
Lab 3 File System Overview 1/16

What do file systems do?

– Organize storage (and devices)

– Manages storage to implement the
 file interface

– Gives names to files to be easy to
 access

Why do we need them?

– Difficult to deal with sectors directly
 or manually

– Difficult to grow and shrink space
 directly

– Difficult to remember sector names

 ⇒ Abstracts storage to be usable by humans

Lab 3 File System Structure 2/16

 disk/FS
 data

 disk/FS
 metadata

boot sector block

superblock

free block bitmap

inode table
= file metadata

file data

 inode data

Lab 3 Files I 3/16

 inode metadata

size

type

of links

etc?

direct pointers

indirect pointer

indirect2 pointer

B
S
B

Lab 3 Files II 4/16

4 direct
pointers

ind. pointer

ind2 pointer

B
S
B

S
B

Free
Block
Bitmap

size, type, …

Inode
Table

O
t
h
e
r

...

O
U
R

1

O
t
h
e
r

O
t
h
e
r

O
t
h
e
r

... (FREE)

O
U
R

2

O
U
R

3

O
U
R

4

O
U
R

5

O
U
R

6

O
U
R

I
N
D

direct ptr 0

(254 unused,
= NULL)

direct ptr 1

Lab 3 Allocation Problem 5/16

– Disk has 3920140 sectors ≈ 2 GB

– Each block is 8 sectors

– Average file uses 3 data blocks and one inode; no ind, ind2 blocks

– Each inode is 256 B

– One boot sector block

– One superblock

Q: How big should our inode table be, in blocks, to maximize the number of files
 the file system can hold?

Lab 3 Directories 6/16

(pointers)

type = OSPFS_FTYPE_DIR
inode ino

char name[]

inode ino

char name[]

...

Inode for a directory

Directory data block

Directory entry

Directory entry
data

Lab 3 Metadata for lab 3 7/16

File system level: superblock

– os_magic # marker

– os_nblocks # blocks

– os_ninodes # inodes

– os_firstinob # offset
 first inode block

File level: inode (regular files, dirs)

– oi_size file size

– oi_ftype file, dir, symlink

– oi_nlink # of hardlinks

– oi_mode file permissions

(dir, ind, ind2 block pointers)

Lab 3 Links I 8/16

– Often useful to make a file available in multiple directories

– For example, I have my .emacs in a dir that I back up

– Also useful for sharing code between projects

– For example,
 project FOO has write access to com/example/FOO
 and BAR wants to use com/example/FOO/FooClass.java
 that project FOO maintains

Issues with duplication:

1. Wasted space
2. Updates of multiple copies

Lab 3 Links II 9/16

Solution: links

Hard links: every inode has an nlinks counter

– When file is first created, set to 1

– Increment whenever we link from another location

– Decrement whenever we delete a filename for that inode

– When nlinks = 0, can free disk space

Q: can't (in ext4, anyway) hard link a directory—why not?

Lab 3 Links III 10/16

symlinks:

– Contains a pathname

– When we open the symlink:

– The OS looks up the pathname

– If valid, it opens the file at that pathname

– If we move, delete, rename the referenced file, we must manually
 update the symlink

Q: It's okay to symlink directories—why?

– When we delete a symlink, we delete the link, but not the linked file!

Loose C++ analogy: hard links = references, symlinks = pointers

Lab 3 Other File Systems I 11/16

Filesystems don't need to be just interfaces to disks:

– /dev

– devices on the system

– /dev/urandom: (pseudo) random byte pool

– /dev/stdout: the standard output
– symlinked to /proc/self/fd/1

– /proc

– interface to kernel objects

– /proc/cpuinfo
– info about the CPUs, including bogomips

http://en.wikipedia.org/wiki/BogoMips

Lab 3 Other File Systems II 12/16

Filesystems can store data indirectly to disks:

– sshfs

– Mounts a remote directory over SSH (secure)

– A lot easier than using scp for moving a lot of files

– GmailFS

– Stores data as email messages on a Gmail account

– Free space, but violates terms of service

Lab 3 Other File Systems III 13/16

Filesystems can add functionality:

– Easy revision control

– Files have versions

– Current version

– Can roll back to previous versions

– Perhaps using ioctl()

Q: What extra information would we need to implement revision
control in a file system?

Some examples of file systems that add functionality are here

http://sourceforge.net/apps/mediawiki/fuse/index.php?title=FileSystems

Reading fns

Lab 3 Lab 3 Functional Dependencies 14/16

read

dir_readdir

General block manipulation
allocate_block free_block

indir2_index

indir_index

direct_index
add_block

remove_block

Writing

change_size

write
Directory manip

create_blank_direntry

create

Linking fns
link

unlink

symlink

follow_link

Lab 3 Lab 3 Pointer Arithmetic I 15/16

10 direct ptrs

ind. pointer

ind2 pointer

metadata

indirect ptr

indirect ptr

...

file block 0

file block 9

...

direct ptr

direct ptr

...

file block 10

file block ?

file block ?+1
dir ptr

dir ptr

...

Lab 3 Lab 3 Pointer Arithmetic II 16/16

x -1 -1

x 0 -1

x y 0

d i i2

referenced by direct pointer x
in inode

Meaning

ref'd by direct ptr x
in inode's indirect block

ref'd by direct ptr x in the
(indirect block ref'd by ptr y
in inode's indirect2 block)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

