2230 X

2231 ¥ If the new #rocess raused becsuse 1t was

2232 ¥ swarred outy set the stack level to the last call
2233 X to savulu_ssav), This means that the return

2234 X which 1s executed immediastely after the call to aretu
2235 X actuslly returns from th% last routine which did
22346 X the savu.

2237 X

2238 X You are exreclted to understamnd this.

2239 X/

CS 111

Operating

Systems

Principles
Winter 2011

WeensyOS Minilab 1

Please check back every now and then, as we may clarify this problem set description.

The WeensyOS problem sets are a series of little coding exercises that are also complete operating systems.
You could boot a WeensyOS operating system on real x86-compatible hardware! The purpose of the
WeensyOS exercises is first, to teach some of the concepts we use in class through example, and second, to
demystify operating systems in general. I also hope they are fun.

The first WeensyOS problem set concerns processes. The MiniprocOS is a tiny operating system that
supports the major process primitives: creating a new process with fork, exiting a process, and waiting on a
process that has exited. The only thing missing -- and it's a big one -- is process isolation: MiniprocOS
processes actually share a single address space. (In a later minilab you will implement process isolation for
memory.) In this problem set, you will actually implement the code that forks a new process, and see how
system calls are implemented. You will also update the code that waits on an exited process to avoid busy
waiting.

weensyosl.tar.gz Source code for WeensyOS 1, which builds this hard disk image:
mpos . img MiniprocOS, plus two applications that create and run new processes.

In this simple problem set, you'll browse, partially understand, and change this tiny operating system.
Handing in

You will electronically hand in code and a small writeup containing answers to the numbered exercises. The
problem set code, weensyosl.tar.gz (available on CourseWeb), unpacks into a directory called
weensyosl. (We explain how to unpack it below.) You'll modify the code in this directory, and add a text
file with your answers to the numbered exercises. When you're done, run the command make tarball. This
should create a file named weensyos1-yourusername.tar.gz. You'll turn in this file to CourseWeb.

Answer the numbered exercises by editing the file named answers.txt. No Microsoft Word documents
(or other binary format, except for PDF in special cases) will be accepted! For coding exercises, it's OK for
answers.txt to just refer to your code (as long as you comment your code).

To review:

http://www.read.seas.harvard.edu/~kohler/class/cs111-w11/index.html
http://www.read.seas.harvard.edu/~kohler/class/cs111-w11/index.html
http://courseweb.seas.ucla.edu/classAssignment.php?term=11W&srs=187336200

Download weensyos1.tar.gz and unpack it.

Do your work in the weensyos1 directory.

Fill out the answers.txt file in that directory.

When you're done, run make tarball from the weensyos1 directory. This will create a file named
weensyosl-yourusername.tar.gz.

5. Submit that weensyos1-yourusername.tar.qgz file to CourseWeb.

b

Setting up

You could take one of the disk image files this minilab builds, write it to your laptop's hard drive, and boot
up your operating system directly if you wanted! However, it's much easier to work with a virtual machine
or PC emulator.

An emulator mimics, or emulates, the behavior of a full hardware platform. A PC emulator acts like a
Pentium-class PC: it emulates the execution of Intel x86 instructions, and the behavior of other PC
hardware. For example, it can treat a normal file in your home directory as an emulated hard disk; when the
program inside the emulator reads a sector from the disk, the emulator simply reads 512 bytes from the file.
PC emulators are much slower than real hardware, since they do all of the regular CPU's job in software --
not to mention the disk controller's job, the console's job, and so forth. However, debugging with an
emulator is a whole lot friendlier, and you can't screw up your machine!

We've used two PC emulators. The Bochs emulator has pretty nice debugging support. The QEMU
package is fast and sleek, but it might be foo fast for some of our purposes. You will also need a copy of
GCC that compiles code for an x86 ELF target. Recent Linux PCs have the right compiler already set up.

We strongly recommend that you use the CS 111 Ubuntu Distribution if you want to work from home.
We've set up all the required tools on the machines in the Linux lab, and the SEASnet Linux servers. In the
Linux lab, no special setup is required.

Now that you've got all the software set up (or you've just decided to use the Linux lab), it's time to
download WeensyOS and take it out for a spin.

Unpack the source for weensyos1 using the following command.

% tar xzf weensyosl.tar.gz

(On Linux, you can just say "tar xzf weensyosl.tar.gz".) This should unpack the tarball into the
weensyos1 directory.

% ls weensyosl

COPYRIGHT conf mergedep.pl mpos-app2.c mpos-kern.h mpos.h
GNUmakefile elf.h mkbootdisk.c mpos-boot.c mpos-loader.c types.h
answers.txt lib.c mpos-app.c mpos-int.S mpos-symbols.ld x86.h
bootstart.S 1lib.h mpos-app.h mpos-kern.c mpos-x86.c

%

Now that you've unpacked the source, it's time to give the OSes a whirl.

Change into the weensyos1 directory and run the make program (which must be GNU make).

The WeensyOS GNumakefile builds a hard disk image called mpos . img, which contains the MiniprocOS
"kernel" and two applications, mpos-app.c and mpos-app2.c.

http://bochs.sourceforge.net/
http://www.qemu.org/
http://read.cs.ucla.edu/111/labsetup

Make's output should look something like this:

make

hostcc mkbootdisk.c
as bootstart.s

cc mpos-boot.c

1d mpos-bootsector
as mpos-int.S

cc mpos-kern.c

cc mpos-x86.c

cc mpos-loader.c
cc lib.c

cc mpos-app.c

1d mpos-app

cc mpos-app2.c

1d mpos-app2

1d mpos-kern

mk mpos.img

®° + + + + + 4+ 4+ 4+ A+ + + + + + + o0

Now that you've built the OS disk image, it's time to run it! We've made it very easy to boot a given disk
image; just run this command:

% make run-mpos

This will start up Bochs. After a moment you should see a window like this!

Bochs x86 emulator, http://bochs.sourceforge.net/
USER Copy

to run mpos-app, or ‘2’ to run mpos-appl.

CTRL + 3rd button enables mouse Lfki'*113* |'f”‘ |”V'3l | | | | | | |

Hit "1" to try to run the first application, and you should see a window like this:

Bochs x86 emulator, http://bochs.sourceforge.net/
USER Copy Pugte S

Error!?

CTRL + 3rd button enables mouse | 4 | |ﬁ--*] |Cffv:; I | | | | | |

To quit Bochs, click the "Power" button in the upper-right corner. (Very funny, Bochs.)

QEMU Note. If you're running QEMU instead of Bochs, run the MiniprocOS with gemu -hda mpos.img.
(The -hda option stands for Hard Disk A.) QEMU doesn't have a funky power button; just hit Control-C in
the terminal to quit. QEMU will sometimes "grab" the keyboard, which prevents you from doing anything
else. If you appear to have lost control of your computer, check QEMU's title bar: it may say something like
"Press Ctrl-Alt to exit grab". Press Ctrl-Alt and things should return to normal.

MiniprocOS Application
You're now ready to start learning about the OS code!

Start first with the application, mpos-app.c. This application simply starts a single child process and waits
for it to exit. It uses system calls that implement the process functions we discussed in class: fork starts a
new process; exit exits a process; and wait returns a process's exit status.

Read and understand the code in mpos-app.c.

How are those system calls implemented? As discussed in class, to call a system call, the application
program executes a frap: an instruction that initiates a protected control transfer to the kernel. The system
call's arguments are often stored in machine registers, and that's how MiniprocOS does it. Likewise, the
system call's results are often returned in a machine register. On Intel 80386-compatible machines
(colloquially called "x86es"), the interrupt instruction is called int, and registers have names like seax,
%ebx, and so forth. A special C language statement, called asm, can execute the interrupt instruction and
connect register values with C-language variables.

Read and understand the comments in mpos-app.h. This file defines MiniprocOS's system calls. Also
glance through the code, to see how system calls actually work!

The MiniprocOS kernel handles these system calls.

This kernel is different from conventional operating system kernels in several ways, mostly to keep the kernel as small
as possible. For one thing, the kernel shares an address space with user applications, so that user applications could
write over the kernel if they wanted to. This isn't very robust, since the kernel is not isolated from user faults, but for
now it is easier to keep everything in the same address space. Another difference is that MiniprocOS implements
cooperative multitasking, rather than preemptive multitasking. That is, processes give up control voluntarily, and if a
process went into an infinite loop, the machine would entirely stop. In preemptive multitasking, the kernel can preempt
an uncooperative process, which forces it to give up control. Preemptive multitasking is more robust than cooperative
multitasking, meaning it's more resilient to errors, but it is slightly more complex. All modern PC-class operating
systems use preemptive multitasking for user-level applications, but the kernel itself usually switches between internal
tasks using cooperative multitasking.

MiniprocOS's main kernel structures are as follows.

struct process_t
This is the process descriptor structure, which stores all the relevant information for each process. It
18 defined in mpos-kern.h.

process_t miniproc[];
This is an array of process descriptor structures, one for each possible process. MiniprocOS supports
up to 15 concurrent processes, with process IDs 1 to 15. The process descriptor for process I is stored
in miniproc[I]. Initially, only one of these processes is active, namely miniproc[1]. The
miniproc[0] entry is never used.

process_t *current;
This points to the process descriptor for the currently running process.

The code in mpos-kern.c sets up these structures. In particular, the start () function initializes all the
process descriptors.

Read and understand the code and comments in mpos-kern.h. Then read and understand the memory
map in mpos-kern.c, the picture at the top that explains how MiniprocOS's memory is laid out. Then
look at start().

The code you'll be changing in MiniprocOS is the function that responds to system calls. This function is
called interrupt().

Read and understand the code for interrupt () in mpos-kern.c. Concentrate on the simplest system
call, namely sys getpid/INT sys GETPID. Understand how the sys getpid application function (in
mpos-app.h) and the INT Sys GETPID clause in interrupt () (in mpos-kern.c) interact.

Exercise 1. Answer the following question: Say you replaced run(current) in the INT SYS GETPID
clause with schedule(). The process that called sys_getpid() will eventually run again, picking up its
execution as if sys_getpid() had returned directly. When it does run, will the sys_getpid() call have
returned the correct value?

You may have noticed, though, that the sys_fork() system call isn't working! Your job is to write the code
that actually creates a new process.

Exercise 2. Fill out the do_fork() and copy stack() functions in mpos-kern.c.

Congratulations, you've written code to create a process -- it's not that hard, no? (Our version is less than 20
lines of code.) Here's what you should see when you're done:

Bochs x86 emulator, http://bochs.sourceforge.net/ =|fe]
USER Copy Pogte snapshe R

es
............ FEeill o O

About to start a4 new process.
ain process 1t
“hild process 2t

hild 2 exited with status 1000t

CTRL + 3rd button enables mouse | +0-H | | I | | | | | | I

Now take a look at the code in mpos-app.c that calls sys wait (). Also look at the INT sys WAIT
implementation in mpos-kern.c. The current system call design uses a polling approach: to wait for process
2 to exit, a process must call sys_wait (2) over and over again until process 2 exits and the sys _wait(2)
system call returns a value different from WAIT TRYAGAIN.

We'll see more about polling later in the quarter, but for now, notice that polling approaches like this often
reduce utilization. A process uses CPU time to call sys _wait(2) over and over again, leaving less CPU
time for others. An alternative approach, which can improve utilization, is called blocking. A blocking
implementation would put sys_wait(2)'s caller to sleep, then wake it up once process 2 had exited and a
real exit status was available. The sleeping process doesn't use any CPU. A process that is asleep because
the kernel is waiting for some event is called blocked.

Exercise 3. Change the implementation of INT_SYS WAIT in mpos-kern.c to use blocking instead of
polling. In particular, when the caller tries to wait on a process that has not yet exited, that process
should block until the process actually exits.

Important Hint: Make sure that your blocking version of sys_wait () has exactly the same user-visible
behavior as the original version, except that it blocks and so never returns -2. See mpos-app.h for an
English description of the current behavior.

To implement Exercise 3, you will probably want to add a field to the process descriptor structure. This
field will indicate whether or not a process is waiting on another process. You will change INT Sys_waIT to
add the calling process to this "wait queue", and INT_sys_EXIT to wake any processes that were on the
"wait queue". There are several ways to do this; describe how you did it in answers. txt.

To check your work, try changing the sys_wait () loop in mpos-app.c to look like this:

do {
status = sys_wait(p);
app_printf("wW");

} while (status == WAIT TRYAGAIN);

A polling implementation of sys_wait would produce output like this:

= Bochs x86 emulator, http://bochs.sourceforge.net/ - X

USER Copy Pugte S 5'” R
WO =T |
S IH CONFIG

About to start a new process...

ain process 1t

hild process 2!

WHWWHWWWWWWWWWWWWWWWEWChi 1d 2 exited with status 1000t

e

setPower
v O

CTRL + 3rd button enables mouse LC: '1\ M | P L Rl | | | | | | l

You want it to produce output like this:

® Bochs x86 emulator, http://bochs.sourceforge.net/ - X

A: USER Copy Popte Sht ResetPower
oS RG 1LEY0
A ™ CONFIG

About to start a new process...
ain process 1t

hild process 2!

Child 2 exited with status 1000t

CTRL + 3rd button enables mouse LC:‘ '1“ M |'*" f Rl | | | | | | I

Cleaning Up Processes

Now try running the other MiniprocOS application. You should see something like this (different processes
generally print their lines in different colors):

ResetPower

counter
lives, counter

lives, counter
lives, counter
lives, counter
lives, counter

lives, counter
lives, counter
lives, counter
lives, counter

lives, counter

CTRL + 3rd button enables mouse hn:‘—%fm:w l-%i‘ rETﬂ | | | | | | |

The MiniprocOS?2 application, in mpos-app2.c, tries to run 1024 child processes.
Read and understand mpos-app2.c.

Unfortunately, your current kernel code doesn't seem able to run more than 15 total processes, ever! It looks
like old, dead processes aren't being cleaned up, even after we call sys_wait () on them. This is what we
call a bug.

Exercise 4. Find and fix this bug.

When you've completed this exercise, the application should count up to 1024, like this:

ResetPower

counter 1000t

10 lives, counter 1002?
11 lives, counter 1003!
12 lives, counter 1004?
13 lives, counter 1005t

15 lives, counter 1007t
lives, counter 1008?
lives, counter 1009t

lives, counter 1011t
lives, counter 10121t
lives, counter 1013?
lives, counter 10141t

lives, counter 1016?
lives, counter 1017t
lives, counter 1018?
lives, counter 1019t

lives, counter 10211t
2 lives, counter 1022?
3 lives, counter 1023?

CTRL + 3rd button enables mouse hn:‘—%fm:w l-%i‘ rETﬂ | | | | | | |

Your colors may differ, however, depending on how you implement sys_wait (). One common
implementation strategy ends with several red lines in a row. If you see this in your code, try to figure out
why!

This completes the minilab. But here are some extra credit opportunities, if you're interested.

Extra-Credit Exercise S. Our version of sys_fork(), with its dirt simple stack copying strategy, works
only for simple programs. For example, consider the following function definition:

void start(void) {
int x = 0; /* note that local variable x lives on the stack */
/* YOUR CODE HERE */
pid_t p = sys_fork();
if (p == 0)
/* YOUR CODE HERE */;
else if (p > 0)
sys wait(p); // assume blocking implementation
app_printf("sd", x);
sys_exit(0);

In a system with true process isolation, the child process's x and the parent process's x would be different
variables, and changes in one process would not affect the other's x. But in MiniprocOS, this is not
always the case! For this exercise, produce a version of that code with the following properties:

1. The code uses only local variables.
2. In a system with correct process isolation, the code would print "10".
3. In MiniprocOS, the code would print "11".

Hint: It isn't easy to get this to work because the compiler tends to optimize away important assignment
statements or shift them to unfortunate places. Mark a variable as volatile to tell the compiler not to
optimize references to it. Doing this correctly is tricky, but if you can understand the difference between
volatile int *xand int * volatile x you can do this problem.

Extra-Credit Exercise 6. MiniprocOS miniprocesses have some aspects of threads. For instance, like
threads, they all share a single address space. A big difference from threads is that we create a new
process by forking. New threads are created in a different way. Introduce a new system call,

pid t sys newthread(void (*start function)(void));

that creates a new process in a thread-like way. The new process should start with an empty stack, not a
copy of the current stack. Rather than starting at the same instruction as the parent, the new thread
should start by executing the start_function function: that is, that function's address becomes the new
thread's instruction pointer.

Extra-Credit Exercise 7. Introduce a sys_kill(pid) system call by which one process can make
another process exit. Use this system call to alter mpos-app2.c's run_child() function so that the even-
numbered processes kill off all odd-numbered processes (except for thread 1). Running the application
should print out "Process N lives" messages only for even-numbered values of n.

