Lab 2

Locking | 113

Critical Sections

1.

2,

Pieces of code in which you want only one process running at a time
These pieces usually access shared resources or data
Before-or-after behavior

— Each transaction occurs either before or after each other one
Example:

— Printer: if two print jobs enter a printer,

want it to print all of one and then all of the other
without interleaving pages




Lab 2 Locking I

2/13

Synchronization Objects
— Mutexes
— These are basically the simplest
and are available to use in lab 2
(spinlocks are mutexes)
— Locks with types and semantics
— for example, read and write locks

— Locks that unlock in order

— for example, wait queues




Lab 2

Locking Il

313

Mutexes

— Two operations

—acquire (mutex r)
— release (mutex r)

— acquire

— waits until the mutex is available, then locks it
— any other aquiring processes continue to wait

—release

— unlocks the mutex




Lab 2 Locking IV 4/13

— The code base uses an osp_spin_lock_t for each mutex
osp_spin_lock (osl);
// critical section: access shared items here
osp_spin unlock (osl);

— Can use one lock to protect multiple CSs

— Every CS protected by a given lock is locked
whenever any such CS is locked

— Anything that is shared, read from, and written to
probably needs to be accessed in a CS

— And protected by locks or other synchronization mechanisms




Lab 2 Locking V

5/13

Counter Lock

— Counts the number of processes
waiting to get alock on a CS

— Has three methods:
— acquire(counterlock L)

— release(counterlock L)
— nwaiting(counterlock L)

struct counterlock:
— int _nwaiting

— counts the number of
waiting processes

— mutex wlock

— locks access to
_nwaiting

— mutex lockb

— locks access to the CS




Lab 2 Locking VI

6/13

nwaiting(counterlock L):

—return L._nwaiting

release(counterlock L):

—release L.lockb

acquire(counterlock L):

— acquire L.wlock
— L._nwaiting ++
—release L.wlock

— acquire L.lockb
— acquire L.wlock

- L._nwaiting --
—release L.wlock




Lab 2 Intermission 7113

You may find it useful
to read the code notes
before continuing




Lab 2

Deadlock |

8/13

Deadlock Example

Sample Execution

P

i,

P

2

P

3

read lock (A)

x = read(D)

write lock (B)
write (E, x)
release (B)

release (A)

read lock (B)
x = read(E)
write lock (C)
write (F,x)
release (C)

release (B)

read lock (C)
x = read(F)
write lock (A)
write (D, x)
release (A)

release (C)

M N
A |B

REN RERN

P, .read lock (A)
(gets lock on A)

P,.read lock (B)
(gets lock on B)

P,.read lock (C)
(gets lock on C)

P,.write lock (B)
(gets ticket on B)
P,.write lock (C)
(gets ticket on C)

P,.write lock(A)
(gets ticket on A)




Lab 2

Deadlock i

9/13

Dependency graph for deadlock

— Nodes = processes
— Edges = waits-on relation

For example,

means that P, waits on P,

This is a "wait graph" rather than a
precedence graph

Convention:

— The waiter adds the
dependency (in e.g. acquire())

— The waitee frees the
dependency (in e.g. release())




Lab 2 Deadlock i

10/13

added
in step 4

Everything is fine until we add the
edge P, —» P!

Proposition:

There is a deadlock situation
if and only if there is a cycle in
the wait graph.

— Can prove under some
assumptions




Lab 2 Deadlock IV

1113

Mutexes and Dependencies
process p calls acquire(lock):
— gets the lock and continues;
— or doesn't get the lock, and
adds edge (p—q) for q
holding the lock
process q calls release(lock):

— releases the lock

—removes all (p—q) for waiters
p (for this lock only)

Can associate each edge with a mutex

Add an edge (p—q : r) if process p
calls acquire(r) while q holds it

Remove all edges (p—q : r) into q for
resource r when q calls release(r)




Lab 2 Deadlock V

12/13

Checking for directed cycles

— Initially, mark every node as ON
— We turn it OFF when we know
for certain that it can't be in
any cycle

— Call an ON node p a NEXT node if
every (p—q) has q OFF
— Since no one that p waits on
can be in a cycle, none can wait
on anyone who waits on
anyone ...who waits on p

— Whenever there's a NEXT node,
turn it OFF.
— Any ON at end = cycle exists

B
@i)

5
@<>




Lab 2 Deadlock and Lab 2 13/13

Spin locks act like mutexes, but the read and write locks that you're implementing
are a little more complicated:

— Two levels: read and write
— Must process in ticket order

— 4 (= NOSPRD) devices, each with its own read and write locks and
ticketing

— What do these mean in terms of how many and what types of edges are
added?

Also, there are several ways to store graphs in memory. The easiest is a list of all
edges; but to look up, add, or remove an edge requires a scan of the list.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

