the collection of files
– Making it easy to find them
– And easy to organize them

Lecture 10
Page 7

CS 111
Summer 2013

File Systems and Hardware
•  File systems are typically stored on hardware

providing persistent memory
– Disks, tapes, flash memory, etc.

•  With the expectation that a file put in one
“place” will be there when we look again

•  Performance considerations will require us to
match the implementation to the hardware

•  But ideally, the same user-visible file system
should work on any reasonable hardware

Lecture 10
Page 8

CS 111
Summer 2013

Data and Metadata
•  File systems deal with two kinds of information
•  Data – the information that the file is actually

supposed to store
–  E.g., the instructions of the program or the words in the

letter

•  Metadata – Information about the information the file
stores
–  E.g., how many bytes are there and when was it created
–  Sometimes called attributes

•  Ultimately, both data and metadata must be stored
persistently
–  And usually on the same piece of hardware

Lecture 10
Page 9

CS 111
Summer 2013

Bridging the Gap
We want something like . . . But we’ve got

something like . . .

Which is even worse
when we look inside:

Or . . .

Or at
least

How do we get from the hardware to
the useful abstraction?

Lecture 10
Page 10

CS 111
Summer 2013

A Further Wrinkle
•  We want our file system to be agnostic to the storage

medium
•  Same program should access the file system the same

way, regardless of medium
–  Otherwise hard to write portable programs

•  Should work the same for disks of different types
•  Or if we use a RAID instead of one disk
•  Or if we use flash instead of disks
•  Or if even we don’t use persistent memory at all

–  E.g., RAM file systems

Lecture 10
Page 11

CS 111
Summer 2013

Desirable File System Properties
•  What are we looking for from our file system?

–  Persistence
–  Easy use model

•  For accessing one file
•  For organizing collections of files

–  Flexibility
•  No limit on number of files
•  No limit on file size, type, contents

–  Portability across hardware device types
–  Performance
–  Reliability
–  Suitable security

Lecture 10
Page 12

CS 111
Summer 2013

Basics of File System Design

•  Where do file systems fit in the OS?
•  File control data structures

Lecture 10
Page 13

CS 111
Summer 2013

A common
internal
interface
for file
systems

The file
system
API

File Systems and the OS

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

EX
T3 FS

virtual file system integration layer

directory
operations

file
I/O

device
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

Some
example
file systems

Non-file
system
services
that use the
same API

file container
operations

Lecture 10
Page 14

CS 111
Summer 2013

The File System API

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

EX
T3 FS

virtual file system integration layer

file container
operations

directory
operations

file
I/O

device
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

Lecture 10
Page 15

CS 111
Summer 2013

The File System API
•  Highly desirable to provide a single API to

programmers and users for all files
•  Regardless of how the file system underneath is

actually implemented
•  A requirement if one wants program portability

–  Very bad if a program won’t work because there’s a
different file system underneath

•  Three categories of system calls here
1.  File container operations
2.  Directory operations
3.  File I/O operations

Lecture 10
Page 16

CS 111
Summer 2013

File Container Operations
•  Standard file management system calls

– Manipulate files as objects
– These operations ignore the contents of the file

•  Implemented with standard file system
methods
– Get/set attributes, ownership, protection ...
– Create/destroy files and directories
– Create/destroy links

•  Real work happens in file system
implementation

Lecture 10
Page 17

CS 111
Summer 2013

Directory Operations
•  Directories provide the organization of a file

system
– Typically hierarchical
– Sometimes with some extra wrinkles

•  At the core, directories translate a name to a
lower-level file pointer

•  Operations tend to be related to that
– Find a file by name
– Create new name/file mapping
– List a set of known names

Lecture 10
Page 18

CS 111
Summer 2013

File I/O Operations

•  Open – map name into an open instance
•  Read data from file and write data to file

–  Implemented using logical block fetches
–  Copy data between user space and file buffer
–  Request file system to write back block when done

•  Seek
–  Change logical offset associated with open instance

•  Map file into address space
–  File block buffers are just pages of physical memory
–  Map into address space, page it to and from file system

Lecture 10
Page 19

CS 111
Summer 2013

device
I/O

The Virtual File System Layer

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

EX
T3 FS

virtual file system integration layer

file container
operations

directory
operations

file
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

Lecture 10
Page 20

CS 111
Summer 2013

The Virtual File System
(VFS) Layer

•  Federation layer to generalize file systems
–  Permits rest of OS to treat all file systems as the same
–  Support dynamic addition of new file systems

•  Plug-in interface or file system implementations
–  DOS FAT, Unix, EXT3, ISO 9660, network, etc.
–  Each file system implemented by a plug-in module
–  All implement same basic methods

•  Create, delete, open, close, link, unlink,
•  Get/put block, get/set attributes, read directory, etc.

•  Implementation is hidden from higher level clients
–  All clients see are the standard methods and properties

Lecture 10
Page 21

CS 111
Summer 2013

device
I/O

The File System Layer

system calls

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

virtual file system integration layer

file container
operations

directory
operations

file
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

U
N

IX
 FS

D
O

S FS

C
D

 FS

EX
T3 FS

Lecture 10
Page 22

CS 111
Summer 2013

The File Systems Layer
•  Desirable to support multiple different file systems
•  All implemented on top of block I/O

–  Should be independent of underlying devices
•  All file systems perform same basic functions

–  Map names to files
–  Map <file, offset> into <device, block>
–  Manage free space and allocate it to files
–  Create and destroy files
–  Get and set file attributes
–  Manipulate the file name space

Lecture 10
Page 23

CS 111
Summer 2013

Why Multiple File Systems?
•  Why not instead choose one “good” one?
•  There may be multiple storage devices

–  E.g., hard disk and flash drive
–  They might benefit from very different file systems

•  Different file systems provide different services,
despite the same interface
–  Differing reliability guarantees
–  Differing performance
–  Read-only vs. read/write

•  Different file systems used for different purposes
–  E.g., a temporary file system

Lecture 10
Page 24

CS 111
Summer 2013

device
I/O

Device Independent Block I/O
Layer

system calls

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

virtual file system integration layer

file container
operations

directory
operations

file
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

U
N

IX
 FS

D
O

S FS

C
D

 FS

EX
T3 FS

Device independent block I/O

Lecture 10
Page 25

CS 111
Summer 2013

File Systems and Block I/O
Devices

•  File systems typically sit on a general block I/O layer
•  A generalizing abstraction – make all disks look same
•  Implements standard operations on each block device

–  Asynchronous read (physical block #, buffer, bytecount)
–  Asynchronous write (physical block #, buffer, bytecount)

•  Map logical block numbers to device addresses
–  E.g., logical block number to <cylinder, head, sector>

•  Encapsulate all the particulars of device support
–  I/O scheduling, initiation, completion, error handlings
–  Size and alignment limitations

Lecture 10
Page 26

CS 111
Summer 2013

Why Device Independent
Block I/O?

•  A better abstraction than generic disks
•  Allows unified LRU buffer cache for disk data

–  Hold frequently used data until it is needed again
–  Hold pre-fetched read-ahead data until it is requested

•  Provides buffers for data re-blocking
–  Adapting file system block size to device block size
–  Adapting file system block size to user request sizes

•  Handles automatic buffer management
–  Allocation, deallocation
–  Automatic write-back of changed buffers

Lecture 10
Page 27

CS 111
Summer 2013

Why Do We Need That Cache?

•  File access exhibits a high degree of reference
locality at multiple levels:
– Users often read and write a single block in small

operations, reusing that block
– Users read and write the same files over and over
– Users often open files from the same directory
– OS regularly consults the same meta-data blocks

•  Having common cache eliminates many disk
accesses, which are slow

Lecture 10
Page 28

CS 111
Summer 2013

Devices, Sockets and File System
API

system calls

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

virtual file system integration layer

file container
operations

directory
operations

file
I/O

device
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

U
N

IX
 FS

D
O

S FS

C
D

 FS

EX
T3 FS

Device independent block I/O

Lecture 10
Page 29

CS 111
Summer 2013

Disk Drives
•  Still the primary method of providing stable

storage
– Storage meant to last beyond a single power cycle

of the computer
– Particularly for file systems

•  Getting good performance from disk drives is
critical for file system performance

•  A place where physics meets computer science
– Somewhat uncomfortably

Lecture 10
Page 30

CS 111
Summer 2013

Some Important Disk
Characteristics

•  Disks are random access devices (mostly . . .)
– With complex usage, performance, and scheduling

•  Key OS services depend on disk I/O
– Program loading, file I/O, paging
– Disk performance drives overall performance

•  Disk I/O operations are subject to overhead
– Higher overhead means fewer operations/second
– Careful scheduling can reduce overhead
– Clever scheduling can improve throughput, delay

Lecture 10
Page 31

CS 111
Summer 2013

Disk Drives – A Physical View

Lecture 10
Page 32

CS 111
Summer 2013

Disk Drives – A Logical View

cylinder
(10 corresponding tracks)

platter

surface

track

sectors

Lecture 10
Page 33

CS 111
Summer 2013

Disk Drive Terms
•  Spindle

–  A mounted assembly of circular platters
•  Head assembly

–  Read/write head per surface, all moving in unison
•  Track

–  Ring of data readable by one head in one position
•  Cylinder

–  Corresponding tracks on all platters
•  Sector

–  Logical records written within tracks
•  Disk address = <cylinder / head / sector >

Lecture 10
Page 34

CS 111
Summer 2013

Seek Time
•  At any moment, the heads are over some track

– All heads move together, so all over the same track
on different surfaces

•  If you want to read another track, you must
move the heads

•  The time required to do that is seek time
•  Seek time is not constant

– Amount of time to move from one track to another
depends on start and destination

– Usually reported as an average

Lecture 10
Page 35

CS 111
Summer 2013

Rotational Delay
•  Once you have the heads over the right track,

you need to get them to the right sector
•  The head is over only one sector at a time
•  If it isn’t the right sector, you have to wait for

the disk to rotate over that one
•  Like seek time, not a constant

– Depends on which sector you’re over
– And which sector you’re looking for
– Also usually reported as an average

•  Also called rotational latency

Lecture 10
Page 36

CS 111
Summer 2013

Transfer Time

•  Once you’re on the correct track and the head’s
over the right sector, you need to transfer data

•  You don’t read/write an entire sector at a time
•  There is some delay associated with reading

every byte in the sector
•  All sectors are usually the same size
•  So transfer time is usually constant

Lecture 10
Page 37

CS 111
Summer 2013

Typical Disk Drive Performance
heads 10 platters 5
cylinders 17,000 tracks/inch 18,000
sectors/track 400 bytes/sector 512
RPM 7200 speed 196Mb/sec
seek time 0-15 ms latency 0-8ms

Time to read one 8192 byte block
seek rotate transfer total

best case 0ms 0ms 333us 333us

worst case 15ms 8ms 333us 23.3ms (70X)

average 9ms 4ms 333us 13.3ms (40X)

Lecture 10
Page 38

CS 111
Summer 2013

Why Is This Problematic
For the OS?

•  When you go to disk, it could be fast or slow
–  If you go to disk a lot, that matters

•  The OS can make choices that make it faster or
slower
– Deciding where to put a piece of data on disk
– Deciding when to perform an I/O
– Reordering multiple I/Os to minimize seek time

and latency
– Perhaps optimistically performing I/Os that

haven’t been requested

