⇒ Abstracts storage to be usable by humans

- Disk has 3920140 sectors ≈ 2 GB
- Each block is 8 sectors
- Average file uses 3 data blocks and one inode; no ind, ind² blocks
- Each inode is 256 B
- One boot sector block
- One superblock
- Q: How big should our inode table be, in blocks, to maximize the number of files the file system can hold?

Lab 3 Metadata for lab 3 7/16

File system level: superblock

- os_magic # marker

- os_nblocks # blocks

- os_ninodes # inodes

os_firstinob # offset first inode block

File level: inode (regular files, dirs)

- oi_size file size

- oi_ftype file, dir, symlink

- oi_nlink # of hardlinks

- oi_mode file permissions

(dir, ind, ind² block pointers)

Lab 3 Links I 8/16

- Often useful to make a file available in multiple directories
 - For example, I have my .emacs in a dir that I back up
 - Also useful for sharing code between projects
 - For example, project FOO has write access to com/example/FOO and BAR wants to use com/example/FOO/FooClass.java that project FOO maintains

Issues with duplication:

- 1. Wasted space
- 2. Updates of multiple copies

Lab 3 Links II 9/16

Solution: links

Hard links: every inode has an nlinks counter

- When file is first created, set to 1

- Increment whenever we link from another location
- Decrement whenever we delete a filename for that inode
 - When nlinks = 0, can free disk space

Q: can't (in ext4, anyway) hard link a directory—why not?

Lab 3 Links III 10/16

symlinks:

- Contains a pathname
- When we open the symlink:
 - The OS looks up the pathname
 - If valid, it opens the file at that pathname
 - If we move, delete, rename the referenced file, we must manually update the symlink

Q: It's okay to symlink directories—why?

- When we delete a symlink, we delete the link, but not the linked file!

Loose C++ analogy: hard links = references, symlinks = pointers

Filesystems don't need to be just interfaces to disks:

- -/dev
 - devices on the system
 - /dev/urandom: (pseudo) random byte pool
 - /dev/stdout: the standard output
 - symlinked to /proc/self/fd/1
- -/proc
 - interface to kernel objects
 - -/proc/cpuinfo
 - info about the CPUs, including bogomips

Filesystems can store data indirectly to disks:

- -sshfs
 - Mounts a remote directory over SSH (secure)
 - A lot easier than using scp for moving a lot of files
- GmailFS
 - Stores data as email messages on a Gmail account
 - Free space, but violates terms of service

Filesystems can add functionality:

- Easy revision control
 - Files have versions
 - Current version
 - Can roll back to previous versions
 - Perhaps using ioctl()
 - Q: What extra information would we need to implement revision control in a file system?

Some examples of file systems that add functionality are here

d	i	i²	Meaning
х	-1	-1	referenced by direct pointer x in inode
х	0	-1	ref'd by direct ptr x in inode's indirect block
x	У	0	<pre>ref'd by direct ptr x in the (indirect block ref'd by ptr y in inode's indirect² block)</pre>