
 

WeensyOS Minilab 2

This second of the Weensy OS problem sets introduces you to another weensy operating system.
WeensyOS 2 shows off scheduling and synchronization.

Handing in

You will electronically hand in code and a small writeup containing answers to the numbered exercises.
The problem set code, weensyos2.tar.gz, unpacks into a directory called weensyos2. (We explain how
to unpack it below.) You'll modify the code in this directory, and add a text file with your answers to the
numbered exercises. When you're done, run the command make tarball. This should create a file named
weensyos1-yourusername.tar.gz. You'll turn in this file to CourseWeb.

Answer the numbered exercises by editing the file named answers.txt. No Microsoft Word documents
(or other binary format, except for PDF in special cases) will be accepted! For coding exercises, it's OK
for answers.txt to just refer to your code (as long as you comment your code).

To review:

1. Download weensyos2.tar.gz from CourseWeb and unpack it.
2. Do your work in the weensyos2 directory.
3. Fill out the answers.txt file in that directory.
4. When you're done, run make tarball from the weensyos2 directory. This will create a file named

weensyos2-yourusername.tar.gz.
5. Submit that weensyos2-yourusername.tar.gz file to CourseWeb.

Part 1: Scheduling

Please note that you can do Parts 1 and 2 in either order.

First, you must set up your machine to compile and run WeensyOSes. You can use the setup that worked
for you for WeensyOS 1.

Download and unpack the source for weensyos2.

http://www.read.seas.harvard.edu/~kohler/class/cs111-w11/index.html
http://www.read.seas.harvard.edu/~kohler/class/cs111-w11/index.html
http://www.read.seas.harvard.edu/~kohler/class/cs111-w11/weensyos1.html


% gtar xzf weensyos2.tar.gz
% ls weensyos2
COPYRIGHT    lib.c         schedos-4.c     schedos-loader.c    x86sync.h
GNUmakefile  lib.h         schedos-app.h   schedos-symbols.ld
answers.txt  mkbootdisk.c  schedos-boot.c  schedos-x86.c
bootstart.S  schedos-1.c   schedos-int.S   schedos.h
conf         schedos-2.c   schedos-kern.c  types.h
elf.h        schedos-3.c   schedos-kern.h  x86.h
%

Change into the weensyos2 directory and run make run.

This builds and runs the WeensyOS 2 operating system, the "scheduler OS" or SchedOS. As before, this
will start up Bochs. After a moment you should see a window like this:

The SchedOS consists of a kernel and four simple user processes. The schedos-1 process prints 320 red
"1"s, the schedos-2 process prints 320 green "2"s, and so forth. Each process yields control to the kernel
after each character, so that the kernel can choose another process to run. Each process exits after printing
its 320 characters. The four processes coordinate their printing with a shared variable, cursorpos, located
at memory address 0x198000. The kernel initializes cursorpos to point at address 0xB8000, the start of
CGA console memory. Processes write their characters into *cursorpos, and then increment cursorpos
to the next position.

Read and understand the SchedOS process code. Specifically, read and understand schedos-1.c.



Read and understand the comments in schedos-app.h. The basic feeling should be familiar to you
from WeensyOS 1.

The kernel's job is very simple. At boot time, it initializes the hardware, initializes a process descriptor for
each process, and runs the first process. At that point it loses control of the machine until a system call or
interrupt occurs. System calls and interrupts effectively call the kernel's interrupt function. Note that
this simple kernel has no persistent stack: every time a system call occurs, the kernel stack starts over
again from the very top, and any previous stack information is thrown away. Thus, all persistent kernel
data must be stored in global variables.

Read and understand the following pieces of kernel code. Again, don't worry about every last detail;
just get a feeling for the high-level structure and purpose of each function.

1. The process descriptor structure process_t defined in schedos-kern.h. This is a lot like the
process descriptor structure from WeensyOS 1.

2. The comments at the top of schedos-kern.c.
3. The start function from schedos-kern.c, which initializes the kernel.
4. The interrupt function from schedos-kern.c, which handles all interrupts and system call

traps.

SchedOS supports two system calls, sys_yield and sys_exit. The sys_yield call yields control to
another process, and sys_exit exits the current process, marking it as nonrunnable. The kernel
implementations of these system calls (in interrupt()) both call the schedule function. This function is
SchedOS's scheduler: it chooses a process from the current set of runnable processes, then runs it. In the
first part of this problem set, you'll focus on this function, and SchedOS's scheduling algorithms.

Read and understand the schedule function from schedos-kern.c.

Exercise 1. What is the name of the scheduling algorithm schedule() currently implements? (What is
scheduling_algorithm 0?)

Exercise 2. Add code to schedule() so that scheduling_algorithm 1 implements strict priority
scheduling. Your implementation should give schedos-1 higher priority than schedos-2, which has
higher priority than schedos-3, which has higher priority than schedos-4. Thus, process IDs
correspond to priority levels (assuming that numeric priority levels are defined as usual, where smaller
priority levels indicate higher priority). You will also need to change schedos-1.c so that the schedos
processes actually exit via sys_exit(), instead of just yielding forever. Test your code.

Please note although SchedOS's current processes never block, your scheduler must work correctly even if processes
blocked and later became runnable again.

Exercise 3. Calculate the average turnaround time and average wait time across all four jobs for
scheduling_algorithms 0 and 1. Assume that printing 1 character takes 1 millisecond and that
everything else, including a context switch, is free.

Now complete at least one of Exercises 4A and 4B.



Exercise 4A. Add another scheduling algorithm, scheduling_algorithm 2, that acts like
scheduling_algorithm 1 except that priority levels are defined by a separate p_priority field of the
process descriptor. Also implement a system call that lets processes set their own priority level. If more
than one process has the same priority level, your scheduler should alternate among them.

Exercise 4B. Add another scheduling algorithm, scheduling_algorithm 3, that implements
proportional-share scheduling. In proportional-share scheduling, each process is allocated an amount
of CPU time proportional to its share. For example, say schedos-1 has share 1 and schedos-4 has
share 4. Under proportional-share scheduling, schedos-4 will run 4 times as often as schedos-1 (at
least until it exits); so we might expect to see output like "441444414444144...". (Note that this is a
form of priority scheduling, but the priority levels are defined differently: larger shares indicate higher
priority.) Also implement a system call that lets processes set their share.

Part 2: Synchronization

In this section of the problem set, you'll investigate synchronization issues. But synchronization isn't
interesting without concurrency, and right now, our operating system is cooperatively multithreaded: each
application decides when to give up control. We introduce concurrency by turning on clock interrupts and
introducing preemptive multithreading. When a clock interrupt happens, the CPU will stop the currently-
running process -- no matter where it is -- and transfer control to the kernel. This indicates that the current
process's time quantum has expired, so the kernel will switch to another process. However, note that clock
interrupts will never affect the kernel: this simple kernel runs with interrupts entirely disabled. Interrupts
can only happen in user level processes.

Change scheduling_algorithm back to 0. Then change the interrupt_controller_init(0) call in
schedos-kern.c to interrupt_controller_init(1). This turns on clock interrupts.

After running make run, you should see a window like this:



Clock interrupts are occasionally preempting SchedOS processes, breaking up the steady round-robin
order.

Note: It is better to do this portion of the lab using bochs. Qemu's interrupt handling is too fast; you may not be able
to observe the same interrupt effects on qemu.

Exercise 5. Refer to the picture above (not your own SchedOS, which may differ). During the
execution of which process does the first known timer interrupt occur? Explain your answer.

But we're not done! Let's cause clock interrupts to happen a little bit more frequently.

The HZ constant in schedos-kern.h equals the number of times per second that the clock interrupts the
processor. It is set to 100 by default, meaning the clock interrupts the processor once every 10
milliseconds. Set this constant to 1000, so that the clock interrupts the processor every milliscond.

After running make run, you should see a window similar to this:



Note that the output has less than 320*4 characters! Clearly there is a race condition somewhere! (Your
particular output may differ. You may actually see 320*4 characters with occasional gaps, which
demonstrates a related race condition. If you still see 320*4 characters with no gaps, try raising HZ to 2000
or 3000.)

Exercise 6. Implement a synchronization mechanism that fixes this race condition. Your code should
always print out 320 * 4 characters with no spaces. (However, it is OK for the ordering of characters to
vary. For instance, you might end with a string of the same character, depending on precisely how
timer interrupts arrive.)

There are lots of ways to implement the synchronization mechanism; here are a couple.

Implement a new system call that atomically prints a character to the console.
Use the atomic operations in x86sync.h directly.
Use the atomic operations in x86sync.h to build a lock data type, then use lock_acquire and
lock_release operations. Note that all four processes must share the same lock! It does no good
to implement a different lock object per process.
Implement new system calls that provide lock_acquire and lock_release operations.

However, you must not turn off clock interrupts. That would be cheating. Some hints:

You may need to use typecasts to get the x86sync.h atomic operations to work.
Note that cursorpos points to a 16-bit integer, so the C statement cursorpos++; actually
increments the address stored in cursorpos by 2 bytes, not one.
If you create a lock object, make sure that all four processes share a single lock object. (There's no
critical section if each process uses a private lock!) You can tell each lock's address by looking in



the obj/schedos-[1-4].sym files, which tells you where each symbol is located. Note that
cursorpos has the same address in each process.

This completes the minilab.

Extra-Credit Exercise 7. Implement another interesting scheduling algorithm—for example, lottery
scheduling or multilevel queue scheduling (Google for more information). Explain how your
scheduling algorithm is supposed to work, describe any new system calls you supplied, and code the
algorithm with a new scheduling_algorithm value.

Extra-Credit Exercise 8. Implement more than one synchronization mechanism for printing
characters. Use preprocessor symbols so that your code can be compiled with either mechanism.


