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What do file systems do?

– Organize storage (and devices)

– Manages storage to implement the
   file interface

– Gives names to files to be easy to
   access

Why do we need them?

– Difficult to deal with sectors directly
   or manually

– Difficult to grow and shrink space
   directly

– Difficult to remember sector names

 ⇒ Abstracts storage to be usable by humans
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– Disk has 3920140 sectors ≈ 2 GB

– Each block is 8 sectors

– Average file uses 3 data blocks and one inode; no ind, ind2 blocks

– Each inode is 256 B

– One boot sector block

– One superblock

Q: How big should our inode table be, in blocks, to maximize the number of files
     the file system can hold?
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File system level: superblock

– os_magic # marker

– os_nblocks # blocks

– os_ninodes # inodes

– os_firstinob # offset
   first inode block

File level: inode (regular files, dirs)

– oi_size file size

– oi_ftype file, dir, symlink

– oi_nlink # of hardlinks

– oi_mode file permissions

(dir, ind, ind2 block pointers)
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– Often useful to make a file available in multiple directories

– For example, I have my .emacs in a dir that I back up

– Also useful for sharing code between projects

– For example,
   project FOO has write access to com/example/FOO
   and BAR wants to use com/example/FOO/FooClass.java
   that project FOO maintains

Issues with duplication:

1. Wasted space
2. Updates of multiple copies
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Solution: links

Hard links: every inode has an nlinks counter

– When file is first created, set to 1

– Increment whenever we link from another location

– Decrement whenever we delete a filename for that inode

– When nlinks = 0, can free disk space

Q: can't (in ext4, anyway) hard link a directory—why not?
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symlinks:

– Contains a pathname

– When we open the symlink:

– The OS looks up the pathname

– If valid, it opens the file at that pathname

– If we move, delete, rename the referenced file, we must manually
   update the symlink

Q: It's okay to symlink directories—why?

– When we delete a symlink, we delete the link, but not the linked file!

Loose C++ analogy: hard links = references, symlinks = pointers
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Filesystems don't need to be just interfaces to disks:

– /dev

– devices on the system

– /dev/urandom: (pseudo) random byte pool

– /dev/stdout: the standard output
– symlinked to /proc/self/fd/1

– /proc

– interface to kernel objects

– /proc/cpuinfo
– info about the CPUs, including bogomips

http://en.wikipedia.org/wiki/BogoMips
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Filesystems can store data indirectly to disks:

– sshfs

– Mounts a remote directory over SSH (secure)

– A lot easier than using scp for moving a lot of files

– GmailFS

– Stores data as email messages on a Gmail account

– Free space, but violates terms of service
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Filesystems can add functionality:

– Easy revision control

– Files have versions

– Current version

– Can roll back to previous versions

– Perhaps using ioctl()

Q: What extra information would we need to implement revision
control in a file system?

Some examples of file systems that add functionality are here

http://sourceforge.net/apps/mediawiki/fuse/index.php?title=FileSystems
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read

dir_readdir

General block manipulation
allocate_block free_block
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indir_index

direct_index
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remove_block

Writing

change_size

write
Directory manip

create_blank_direntry

create

Linking fns
link

unlink

symlink

follow_link
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Meaning

ref'd by direct ptr x
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ref'd by direct ptr x in the
(indirect block ref'd by ptr y
in inode's indirect2 block)
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