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Lab 3

Due Monday, February 28 
Quick link: Getting kernel source / Useful kernel functions

Overview

In Lab 2, we used a RAM disk block device to teach you about the Linux kernel setting and about
synchronization. In Lab 3, you'll learn about file systems by writing your own file system driver for Linux.

Operating systems generally support many different file systems, from old-school FAT (common in DOS
machines) to new formats such as Linux's ext3. Each file system type is written to fit a common interface,
called the VFS layer. (File systems are often implemented using object oriented techniques.) You will see how a
real VFS layer works by filling out a simple file system implementation. You will load that file system module
into the kernel and mount the file system, allowing you to access your file system with usual Unix commands
like cat, dd, emacs, and even firefox. The file system driver stores its data in a built-in RAM disk, kind
of like your RAM disk from Lab 2.

Like Lab 2, we expect you'll do this lab on Qemu using the ./run-qemu script on your machine, or in the
Linux lab. Alternatively, you can also use a Linux machine, such as the Linux lab machines.

Lab materials

The skeleton code you will get for this lab consists of the following files:

ospfs.h Commented header file defining file system structures and constants.

ospfsmod.c The file system module's source code. All exercises in the lab involve changing this code.

answers.txt Fill this out before submitting.

base/
The contents of this directory are copied into your file system's initial RAM disk. You can change the contents
of base/, then type make clean; make, to add files to or remove files from your RAM disk.

./run-qemu This script starts up Qemu to run Lab 3.

./run-direct This script runs Lab 3, and is intended for use on a Linux machine.

test/ The ./run-qemu script changes test/ into a view of your ospfs file system.

Makefile

ospfsformat.c Utility: Creates a RAM disk image from the base/ directory.

md5.c, md5.h Utility for ospfsformat.

fsimgtoc.c Utility: Links the disk image into your module.

truncate.c Utility: Truncates a file to a specified length.

When you unpack lab3.tar.gz (with the command tar xvzf lab3.tar.gz) you will get a directory
lab3 which contains these files. Do your work in this directory.

Handin procedure

http://www.read.cs.ucla.edu/111/
http://www.read.cs.ucla.edu/111/lab3
http://www.read.cs.ucla.edu/111/lab2kernelsource
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When you are finished, edit the answers.txt file and follow the instructions to fill in your name(s), student
ID(s), email address(es), short descriptions of any challenge problems you did, and any other information you'd
like us to have. Then run "make tarball" which will generate a file lab3-yourusername.tar.gz inside
the lab3 directory. Upload this file to CourseWeb using a web browser to turn in the project. (Please do not
upload .zip files!)

Background information

File system preliminaries

The file system you will work with, OSPFS, is simpler than most "real" file systems, but it is powerful enough to
read and write files organized in a hierarchical directory structure. OSPFS currently does not support
timestamps, permissions, or special device files like most UNIX file systems do. Additionally, your module is
only capable of using an in-memory file system, meaning that the data "on disk" is actually stored entirely in
main memory. This means that changes made to the file system are not saved across reboots (or across
module loads and unloads).

File system structure

Most UNIX file systems divide available disk space into two main types of regions: inode regions and data
regions. UNIX file systems assign one inode to each file in the file system; a file's inode holds critical metadata
about the file such as its attributes and pointers to its data blocks. The data regions are divided into large data
blocks (typically 4KB or more), within which the file system stores file data and directory metadata. Directory
entries contain file names and pointers to inodes; a file is said to be hard-linked if multiple directory entries in
the file system refer to that file's inode. OSPFS is designed in much the same way.

Both files and directories logically consist of a series of data blocks, which may be scattered throughout the
disk much like the pages of a process's virtual address space can be scattered throughout physical memory.

Sectors and blocks

Modern disks perform reads and writes in units of sectors, which today are almost universally 512 bytes each.
File systems actually allocate and use disk storage in units of blocks. Be wary of the distinction between the
two terms: sector size is a property of the disk hardware, whereas block size is an aspect of the operating
system using the disk. A file system's block size must be at least the sector size of the underlying disk, but
could be greater (often it is a power of two multiple of the sector size).

The original UNIX file system used a block size of 512 bytes, the same as the sector size of the underlying
disk. Most modern file systems use a larger block size, however, because storage space has gotten much
cheaper and it is more efficient to manage storage at larger granularities. Our file system will use a block size
of 1024 bytes.

Superblocks

File systems typically reserve certain disk blocks, at "easy-to-find" locations on the disk (such as the very start
or the very end), to hold meta-data describing properties of the file system as a whole: the block size, disk
size, any meta-data required to find the root directory, the time the file system was last mounted, the time the
file system was last checked for errors, and so on. These special blocks are called superblocks.

Our file system will have exactly one superblock, which will always be at block 1 on the disk. Its layout is
defined by struct ospfs_super in ospfs.h. Block 0 is typically reserved to hold boot loaders and
partition tables, so file systems generally never use the very first disk block. Most "real" file systems maintain
multiple superblocks, replicated throughout several widely-spaced regions of the disk, so that if one of them
is corrupted or the disk develops a media error in that region, the other superblocks can still be found and



used to access the file system. OSPFS omits this
feature for simplicity.

The block bitmap: managing free disk
blocks

Just as a kernel must manage the system's
physical memory to ensure that each physical
page is used for only one purpose at a time, a file
system must manage the blocks of storage on a
disk to ensure that each block is used for only one
purpose at a time. In file systems it is common to
keep track of free disk blocks using a bitmap
rather than a linked list, because a bitmap is more
storage-efficient than a linked list and easier to
keep consistent on the disk. ("FAT" file systems
use a linked list.) Searching for a free block in a
bitmap can take more CPU time than simply
removing the first element of a linked list, but for
file systems this isn't a problem because the I/O
cost of actually accessing the free block after we
find it dominates performance.

To set up a free block bitmap, we reserve a
contiguous region of space on the disk large
enough to hold one bit for each disk block. For example, since our file system uses 1024-byte blocks, each
bitmap block contains 1024*8 = 8192 bits, or enough bits to describe 8192 disk blocks. In other words, for
every 8192 disk blocks the file system uses, we must reserve one disk block for the block bitmap. A given bit
in the bitmap is set (value 1) if the corresponding block is free, and clear (value 0) if the corresponding block is
in use. The block bitmap in our file system always starts at disk block 2, immediately after the superblock.
We'll reserve enough bitmap blocks to hold one bit for each block in the entire disk, including the blocks
containing the boot sector, the superblock, and the bitmap itself. We will simply make sure that the bitmap
bits corresponding to these special, "reserved" areas of the disk are always clear (marked in-use).

Inodes

Each file and directory on the system corresponds to exactly one inode. The inode stores metadata information
about the file, such as its size, its type (file or directory), and the locations of its data blocks. Directory
information, such as the file's name and directory location, is not stored in the inode; instead, directory entries
refer to inodes by number. This allows the file system to safely move files from one directory to another, and
also allows for "hard links". Not all file systems have inodes, but OSPFS does.

The layout of OSPFS's inodes is described by struct ospfs_inode in ospfs.h. The oi_direct array
in struct ospfs_inode contains space to store the block numbers of the first 10 (OSPFS_NDIRECT)
blocks of the file, which we call the file's direct blocks. For small files up to 10*1024 = 10KB in size, this
means that the block numbers of all of the file's blocks will fit directly within the ospfs_inode structure
itself. For larger files, however, we need a place to hold the rest of the file's block numbers. For any file greater
than 10KB in size, therefore, we allocate an additional disk block, called the file's indirect block, to hold up to
1024/4 = 256 additional block numbers. The 10th block number is the 0th slot in the indirect block. This
allows files to be up to 266 blocks, or a bit more than 256KB, in size. For files larger than this, the OSPFS file
system supports doubly-indirect blocks as well. A doubly-indirect block points to indirect blocks, each of
which points to 256 direct blocks. This allows files to be up to 10+256+256*256 = 65802 blocks. To support
larger files, "real" file systems may support triply-indirect blocks as well. See the picture at right.

Inodes are relatively small structures; OSPFS's take up 64 bytes each. They are generally stored in a contiguous
table on disk. The size of this table is specified when the file system is created, and in most file systems it



cannot later be changed. Just like blocks, an inode
can be either in use or free, and just like blocks, a file
system can run out of inodes. It is actually possible to
run out of inodes before running out of blocks, and
in this case no more files can be created even though
there is space available to store them. For this
reason, and because inodes themselves do not take
up much space, the inode table is often created with
far more available inodes than the file system is
expected to need. (Remember, each file uses an
inode, so the maximum number of files and
directories the file system can store at once equals
the number of inodes.)

In OSPFS, the inode table is allocated immediately
after the free block bitmap, and its blocks are also
marked as in use in the free block bitmap. The
number of inodes is stored in the superblock, and for
convenience the block number of the first block of
the inode table is also stored in the superblock. (Why
is this only for convenience? How could we determine
this value based only on the size of the disk?)

Even though your kernel module will not support
creating new hard links (unless you do that challenge
problem), each inode in OSPFS has a "link count",
which is a number indicating how many directory
entries refer to it. (The ospfsformat utility knows
how to create hard links when it creates the initial
OSPFS file system for your module to use.) If there is
only one hard link to a file, then the link count will be
1: only one directory entry refers to the inode (the
normal case). For each extra link created in a "real"
UNIX file system, the link count increases by 1, and
for each hard link removed, the link count decreases
by 1. Technically speaking, even the file's original
name is a hard link -- it is no different than later
directory entries created for the inode except that it
was created first. If the link count reaches 0, it means
that the inode no longer has any hard links, and its
storage space (both the blocks that make up the file
and the inode itself) can be marked as free and
reused. You will need to support this behavior when
you delete files from OSPFS.

You may find the -i and -l options to the ls
program useful. The -i option causes ls to display
the inode number of each file. The -l option causes ls to display a "long listing" which includes, among
other information, the link count and size of each file. These options can also be combined.

Here's a sample OSPFS file system. It sort of corresponds to the base/ directory we handed out. (Note that
the hello.txt data block is also linked to world.txt -- there is a file with two hard links!) The actual
file system you observe will be different; your first free block will be around block #106.



Directories versus regular files

An ospfs_inode structure in our file system can represent either a regular file or a directory; these two
types of "files" are distinguished by the type field in the ospfs_inode structure. The file system manages
regular files and directory-files in exactly the same way, except that it does not interpret the contents of the
data blocks associated with regular files at all, whereas the file system interprets the contents of a directory-
file as a series of ospfs_direntry structures describing the files and subdirectories within the directory.
Each ospfs_direntry structure just contains a filename and an inode number. All other information about
the file -- including size, type, and pointers to data blocks -- is stored in the inode.

OSPFS directory entry structures are fixed length. Every directory entry takes up exactly 128 bytes. The
directory entry design is explained in more detail in ospfs.h.

Inode number 1 in our file system is special: it is the inode for the root directory of the file system. Inode
number 0 is reserved and must never be used.

Hard Links

Files can take up a lot of space, and you may want the same exact set of data to be stored in multiple
directories. Hard links are a simple mechanism that lets you have multiple "files" link to the same inode
structure. Suppose the user runs the following commands:

% echo foo >> foo.txt
% ln foo.txt gah.txt
% cat gah.txt
foo
% echo blurb >> gah.txt
% cat foo.txt
foo
blurb

In this code, the user is hard linking gah.txt to the same data that represents foo.txt. So whenever



either gah.txt or foo.txt is changed, both files see those changes, automatically. This may sound
challenging, but it's actually really simple. The directory entries for gah.txt and foo.txt map to the same
inode number. For this, you'll have to just fill out osprd_link, which gets called whenever the user tries to
create a hard link in a directory. For simplicity, you do not need worry about or test hard links to symlinks.
Only worry about hard links to regular files.

Symbolic links

OSPFS also supports symbolic links. This type of file adds a layer of indirection to the file system: A symbolic
link file essentially points at another file. The command "ln -s src.txt dst.txt", will create a
symbolic link file dst.txt that points to file src.txt. If an application asks to open dst.txt, the kernel
will examine the symbolic link, follow the symbolic link, and return a file descriptor open to src.txt. For
example, any changes to src.txt will show up immediately when a program examines dst.txt. In OSPFS,
symbolic links' destination files are stored in their inodes themselves. See ospfs.h for more detail.

You are expected to add support for symbolic link creation and deletion to ospfsmod.c. Test it using code
like this:

% ln -s hello.txt thelink
% diff hello.txt thelink && echo Same contents
Same contents
% echo "World" >> hello.txt
% diff hello.txt thelink && echo Same contents
Same contents
% rm thelink

Conditional Symlinks

One nice thing about symlinks is that the actual symlink file can contain anything. This allows the file system
to interpret a symlink in unique ways. For instance, suppose you have a networked file system (like the one on
the Seasnet machines) that connects to multiple different architectures. In order to use different versions of a
binary, you currently need to set different values for the 'PATH' environment variable. It would be much nicer if
the a symlink could link to two different paths, and select the right one based on some condition (in this case
the cpu architecture). Doing this all the way is rather challenging, so we'll just start with a simple proof of
concept; our conditional symlinks will be based on whether or not the current process is running as root.

Here's how they will work:

The following command creates a conditional symlink: "ln -s root?hello.txt:bye.txt test".
There are four important parts of this conditional symlink.

The conditional statement. For this lab, it will always 'root?' which is true if the current process is
running as root and false in all other cases.
The symlink for when the condition is true. In this case it is 'hello.txt'. Whenever root accesses this
symlink, it should be redirected to 'hello.txt' automatically.
The symlink for when the condition is false. In this case it is 'bye.txt'. Whenever any non-root process
accesses this symlink, it should be automatically redirected to 'bye.txt'.
The symlink's name. In this case it is 'test'.

Handling this properly will require several things: determining the user id of the current running process,
knowing when the running process is root, knowing when a conditional symlink is being accessed, and how to
interpret a conditional symlink upon access. Some functions useful for this have been added to the Lab
functions page.

Here's an example of how this should work:

http://www.read.cs.ucla.edu/111/lab2functions#lab-3-functions


 # cd test
 # echo "Not root" > notroot
 # echo "Root" > root
 # ln -s root?root:notroot amiroot
 # cat amiroot
 Root
 # su user -c "cat amiroot"                        # run command as non-root user
 Not root

What you have to do

Your assignment will be to implement the routines that handle free block management, changing file sizes,
read/write to the file, reading a directory file, deleting symbolic links, creating files, and conditional symlinks.

You will need to implement exercises in the following functions for this lab. One plausible order (with rough
grade percentages) is this:

Support for reading files: ospfs_read (15%)
Support for reading directories: ospfs_dir_readdir (10%)
Free block bitmap bookkeeping: allocate_block, free_block (15%)
Support for changing file sizes: change_size (15%)
Support for writing files: ospfs_write (15%)
Support for creating files: ospfs_create (10%)
Support for creating hard links: ospfs_link (5%)
Support for creating and deleting symbolic links: ospfs_symlink and ospfs_unlink (10%)
Support for conditional symlinks (5%).

All of these functions have comments explaining what you must do. Also read the comments in ospfs.h and
towards the top of ospfsmod.c to get oriented.

Building the lab

This lab is designed to run within the Qemu emulator, like Lab 2. So just run ./run-qemu and press Enter at
the . go prompt.

We have added new support for re-building your lab in the Qemu emulator (so you don't have to reboot Qemu
to fix compilation errors and such). To reload your source, first type "r" in your shell window (where you ran
./run-qemu), then type "reload" in the Qemu window. Do note that this process wipes your test
directory, replacing it with a fresh version.

This builds an initial OSPFS image using the contents of the base directory. If you want to add files to your
OSPFS image, simply add files and directories to base, then rerun Qemu. If make reports an error that the
resulting file system is too big, raise the number 512 in the Makefile to something larger. By default, the
image created by ospfsformat contains two directory entries which refer to the same file (that is, they are
hard links): hello.txt and world.txt. You can add more files like this by adding hard links to the base
directory using the ln command. Read its manual page by typing man ln at a shell prompt. (Note: the link
counts on directories are always larger than one. Why might this be?) The Makefile also creates a symbolic link
from file link to hello.txt.

The Qemu environment then mounts the file system on an existing directory, named test. This hides the
directory's existing contents, turning the directory into a "gateway" into the new file system. When your file
system is ready, ls base and ls test should return the same results (except for things like ownership,



permissions, and inode numbers).

It is worth discussing how the functionality of the script is implemented. The following list shows the
commands used:

Installing a module in the kernel: insmod ospfs.ko
Checking to see if the module is installed: cat /proc/modules or lsmod
Mounting the filesystem onto the test directory: /bin/mount -t ospfs none test
Unmounting the filesystem from test: umount test
Removing a module from the kernel: rmmod ospfs

If want to run Lab 3 code directly on some Linux machine, the script ./run-direct will be of use. This
script loads the module into the currently running kernel.

Testing

After implementing these functions, you should be able to do the following in your filesystem: read and write
to files, change the size of files, append to existing files, read the contents of directories, and create and
remove files.

Here are some hints for testing.

We provide a large GIF file to test your handling of large files (with indirect blocks), pokercats.gif. To
see whether your reading support works for large files, run zgv test/pokercats.gif at the Qemu
prompt. You should see a picture. (Press return to get rid of the picture.) To test writing support for large
files, try something like cp test/pokercats.gif test/p.gif; zgv test/p.gif.
The lab3-tester.pl file, provided with the lab, works similarly to the testers from other labs. You
should as usual design some tests yourself.

We have provided you with a minimal Lab 3 test script, lab3-tester.pl, to help you check a few of the
following test cases. You are encouraged to add your own test cases to it as you complete parts of your lab. If
you have questions on how to add test cases, feel free to email the TAs.

Here is a list of the test cases we will run on your code. Feel free to add these to the provided testing script so
that it checks these things automatically for you! You will probably find the dd utility very useful to perform
many of the tests. You can read its documentation (man dd) for details of how to use it: check out its if=,
of=, bs=, seek=, skip=, and conv=notrunc options. Also the truncate utility we included with the
skeleton code will help you test some of the cases. (Suggestion: compare the results of performing operations
on your OSPFS file system to doing the same operations on the normal Linux file system.)

Directory reading tests: listing files in directories
ls of the root directory
ls of the root directory including file types (ls -F)
ls of subdirectory
ls of subdirectory using more than one data block
ls of subdirectory using indirect data blocks

Reading tests: reading various parts of a file
read the first byte of a file
read the first block of a file
read half of the first block of a file



read starting partway through the first block and into part of the next
read more than one block
try to read past the end of a file
try to read into an invalid buffer pointer

Overwrite tests: all these tests overwrite part of a file without changing the rest of the file
overwrite the first few bytes of a file
overwrite the first two blocks of a file
overwrite the second block of a file
overwrite the middle part of the first block of a file
overwrite the second half of the first block of a file
overwrite the second half of the first block and the first half of the second block of a file
try to write from an invalid buffer pointer

Truncation tests: truncating files to various lengths
truncate a single data block file to 0 length
truncate a file with only direct data blocks to 0 length
truncate a file with indirect data blocks to 0 length
truncate a single data block file to nonzero but smaller length
truncate a file with only direct data blocks to a smaller length that uses the same number of data blocks
truncate a file with only direct data blocks to a smaller length which uses fewer data blocks
truncate a file with indirect data blocks to a smaller length that still uses indirect data blocks
truncate a file with indirect data blocks to a smaller length which only uses direct data blocks

Appending tests: adding data to the end of a file (not necessarily using O_APPEND)
append data to a file with a single data block without requiring a new block to be allocated
append more than one data block of data to a file
append several data blocks to a file that already has indirect data blocks
append data to a file with no indirect data blocks so that the appended data uses indirect data blocks
try to append data to a file so that there would be more than the maximum allowed data blocks

Block management tests: checking to make sure the block bitmap is managed correctly
try to allocate a block when there are no free blocks
free a block and check that that block can be reallocated
try to allocate 3 blocks when only 2 are free
truncate a file so that it no longer has any indirect data blocks and ensure that the indirect pointer block
is freed

Deletion tests: checking that deleting files works correctly
delete a file from a directory
delete a file with more than one hard link from a directory
delete all hard links to an inode

Symbolic links: checking that symbolic links work correctly
create a symbolic link
DELETE A SYMBOLIC LINK (you will need to check that this works!)

Design problems

Design problem guidelines

http://www.read.cs.ucla.edu/111/design


OSPFS Crash Testing

As we've discussed in class, file systems are expected to be robust: no matter when the computer crashes, a
file system should leave stable storage correct (i.e., satisfying all four file system invariants), or at least
sufficiently correct that no file system data is lost. Your OSPFS implementation is probably not robust!

This design problem asks you to design a mechanism to test file system robustness by "crashing" the OSPFS
file system.

Test: Introduce a per-OSPFS variable called nwrites_to_crash. OSPFS users can set this variable by
making a system call on an open OSPFS file (an ioctl). When this variable is -1 (the default), OSPFS
should act as usual. If the variable is 0, then the file system has "crashed": every write to disk data should
silently fail. That is, any time that your OSPFS code writes to disk, whether in a data block, a superblock,
an inode block, or whatever, the write should be ignored. If the variable is GREATER than 0, then the
variable should be decremented by 1 for every write to a different block. Thus, after
nwrites_to_crash writes, the OSPFS will "crash".

Find bugs: Design a test program that demonstrates a bug with your OSPFS implementation. That is, your
program should set nwrites_to_crash and then make a series of system calls -- writes, creates,
links, unlinks, whatever -- so that after the "crash", the file system is left in an incorrect state. This will
require that you understand incorrect states and figure out how to cause one. Demonstrate the problem by
"uncrashing" the file system (setting nwrites_to_crash to -1), performing some more file system
operations, and showing that the result is disaster (missing files, etc.).

OSPFS File System Fixer

Design a user-level program that analyzes an OSPFS file system image file, such as fs.img, and detects and
fixes problems with that file. You should detect violations of the four invariants (1. All blocks used for exactly
one purpose, 2. All blocks initialized before referenced, 3. All referenced blocks marked not free, 4. All
unreferenced blocks marked free), as well as sanity-check disk structures like the superblock, inodes, and
directory entries. Some file system problems (e.g. massive superblock corruption) will be unfixable; others
easy to fix. Describe which problems fit into which category and why. Also design a way to test your file system
image fixer, such as perhaps a program that generates bad file system images.

OSPFS Journaling

(This is probably the most challenging and interesting design problem for this lab.)

A file system journal is a special area of the disk used to increase robustness. Every change to the file system
is first written to the journal area. When the journal entry representing a change is complete, the file system
writes a "commit record" to the journal. Once this commit record is written, the change will definitely happen.
Then, after writing the commit record, the file system implementation goes ahead and writes the change for
real. Finally, it marks the journal transaction as having completed.

For example, say that OSPFS needed to extend a one-block file to two blocks long. This requires the following
steps: 1. Allocate a block (pick a free block and mark it as used in the free block bitmap); 2. Write the block
pointer into the inode; 3. Write the size into the inode. In your journal implementation, this will take several
more steps:

1. Pick a free block. Say it's number B.
2. Write "Begin Transaction" into journal.



3. Write "allocate block B" into the journal. There are several ways to do this; you could write a small record
that just says "allocate B", or you could write an entire copy of the relevant free-block-bitmap block after
the change.

4. Write "set block B as direct block #1 of inode I, and set inode I size to S" into the journal. As above, there
are several ways to do this.

5. Write "Commit Transaction" into journal.
6. Actually write the free-block-bitmap block and inode block.
7. Replace the relevant "Commit Transaction" element of the journal with "Completed Transaction".

Why do this? For crash safety: robustness! If the system crashes during step 6 (actually writing the file system),
the file system can recover by replaying the journal. On reboot, the file system implementation will read the
journal, and re-perform each action recorded in each of the "Committed Transactions". (It is not necessary to
re-perform "Completed Transactions".) This will bring the file system back to the proper state. On the other
hand, if the system crashes during steps 1-5, the journal record will not be "Committed". The file system can
ignore that journal transaction as if it had never happened. Since no changes were made to the main part of
the file system (that doesn't happen until Step 6), the main part of the file system is by definition OK!

You can read more about atomicity journals in your text, pages 9-47 - 9-60.

For this challenge problem, design a format for an OSPFS journal. Change the file system format to include
space for a journal. Change the file system implementation to write change records to the journal before
writing to the main file system. And design the program that replays the journal on reboot.

OSPFS Performance

The OSPFS file system has one free block bitmap area and one fixed-size inode area. This is easy, but not
much like real file systems. Single free-block-bitmap and inode areas make the file system slow, because for
many operations (such as allocating a block), the disk is forced to seek back and forth across large distances
to (1) write the free-block-bitmap block and then (2) write the allocated block itself. Many real file systems
therefore divide the disk into multiple regions. Each region has its own free block bitmap and its own inode
area. This reduces the distance that the disk must seek to allocate a block: the disk head can stay within a
single region. Additionally, most file systems don't artificially limit the number of files a file system can handle.
OSPFS as currently specified can run out of inodes before the file system fills up.

Redesign the OSPFS file system format so that an OSPFS disk is divided into regions. Change the superblock
to record how big each region is, where each region begins, and/or anything else that is necessary.
Redesign the ospfsformat.c code to generate a correctly-formatted "regionized" disk. (You may ask
the professor's help with ospfsformat.c, since it is not very well commented yet.)
Redesign the OSPFS file system code so that the file system attempts to keep all of a file's blocks within a
single region. This means the disk will seek shorter distances when reading the file. Of course, as the disk
gets full, it may be necessary to use blocks from another region.
Redesign the OSPFS file system format and module code so that an OSPFS will never run out of inodes
artifically. That is, the OSPFS file system won't run out of inodes unless the disk is full.

Good luck!
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