Remote temperature sensor device
BASIC DEVICE DESCRIPTION

The device connects to a server through a wireless network and the Internet. In basic
form, it does not use any encryption of its own. Since you will not be using an actual
device, you can instead simply write a program that behaves as such a device should.
You should generate random, but plausible temperature readings from your program and
interact as specified with the remote server.

Every T seconds (T=3 by default), the device takes a temperature reading. It sends that
reading to the server in the following format:

“[DeviD] TEMP = ##.#” where “##.#” is replaced by a reading to one decimal place.
[DevID] should be a unique 9 decimal digit device identifier. Devices should be
configured with one particular ID, which should never change.

Readings are sent even if they are repetitions of the previous reading, by default.

Temperature can be measured and reported in either Fahrenheit or Centigrade.
Fahrenheit is used by default. Every reading should be stored in a log file, on a separate
line.

COMMANDS

The device should accept the following commands from the server. Extraneous characters
at the end of a command should result in the command being ignored. For commands
accepting a parameter, non-valid values of the parameter should result in the command
being ignored. No error messages will be sent to the server when commands are ignored.
Each command received, whether valid or invalid, should be saved into the same log file
as the temperature readings. The entire command received should be written to the log,
each on its own line. Invalid commands should have the characters “ I”” (space capital-I)
appended to the end of the received command, to indicate they were invalid.

TURN OFF - The device should turn off, which means the program should stop taking
readings or responding to commands. It is OK to simply exit your program when you
receive the OFF command and ignore any further commands sent from the server. The
program only needs to start again when you explicitly run it. Nothing sent to the device
while it is turned off should be logged or even read. But you should insure that after
handling the OFF command, whether by exiting the program or doing something else,
you should be able to reconnect to the server at another time.

Format — “OFF”

STOP — The device should stop taking and reporting readings. However, the program
should continue running and should continue to accept remote commands. If another
STOP command is received while the device is in stop mode, it should be treated as a no-
op, but should be logged.



Format — “STOP”

START - If the device is in stop mode, the device should start taking readings and
should report them. It should restart in whatever state it was in when it stopped, meaning
the interval of measurement and reporting will remain the same, the choice of Fahrenheit
or Centigrade should be consistent, and whether the temperature is displayed locally
should be the same, unless a command changing those settings was received while the
device was stopped. If the device is not in stop mode when a START command is
received, the command should be treated as a no-op, but should be logged.

Format — “START”

CHANGE SCALE - The device should start using the scale specified in the command to
report its temperature reading. It should continue using this scale across STOP and
START commands. CHANGE SCALE commands received while the device is stopped
should be honored, but no readings should be sent until a START command is received.
A TURN OFF command followed by a restart should start it in the Fahrenheit scale,
which is the default scale. A CHANGE SCALE command requesting the same scale as
is currently in use should be treated as a no-op, but should be logged.

Format — “SCALE=[F/C]” where “F” means change to Fahrenheit and “C”
means change to Centigrade.

Examples: SCALE =F
SCALE=C

CHANGE PERIOD - The device should change the period at which it measures
temperature. The period is measured in seconds and should be an integer value between
1 and 3600. If the requested period is the same as the current frequency, the command
should be treated as a no-op, but should be logged. CHANGE PERIOD commands
received while the device is stopped should be honored by changing the reporting period,
but no reports should be sent until the device receives a START command.

Format - “PERIOD=####" where “####” is a number between 1 and 3600. The
number may have leading zeros, but should be properly interpreted whether it does or
does not have them. A number out of range should be treated as an error, meaning it
will be logged with an invalid indication, but will not result in the current period of the
device readings being changed.

Examples: PERIOD =5
PERIOD =010
PERIOD = 2400

PROTOCOL



Your program should set up a TCP connection to the server using a socket mechanism
and should maintain and use that connection as long as the server is reachable. The
device should initially contact the server on a specified port and send a message
containing the student’s 9 digit ID number. This number should subsequently be used as
the DEV_ID, mentioned above.

On top of TCP, the device should be prepared to accept a command at any time and act
upon it when received. Commands will not require the device to send a response. Also,
as long as the device is in measurement mode, it should send a message on that socket in
the format described earlier reporting the temperature read from its sensor at the specified
period. There will be no application-level acknowledgement of the measurement
messages. The device should not send any messages to the server on this socket other
than the initial setup and subsequent measurement messages.

The server will run on a particular machine and port. I will provide students with these
details. The server will send the client a set of commands, terminating with the OFF
command. The student’s client code must properly send device readings to the server
throughout and respond properly to all commands sent.

THE TLS VERSION

After completing the initial version of the device software, students must add
cryptography to the protocol by running it over TLS. A separate TLS server will be
made available. Each student should add the necessary TLS functionality to his client
code to allow him to connect to the secure server. This secure connection will encrypt
the traffic in both directions, both the readings sent from client to server and the
commands sent from server to client.

The secure server will also send the client a set of commands, which must be performed
properly, while also sending the server all readings. Again, the set of commands will
terminate with an OFF command.

LAB 4 COMPONENTS

In addition to this document, I will provide the DNS name of the server to be used and
the numerical ports used for the regular and TLS version of the server. The device
emulation written by the student can run on any system, as long as it interacts correctly
with the server. It can be run on the SEAS Linux servers, at least. The students will not
be provided with the servers’ source code nor will they be given code skeletons for
developing the client code.

DELIVERABLES

The student must deliver the basic client code, a log for the activities of the basic
client/server interaction as outlined above, the TLS version of the client code, and a log
for the activities of the secure client/server interactions






