
Lab 2 Locking I 1/13

Critical Sections

1. Pieces of code in which you want only one process running at a time

2. These pieces usually access shared resources or data

3. Before-or-after behavior

– Each transaction occurs either before or after each other one

4. Example:

– Printer: if two print jobs enter a printer,
 want it to print all of one and then all of the other
 without interleaving pages

Lab 2 Locking II 2/13

Synchronization Objects

– Mutexes

– These are basically the simplest
 and are available to use in lab 2
 (spinlocks are mutexes)

– Locks with types and semantics

– for example, read and write locks

– Locks that unlock in order

– for example, wait queues

Lab 2 Locking III 3/13

Mutexes

– Two operations

– acquire(mutex r)
– release(mutex r)

– acquire

– waits until the mutex is available, then locks it
– any other aquiring processes continue to wait

– release

– unlocks the mutex

Lab 2 Locking IV 4/13

– The code base uses an osp_spin_lock_t for each mutex

osp_spin_lock(osl);
// critical section: access shared items here
osp_spin_unlock(osl);

– Can use one lock to protect multiple CSs

– Every CS protected by a given lock is locked
 whenever any such CS is locked

– Anything that is shared, read from, and written to
 probably needs to be accessed in a CS

– And protected by locks or other synchronization mechanisms

Lab 2 Locking V 5/13

Counter Lock

– Counts the number of processes
 waiting to get a lock on a CS

– Has three methods:

– acquire(counterlock L)
– release(counterlock L)
– nwaiting(counterlock L)

struct counterlock:

– int _nwaiting

– counts the number of
 waiting processes

– mutex wlock

– locks access to
 _nwaiting

– mutex lockb

– locks access to the CS

Lab 2 Locking VI 6/13

nwaiting(counterlock L):

– return L._nwaiting

release(counterlock L):

– release L.lockb

acquire(counterlock L):

– acquire L.wlock
– L._nwaiting ++
– release L.wlock

– acquire L.lockb

– acquire L.wlock
– L._nwaiting --
– release L.wlock

Lab 2 Intermission 7/13

You may find it useful
to read the code notes

before continuing

Lab 2 Deadlock I 8/13

Deadlock Example

P
1

read_lock(A)

x = read(D)

release(A)

write_lock(B)

write(E,x)

release(B)

P
2

read_lock(B)

x = read(E)

release(B)

write_lock(C)

write(F,x)

release(C)

P
3

x = read(F)

release(C)

write_lock(A)

write(D,x)

release(A)

Sample Execution

P
1
.read_lock(A)

(gets lock on A)

P
2
.read_lock(B)

(gets lock on B)

P
3
.read_lock(C)

(gets lock on C)

P
1
.write_lock(B)

(gets ticket on B)

P
2
.write_lock(C)

(gets ticket on C)

P
3
.write_lock(A)

(gets ticket on A)
DA B C E F

R W R W R W

1

2

3

4

5

6

read_lock(C)

Lab 2 Deadlock II 9/13

Dependency graph for deadlock

– Nodes = processes
– Edges = waits-on relation

For example,

means that P
1
 waits on P

2
.

This is a "wait graph" rather than a
precedence graph

Convention:

– The waiter adds the
 dependency (in e.g. acquire())

– The waitee frees the
 dependency (in e.g. release())

P
1

P
2

Lab 2 Deadlock III 10/13

Everything is fine until we add the
edge P

3
 → P

1
!

Proposition:

There is a deadlock situation
if and only if there is a cycle in
the wait graph.

– Can prove under some
 assumptions

P
1

P
2

P
3

added
in step 4

 step 5 step 6

Lab 2 Deadlock IV 11/13

Mutexes and Dependencies

process p calls acquire(lock):

– gets the lock and continues;

– or doesn't get the lock, and
 adds edge (p→q) for q
 holding the lock

process q calls release(lock):

– releases the lock

– removes all (p→q) for waiters
 p (for this lock only)

Can associate each edge with a mutex

Add an edge (p→q : r) if process p
calls acquire(r) while q holds it

Remove all edges (p→q : r) into q for
resource r when q calls release(r)

Lab 2 Deadlock V 12/13

Checking for directed cycles

 – Initially, mark every node as ON
 – We turn it OFF when we know
 for certain that it can't be in
 any cycle

 – Call an ON node p a NEXT node if
 every (p→q) has q OFF
 – Since no one that p waits on
 can be in a cycle, none can wait
 on anyone who waits on
 anyone …who waits on p

 – Whenever there's a NEXT node,
 turn it OFF.
 – Any ON at end cycle exists⇒

A

B

C

D E

A

B

C

D E

Lab 2 Deadlock and Lab 2 13/13

Spin locks act like mutexes, but the read and write locks that you're implementing
are a little more complicated:

– Two levels: read and write

– Must process in ticket order

– 4 (= NOSPRD) devices, each with its own read and write locks and
 ticketing

– What do these mean in terms of how many and what types of edges are
 added?

Also, there are several ways to store graphs in memory. The easiest is a list of all
edges; but to look up, add, or remove an edge requires a scan of the list.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

