
Lab 1. Time travel shell

Introduction

You are a programmer for Big Data Systems, Inc., a company that specializes in large

backend systems that analyze big data. Much of BDS's computation occurs in a cloud

or a grid. Computational nodes are cheap SMP hosts with a relatively small number of

processors. Nodes typically run simple shell scripts as part of the larger computation,

and you've been assigned the job of speeding up these scripts.

Many of the shell scripts have command sequences that look like the following

(though the actual commands are proprietary):

 sort < a | cat b - | tr A-Z a-z > c

 sort -k2 d - < a | uniq -c > e

 diff a c > f

In this example, the standard POSIX shell executes the code serially: it waits for the

command in the first line to finish before starting the command in the second line.

Your goal is to speed this up by running commands in parallel when it is safe to do so.

In this example, it is safe to start running the second command before the first has

finished, because the second command does not read any file that the first command

writes. However, the third command cannot be started until the first command

finishes, because the first command writes a file c that the third command reads.

Your goal is to write a prototype for a shell that runs code like the above considerably

faster than standard shells do, by exploiting the abovementioned parallelism. If this

prototype works well, the idea is that you'll later (i.e., after CS 111 is over...) improve

the prototype until it is production quality.

To simplify things, your prototype needs to exploit parallelism only at the top level,

such as in the examples shown above. It need not parallelize subcommands. For

example, it is OK if your prototype executes the following commands in sequence

without parallelizing them, because all the commands are subsidiary to the

parentheses at the top level:

 (sort < a | cat b - | tr A-Z a-z > c

 sort -k2 d - < a | uniq -c > e

 diff a c > f)

Your company's shell scripts all follow some simple rules which should make the

prototype easier to write:

http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://pubs.opengroup.org/onlinepubs/9699919799/

 They limit themselves to a small subset of the shell syntax, described in "Shell

syntax subset" below.

 Simple commands in scripts have limited behavior, described in "Time travel

limitations on computations" below.

 They don't care about some properties of your implementation, and will work

regardless of how your implementation behaves in these areas, as described in

"Don't care behaviors" below.

Your implementation will take three phases:

 In Lab 1a, you'll warm up by implementing just the shell's command reader.

This shell will support a -p option, so that the command "timetrash -p

script.sh" will read the shell commands in the file script.sh and

output them in a standard format that is already supplied by a code skeleton

available on CourseWeb; sample output is in the skeleton's test scripttest-p-

ok.sh.

 In Lab 1b, you'll implement the standard execution model for your shell subset.

Once this is done, the command "timetrash script.sh" should behave

like the standard command "sh script.sh", assuming script.sh is in

the shell subset described in this assignment.

 In Lab 1c, you'll implement the time-traveling execution model, which allows

extra parallelism. Once this is done, the command "timetrash -t

script.sh" should execute the script faster than the standard shell does, if

the script has enough inherent parallelism.

Implementation

A skeleton implementation will be given to you on CourseWeb. It comes with a

makefile that supports the following actions. Your solution should have similar

actions in its makefile.

 "make" builds the timetrash program.

 "make clean" removes the program and all other temporary files and object

files that can be regenerated with "make".

 "make check" tests the timetrash program on the available test cases.

The initial test cases are just for Lab 1a, and they fail on the skeleton code

because the skeleton code doesn't do anything useful. Your program should

succeed on them. For Lab 1b and 1c, you should add two test cases each, in the

same style as the existing cases for 1a.

http://www.cs.ucla.edu/classes/spring14/cs111/assign/lab1.html#syntax
http://www.cs.ucla.edu/classes/spring14/cs111/assign/lab1.html#syntax
http://www.cs.ucla.edu/classes/spring14/cs111/assign/lab1.html#behavior
http://www.cs.ucla.edu/classes/spring14/cs111/assign/lab1.html#behavior
http://www.cs.ucla.edu/classes/spring14/cs111/assign/lab1.html#dontcare

 "make dist" makes a software distribution tarball lab1-

yourname.tar.gz and does some simple testing on it. This tarball is what

you should submit via CourseWeb.

Your solution should be written in the C programming language. Stick with the

programming style used in the skeleton, which uses standard GNU style for C. Your

code should be robust, for example, it should not impose an arbitrary limit like

216 bytes on the length of a token. You may use the features of C11 as implemented

on the SEASnet GNU/Linux servers. Please prepend the

directory /usr/local/cs/bin to your PATH, to get the versions of the tools that

we will use to test your solution. Your solution should stick to the standard GNU C

library that is installed on SEASnet, and should not rely on other libraries.

You can run your program directly by invoking, for example, ./timetrash -p

foo. Eventually, you should put your own test cases into a

file testsomething.sh so that it is automatically run as part of "make check".

More details on syntax and semantics of the shell subset

The "time travel" feature of your shell is feasible partly because of the restricted

subset of the shell that you need to implement. Also, for this assignment, the shell has

been simplified further so as to avoid some work that can be deferred until a

production version.

Shell syntax subset

Your implementation of the shell needs to support only the following small subset of

the standard POSIX shell grammar:

 Words, consisting of a maximal sequence of one or more adjacent characters

that are ASCII letters (either upper or lower case), digits, or any of: ! % + ,
- . / : @ ^ _

 The following eight special tokens: ; | && || () < >

 Simple commands, which are sequences of one or more words. The first word

is the file to be executed.

 Subshells, which are complete commands surrounded by ().

 Commands, which are simple commands or subshells followed by I/O

redirections. An I/O redirection is possibly empty, or < followed by a word,

or > followed by a word, or <followed by a word followed by > followed by a

word.

 Pipelines, which are one or more commands separated by |.

http://www.gnu.org/prep/standards/html_node/Writing-C.html
http://www.gnu.org/prep/standards/html_node/Semantics.html
http://en.wikipedia.org/wiki/C11_%28C_standard_revision%29
http://www.gnu.org/software/libc/
http://www.gnu.org/software/libc/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_10

 And-ors, which are one or more pipelines separated by && or ||.

The && and || operators are left-associative and have the same operator

precedence.

 Complete commands, which are one or more and-ors each separated by a

semicolon or newline, and which are optionally followed by a semicolon. An

entire shell script is a complete command.

 Comments, each consisting of a # that is not immediately preceded by an

ordinary token, followed by characters up to (but not including) the next

newline.

 White space consisting of space, tab, and newline. Newline is special: as

described above, it can substitute for semicolon. Also, although white space can

ordinarily appear before and after any token, the only tokens that newlines can

appear before are (,), and the first words of simple commands. Newlines may

follow any special token other than < and >.

If your shell's input does not fall within the above subset, your implementation should

output to stderr a syntax error message that starts with the line number and a colon,

and should then exit.

Your implementation can have undefined behavior if any of the following features are

used. In other words, our test cases won't use these features and your program need

not diagnose an error if these features are used.

 Shell reserved words such as !, {, if, and function, when used as the first

word of a command.

 Commands that invoke special built-in utilities such as break, ., and exit.

Exception: your implementation should support the special-builtin

utility exec with a command and optional arguments (you need not

support exec without a command).

 A token consisting entirely of digits, immediately before < or > (for example,

as in the command "cat 2>/dev/null").

 Two adjacent left parentheses ((– see Token Recognition for why.

Time travel limitations on computations

Your implementation of the shell, when it is run in time-travel mode, can have

undefined behavior if any of the following limitations are violated. When your shell is

run in normal mode, it should not impose these limitations.

 Simple commands read only from standard input or from files whose names are

one of the words of the command. For example, the simple command

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_04
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_14
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#exec
http://pubs.opengroup.org/onlinepubs/007904875/xrat/xcu_chap02.html#tag_02_02_03

"./doit -f x nobody@gmail.com" reads at most from standard input

and from the files ./doit, -f, x, and nobody@gmail.com, if these files

exist.

 The computation never accesses the same file via two different names. For

example, if the computation uses the file name ./doit and the file

name doit without the leading "./", the behavior is undefined.

 Simple commands write only to standard output, to standard error, or to files

that are never otherwise accessed by the computation. For example,

the mv and rm commands cannot be used to mess up dependency checking,

because they can cause dependency problems only by modifying directories

that are later searched.

Don't care behaviors

Similarly, in some cases, your company's scripts don't care how your implementation

behaves, and it's OK for it to depart from established semantics when it is run in time-

travel mode.

 It is OK if commands behave as if the time of day jumps around at random. For

example, it is OK if "(date >A; date >B)" puts an earlier time stamp

into B than into A. It is this property of your implementation that prompts the

nickname "time travel shell".

 If a set of commands all read from standard input, or write to standard output or

standard error, and have no other dependencies that interfere with each other,

your implementation can run them in parallel and interleave their reads and

writes arbitrarily. For example, "tr A B; tr A C" can run two instances

of tr in parallel, both reading from standard input and writing to standard

output; the combination somewhat-randomly transforms some As to Bs and

other As to Cs as it copies input to output and it does not necessarily output

blocks in the same order that they were input.

You can simplify your shell in one other way, regardless of whether it is run in time-

travel mode:

 It is OK if your shell attempts to execute the following commands as regular

commands, finding them via the PATH environment variable and running them

as executables in a separate child process, even if the commands do not exist in

the PATH, and even though POSIX does not allow this

behavior: false fc fg getopts jobs kill newgrp pwd read
trueumask unalias wait

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/tr.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/false.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/fc.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/fg.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/getopts.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/jobs.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/kill.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/newgrp.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pwd.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/read.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/true.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/true.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/unalias.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/wait.html

Submit

After you implement Lab 1a, submit via CourseWeb the .tar.gz file that is built by

"make dist". Similarly for 1b and 1c. Your submission should contain a README

file that briefly describes known limitations of your code and any extra features you'd

like to call our attention to.

We will check your work on each lab part by running it on the SEASnet GNU/Linux

servers, so make sure they work on there. Lab 1 parts are due at different times, but

we will not grade each part separately; the lab grade is determined by your overall

work on all three parts.

Design problem ideas

Here are some suggestions for design problems, if you have been assigned a design

problem for Lab 1. You may implement one of them, or design your own. If you

design your own, get approval from us before committing significant work to it. Your

implementations should include test cases.

For Lab 1a:

 The redirection operators >>, <&, >&, <>, >|. The last operator requires that

you also implement the -C option. Improve on these in at least one way that is

not already present in Bash.

 The control structures if, for, while, until, and !. Improve on these in at

least one way that is not already present in Bash.

 Make your shell interactive, with a prompt, and command-line editing, and tab

completion, and have it do something reasonable when you type control-C.

You can use the GNU readline library for this.

For Lab 1b:

 Debugging in the style of Bash's -v and -x options. Improve on them in at

least one way.

 Add a way to measure resource consumption. The usual time builtin works

only on simple commands; fix it so that it works arbitrary commands, such as

parenthesized commands. Also, fix it so that it counts the number of

subprocesses created as well as CPU time and memory consumption.

For Lab 1c:

 Remove one of the significant limitations on shell scripts that are imposed

above; that way, we can support more shell scripts in time-travel mode. For

example, can you support commands like sort -o foo, which output

to foo instead of inputting from foo?

 Limit the amount of parallelism to at most N subprocesses, where N is a

parameter that you can set by an argument to the shell.

