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A b s t r a c t .  Dynamic memory allocation has been a fundamental part of 
most computer systems since roughly 1960, and memory allocation is 
widely considered to be either a solved problem or an insoluble one. In 
this survey, we describe a variety of memory allocator designs and point 
out issues relevant to their design and evaluation. We then chronologi- 
cally survey most of the literature on allocators between 1961 and 1995. 
(Scores of papers are discussed, in varying detail, and over 150 references 
are given.) 
We argue that  allocator designs have been unduly restricted by an em- 
phasis on mechanism, rather than policy, while the latter is more impor- 
tant;  higher-level strategic issues are still more important,  but  have not 
been given much attention. 
Most theoretical analyses and empirical allocator evaluations to date 
have relied on very strong assumptions of randomness and independence, 
but real program behavior exhibits important regularities that must be 
exploited if allocators are to perform well in practice. 

1 I n t r o d u c t i o n  a n d  C o n t e n t s  

In  this  survey, we will discuss the design and eva lua t ion  of convent iona l  d y n a m i c  
m e m o r y  allocators.  By "conventional," we mean  al locators used for general  pur-  
pose "heap" storage, where the a p rogram can request a block of m e m o r y  to 
store a p rog ram object ,  and  free tha t  block at any t ime.  A heap, in this  sense, is 
a pool  of m e m o r y  avai lable  for the a l locat ion and  deal locat ion  of arb i t rary-s ized  
blocks of m e m o r y  in  a rb i t r a ry  o r d e r ?  An  al located block is typica l ly  used to 
store a p rog ram "object," which is some kind of s t ruc tured  d a t a  i t em such as a 
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3 This sense of "heap" is not to be confused with a quite different sense of "heap," 
meaning a partially ordered tree structure. 



Pascal record, a C struct,  or a C + +  object,  but  not  necessarily an object in the 
sense of object-oriented programming.  4 

Throughout  this paper, we will assume tha t  while a block is in use by a 
program, its contents (a da ta  object) cannot be relocated to compact  memory  
(as is done, for example,  in copying garbage collectors [Wi195]). This  is the 
usual si tuation in most  implementat ions of conventional p rogramming  systems 
(such as C, Pascal, Ada, etc.), where the m emory  manager  cannot  find and 
update  pointers to program objects when they are moved. 5 The allocator does 
not examine the da ta  stored in a block, or modify  or act on it in any way. 
The da ta  areas within blocks that  are used to hold objects are contiguous and 
nonoverlapping ranges of (real or virtual) memory.  We generally assume tha t  
only entire blocks are allocated or freed, and tha t  the allocator is entirely unaware 
of the type of or values of da ta  stored in a b lock- - i t  only knows the size requested. 

Scope of this survey. In most  of this survey, we will concentrate on issues of over- 
all memory  usage, rather than  t ime costs. We believe tha t  detailed measures of 
t ime costs are usually a red herring, because they obscure issues of s t rategy 
and policy; we believe that  most  good strategies can yield good policies tha t  
are amenable to efficient implementat ion.  (We believe that  i t 's  easier to make a 
very fast allocator than a very memory-efficient one, using fairly s traightforward 
techniques (Section 3.12). Beyond a certain point,  however, the effectiveness of 
speed optimizations will depend on many  of the same subtle issues tha t  deter- 
mine memory  usage.) 

We will also discuss locality of reference only briefly. Locality of reference is 
increasingly impor tan t ,  as the differences between CPU speed and main  memory  
(or disk) speeds has grown dramatically,  with no sign of stopping. Locality is 
very poorly understood, however; aside f rom making a few impor tan t  general 
comments ,  we leave most  issues of locality to future research. 

Except where locality issues are explicitly noted, we assume tha t  the cost of  
a unit of memory  is fixed and uniform. We do not address possible interactions 
with unusual memory  hierarchy schemes such as compressed caching, which m a y  
complicate locality issues and interact in other impor tan t  ways with allocator 
design [WLM91, Wi191, Dou93]. 

4 While this is the typical situation, it is not the only one. The "objects" stored by 
the allocator need not correspond directly to language-level objects. An example 
of this is a growable array, represented by a fixed size part that holds a pointer 
to a variable-sized part. The routine that grows an object might allocate a new, 
larger variable-sized part, copy the contents of the old variable-sized part into it, 
and deallocate the old part. We assume that the allocator knows nothing of this, 
and would view each of these parts as separate and independent objects, even if 
normal programmers would see a "single" object. 

5 It is also true of many garbage-collected systems. In some, insufficient information 
is available from the compiler and/or programmer to allow safe relocation; this is 
especially likely in systems where code written in different languages is combined in 
an application [BW88]. In others, real-time and/or concurrent systems, it difficult to 
for the garbage collector to relocate data without incurring undue overhead and/or 
disruptiveness [Wil95]. 



We will not discuss specialized allocators for particular applications where 
the da ta  representations and allocator designs are intertwined. 6 

Allocators for these kinds of systems share many  properties with the "conven- 
tional" allocators we discuss, but introduce many  complicat ing design choices. 
In part icular,  they often allow logically contiguous items to be stored non- 
contiguously, e.g., in pieces of one or a few fixed sizes, and m a y  allow sharing of 
parts  or (other) forms of da ta  compression. We assume tha t  if any fragmenting 
or compression of higher-level "objects" happens,  it is done above the level of 
abstract ion of the allocator interface, and the allocator is entirely unaware of 
the relationships between the "objects" (e.g., f ragments  of higher-level objects) 
tha t  it manages.  

Similarly, parallel allocators are not discussed, due to the complexi ty of the 
subject.  

Structure of the Paper. This survey is intended to serve two purposes: as a gen- 
eral reference for techniques in m em ory  allocators, and as a review of the litera- 
ture in the field, including methodological  considerations. Much of the l i terature 
review has been separated into a chronological review, in Section 4. This section 
m a y  be skipped or sk immed if methodology and history are not of interest to the 
reader, especially on a first reading. However, some potential ly significant points 
are covered only there, or only made sufficiently clear and concrete there, so the 
serious s tudent  of dynamic  storage allocation should find it worthwhile. (It m a y  
even be of interest to those interested in the history and philosophy of computer  
science, as documenta t ion  of the development of a scientific paradigm, r) 

The  remainder  of the current section gives our motivat ions and goals for the 
paper,  and then frames the central problem of memory  allocation--fragmenta- 
t ion-and the general techniques for dealing with it. 

Section 2 discusses deeper issues in fragmentat ion,  and methodological  issues 
(some of which may  be skipped) in studying it. 

Section 3 presents a fairly tradit ional  t axonomy of known memory  allocators, 
including several not usually covered. It  also explains why such mechanism-based 
taxonomies are very limited, and may  obscure more impor tan t  policy issues. 
Some of those policy issues are sketched. 

Section 4 reviews the l i terature on memory  allocation. A major  point of this 
section is tha t  the main s t ream of allocator research over the last several decades 
has focused on oversimplified (and unrealistic) models of p rogram behavior,  and 

6 Examples inlude specialized allocators for chained-block message-buffers (e.g., 
[Wo165]), "cdr-coded" list-processing systems [BC79], specialized storage for over- 
lapping strings with shared structure, and allocators used to manage disk storage in 
file systems. 

7 We use "paradigm" in roughly the sense of Kuhn [Kuh70], as a "pattern or model" 
for research. The paradigms we discuss are not as broad in scope as the ones usually 
discussed by Kuhn, but on our reading, his ideas are intended to apply at a variety 
of scales. We are not necessarily in agreement with all of Kuhn's ideas, or with some 
of the extreme and anti-scientific purposes they have been put to by others. 



tha t  little is actual ly  known about  how to  design allocators,  or wha t  per formance  
to  expect.  

Section 5 concludes by summar iz ing  the m a j o r  points  of  the paper,  and sug- 
gesting avenues for future  research. 
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1.1 M o t i v a t i o n  

This  paper  is mot iva ted  by our perception tha t  there is considerable confusion 
about  the nature of m em ory  allocators, and about  the problem of memory  allo- 
cation in general. Worse, this confusion is often unrecognized, and allocators are 
widely thought  to be fairly well understood. In fact, we know little more about  
allocators than was known twenty years ago, which is not as much as might  be 
expected. The li terature on the subject is rather inconsistent and scattered, and 
considerable work appears  to be done using approaches tha t  are quite limited. 
We will try to sketch a unifying conceptual f ramework for understanding what  
is and is not known, and suggest promising approaches for new research. 

This problem with the allocator l i terature has considerable practical impor-  
tance. Aside from the human  effort involved in al locator studies per se, there 
are effects in the real world, both on computer  system costs, and on the effort 
required to create real software. 

We think it is likely that  the widespread use of poor allocators incurs a loss 
of main and cache m em ory  (and CPU cycles) upwards of of a billion (109) U.S. 
dollars wor ldwide- -a  significant fraction of the world's memory  and processor 
output  may  be squandered, at huge cost. s 

Perhaps even worse is the effect on programming style due to the widespread 
use of  allocators that  are simply bad- -e i the r  because bet ter  allocators are known 
but  not widely known or understood, or because allocation research has failed 
to address the proper issues. Many programmers  avoid heap allocation in m a n y  
situations, because of perceived space or t ime costs. 9 

I t  seems significant to us that  many  articles in non-refereed publ ica t ions- -  
and a number  in refereed publications outside the major  journals  of operat ing 
systems and p rogramming  languages- -are  mot ivated by extreme concerns about  
the speed or memory  costs of general heap allocation. (One such paper  [GM85] is 
discussed in Section 4.1.) Often, ad hoc solutions are used for applications tha t  
should not be problematic  at all, because at least some well-designed general 
allocators should do quite well for the workload in question. 

We suspect that  in some cases, the perceptions are wrong, and tha t  the costs 
of modern  heap allocation are simply overestimated.  In m a n y  cases, however, 
it appears  that  poorly-designed or poorly- implemented allocators have lead to 
a widespread and quite understandable belief tha t  general heap allocation is 

s This is an unreliable estimate based on admittedly casual last-minute computations, 
approximately as follows: there are on the order of 100 million PC's  in the world. If we 
assume that they have an average of 10 megabytes of memory at $30 per megabyte, 
there is 30 billion dollars worth of RAM at stake. (With the expected popularity 
of Windows 95, this seems like it will soon become a fairly conservative estimate, if 
it isn't already.) If just one fifth (6 billion dollars worth) is used for heap-allocated 
data, and one fifth of that is unnecessarily wasted, the cost is over a billion dollars. 

9 It is our impression that UNIX programmers' usage of heap allocation went up 
significantly when Chris Kingsley's allocator was distributed with BSD 4.2 UNIX--  
simply because it was much faster than the allocators they'd been accustomed to. 
Unfortunately, that allocator is somewhat wasteful of space. 



necessarily expensive. Too many poor allocators have been supplied with widely- 
distributed operating systems and compilers, and too few practitioners are aware 
of the alternatives. 

This appears to be changing, to some degree. Many operating systems now 
supply fairly good allocators, and there is an increasing trend toward marketing 
libraries that include general allocators which are at least claimed to be good, 
as a replacement for default allocators. It seems likely that there is simply a 
lag between the improvement in allocator technology and its widespread adop- 
tion, and another lag before programming style adapts. The combined lag is 
quite long, however, and we have seen several magazine articles in the last year 
on how to avoid using a general allocator. Postings praising ad hoc allocation 
schemes are very common in the Usenet newsgroups oriented toward real-world 
programming. 

The slow adoption of better technology and the lag in changes in perceptions 
may not be the only problems, however. We have our doubts about how well 
allocators are really known to work, based on a fairly thorough review of the 
literature. We wonder whether some part of the perception is due to occasional 
programs that interact pathologically with common allocator designs, in ways 
that have never been observed by researchers. 

This does not seem unlikely, because most experiments have used non-repre- 
sentative workloads, which are extremely unlikely to generate the same problem- 
atic request patterns as real programs. Sound studies using realistic workloads 
are too rare. The total number of real, nontrivial programs that have been used 
for good experiments is very small, apparently less than 20. A significant number 
of real programs could exhibit problematic behavior patterns that are simply not 
represented in studies to date. 

Long-running processes such as operating systems, interactive programming 
environments, and networked servers may pose special problems that have not 
been addressed. Most experiments to date have studied programs that execute 
for a few minutes (at most) on common workstations. Little is known about 
what happens when programs run for hours, days, weeks or months. It may well 
be that some seemingly good allocators do not work well in the long run, with 
their memory efficiency slowly degrading until they perform quite badly. We 
don't know--and we're fairly sure that nobody knows. Given that long-running 
processes are often the most important ones, and are increasingly important 
with the spread of client/server computing, this is a potentially large problem. 

The worst case performance of any general allocator amounts to complete 
failure due to memory exhaustion or virtual memory thrashing (Section 1.2). 
This means that any real allocator may have lurking "bugs" and fail unexpect- 
edly for seemingly reasonable inputs. 

Such problems may be hidden, because most programmers who encounter se- 
vere problems may simply code around them using ad hoc storage management 
techniques--or, as is still painfully common, by statically allocating "enough" 
memory for variable-sized structures. These ad-hoc approaches to storage man- 
agement lead to "brittle" software with hidden limitations (e.g., due to the use 



of fixed-size arrays). The impact on software clarity, flexibility, maintainability, 
and reliability is quite important ,  but  difficult to estimate. These hidden costs 
should not be underestimated, however, because they can lead to major  penal- 
ties in productivity and to significant human costs in sheer frustration, anxiety, 
and general suffering. 

A much larger and broader set of test applications and experiments is needed 
before we have any assurance that  any allocator works rel iably--in a crucial 
performance sense--much less works well. Given this caveat, however, it appears 
that  some allocators are clearly better  than others in most cases, and this paper 
will a t tempt  to explain the differences. 

1.2 W h a t  a n  A l l o c a t o r  M u s t  D o  

An allocator must keep track of which parts of memory are in use, and which 
parts are free. The goal of allocator design is usually to minimize wasted space 
without undue t ime cost, or vice versa. The ideal allocator would spend negligible 
t ime managing memory, and waste negligible space. 

A conventional allocator cannot control the number  or size of live blocks--  
they are entirely up to the program requesting and releasing the space managed 
by the allocator. A conventional allocator also cannot compact memory, moving 
blocks around to make them contiguous and free contiguous memory. It must  
respond immediately to a request for space, and once it has decided which block 
of memory to allocate, it cannot change that  decis ion-- that  block of memory 
must  be regarded as inviolable until the application l~ program chooses to free it. 
It can only deal with memory that  is free, and only choose where in free memory 
to allocate the next requested block. (Allocators record the locations and sizes 
of free blocks of memory in some kind of hidden data  structure, which may be 
a linear list, a totally or partially ordered tree, a bi tmap,  or some hybrid data  
structure.) 

An allocator is therefore an online algorithm, which must  respond to requests 
in strict sequence, immediately, and its decisions are irrevocable. 

The  problem the allocator must address is tha t  the application program may 
free blocks in any order, creating "holes" amid live objects. If these holes are too 
numerous and small, they cannot be used to satisfy future requests for larger 
blocks. This problem is known as fragmentation, and it is a potentially disastrous 
one. For the general case that  we have out l ined--where the application program 
may allocate arbitrary-sized objects at arbitrary times and free them at any later 
t ime- - the re  is no reliable algorithm for ensuring efficient memory usage, and 
none is possible. It has been proven that  for any possible allocation algorithm, 
there will always be the possibility that  some application program will allocate 
and deallocate blocks in some fashion that  defeats the allocator's strategy, and 
forces it into severe fragmentat ion [Rob71, GGU72, Rob74, Rob77]. Not only are 

10 We use the term "application" rather generally; the "application" for which an al- 
locator manages storage may be a system program such as a file server, or even an 
operating system kernel. 



there no provably  good allocation algorithms, there are proofs tha t  any allocator 
will be "bad" for some possible applications. 

The  lower bound on worst case f ragmenta t ion  is generally proport ional  to 
the amount  of live da ta  11 multiplied by the logari thm of the ratio between the 
largest and smallest  block sizes, i.e., M log S n, where M is the amount  of live 
da ta  and n is the ratio between the smallest and largest object sizes [RobT]]. 

(In discussing worst-case m em ory  costs, we generally assume tha t  all block 
sizes are evenly divisible by the smallest block size, and n is sometimes simply 
called "the largest block size," i.e., in units of the smallest.) 

Of  course, for some algorithms, the worst case is much worse, often propor- 
tional to the simple product of M and n. 

So, for example,  if the min imum and m a x i m u m  objects sizes are one word 
and a million words, then f ragmenta t ion in the worst case may  cost an excellent 
allocator a factor of ten or twenty in space. A less robust allocator may  lose a 
factor of a million, in its worst case, wasting so much space that  failure is almost  
certain. 

Given the apparent  insolubility of this problem, it may  seem surprising that  
dynamic  m e m o r y  allocation is used in most  systems, and the comput ing world 
does not grind to a halt due to lack of memory.  The reason, of course, is that  
there are allocators that  are fairly good in practice, in combinat ion with most  
actual  programs.  Some allocation algori thms have been shown in practice to work 
acceptably well with real programs,  and have been widely adopted. If  a particular 
p rogram interacts badly with a part icular  allocator, a different allocator may  be 
used instead. (The bad cases for one allocator may  be very different from the 
bad cases for other allocators of different design.) 

The  design of memory  allocators is currently something of a black art. Little 
is known about  the interactions between programs and allocators, and which 
programs are likely to bring out the worst in which allocators. However, one 
thing is c l ea r - -mos t  programs are "well behaved" in some sense. Most programs 
combined with most  common allocators do not squander huge amounts  of mem-  
ory, even if they m a y  waste a quarter  of it, or a half, or occasionally even more. 

T h a t  is, there are regularities in program behavior that allocators exploit, a 
point  tha t  is often insufficiently appreciated even by professionals who design and 
implement  allocators. These regularities are exploited by allocators to prevent 
excessive fragmentat ion,  and make  it possible for allocators to work in practice. 

These regularities are surprisingly poorly understood, despite 35 years of 
al locator research, and scores of papers by dozens of researchers. 

1.3 S t r a t e g i e s ,  P l a c e m e n t  Po l i c i e s ,  a n d  S p l i t t i n g  a n d  C o a l e s c i n g  

The  main  technique used by allocators to keep fragmentat ion under control is 
placement choice. Two subsidiary techniques are used to help implement  tha t  

11 We use "live" here in a different sense from that used in garbage collection or in 
compiler flow analysis. Blocks are "live" from the point of view of the allocator if it 
doesn't know that it can safely reuse the storage--i.e., if the block was allocated but 
not yet freed. 
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choice: sp l i t t ing  blocks to satisfy smaller requests, and coalesc ing  of free blocks 
to yield larger blocks. 

Placement  choice is s imply the choosing of where in free memory  to put  
a requested block. Despite potential ly fatal  restrictions on an al locator 's  online 
choices, the allocator also has a huge freedom of ac t ion- - i t  can place a requested 
block anywhere it can find a sufficiently large range of free memory,  and anywhere 
within that  range. (It  m a y  also be able to s imply request more  memory  from the 
operat ing system.) An allocator algori thm therefore should be regarded as the 
mechanism that  implements  a p l a c e m e n t  pol icy,  which is mot iva ted  by a s t ra t egy  
for minimizing fragmentat ion.  

S t r a t e g y ,  po l i cy ,  a n d  m e c h a n i s m .  The s t ra t egy  takes into account regu- 
larities in program behavior,  and determines a range of acceptable po l i c i e s  as 
to where to allocate requested blocks. The  chosen policy is implemented by a 
m e c h a n i s m ,  which is a set of algorithms and the da ta  structures they use. This 
three-level distinction is quite impor tant .  

In the context of general memory  allocation, 

- a s t ra tegy  a t tempts  to exploit regularities in the request s tream, 
- a p o l i c y i s  an implementable  decision procedure for placing blocks in memory,  

and 
- a m e c h a n i s m  is a set of algorithms and da ta  structures tha t  implement  the 

policy, often over-simply called "an algorithm." 12 

An ideal s t rategy is "put blocks where they won' t  cause f ragmenta t ion later"; 
unfortunately tha t ' s  impossible to guarantee,  so real strategies a t t empt  to heuris- 
tically approximate  that  ideal, based on assumed regularities of application pro- 
g rams '  behavior. For example,  one s t rategy is "avoid letting small long-lived 

12 This set of distinctions is doubtless indirectly influenced by work in very different 
areas, notably Marr's work in natural and artificial visual systems [Mar82] and Mc- 
Clamrock's work in the philosophy of science and cognition [McC91, McC95]. The 
distinctions are important for understanding a wide variety of complex systems, 
however. Similar distinctions are made in many fields, including empirical computer 
science, though often without making them quite clear. 

In "systems" work, mechanism and policy are often distinguished, but strategy and 
policy are usually not distinguished explicitly. This makes sense in some contexts, 
where the policy can safely be assumed to implement a well-understood strategy, or 
where the choice of strategy is left up to someone else (e.g., designers of higher-level 
code not under discussion). 

In empirical evaluations of very poorly understood strategies, however, the dis- 
tinction between strategy and policy is often crucial. (For example, errors in the 
implementation of a strategy are often misinterpreted as evidence that the expected 
regularities don't actually exist, when in fact they do, and a slightly different strategy 
would work much better.) 

Mistakes are possible at each level; equally important, mistakes are possible be- 
tween levels, in the at tempt to "cash out" (implement) the higher-level strategy as 
a policy, or a policy as a mechanism. 
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objects prevent  you f rom reclaiming a larger contiguous free area." This  is par t  
of the s t ra tegy underlying the common "best fit" family of policies. Another  par t  
of the s t ra tegy is "if you have to split a block and potential ly waste what ' s  left 
over, minimize the size of the wasted part ."  

The  corresponding (best fit) policy is more concre te- - i t  says "always use the 
smallest  block tha t  is at least large enough to satisfy the request." 

The placement  policy determines exactly where in memory  requested blocks 
will be allocated. For the best fit policies, the general rule is "allocate objects 
in the smallest  free block tha t ' s  at least big enough to hold them." T h a t ' s  not 
a complete policy, however, because there may  be several equally good fits; the 
complete policy must  specify which of those should be chosen, for example,  the 
one whose address is lowest. 

The  chosen policy is implemented by a specific mechanism, chosen to imple- 
ment  tha t  policy efficiently in terms of t ime and space overheads. For best fit, 
a linear list or ordered tree structure might  be used to record the addresses and 
sizes of free blocks, and a tree search or list search would be used to find the one 
dictated by the policy. 

These levels of the allocator design process interact.  A strategy may  not yield 
an obvious complete policy, and the seemingly slight differences between similar 
policies m a y  actually implement  interestingly different strategies. (This results 
f rom our poor understanding of the interactions between application behavior  
and allocator strategies.) The chosen policy may  not be obviously implementable  
at reasonable cost in space, time, or p rogrammer  effort; in that  case some ap- 
proximat ion  may  be used instead. 

The  s t rategy and policy are often very poorly-defined, as well, and the policy 
and mechanism are arrived at by a combinat ion of educated guessing, trial and 
error, and (often dubious) experimental  validation. 13 

13 In case the important distinctions between strategy, policy, and mechanism are not 
clear, a metaphorical example may help. Consider a software company that has a 
strategy for improving productivity: rewarding the most productive programmers. It 
may institute a policy of rewarding programmers who produce the largest numbers 
of lines of program code. To implement this policy, it may use the mechanisms of 
instructing the managers to count lines of code, and providing scripts that count 
lines of code according to some particular algorithm. 

This example illustrates the possible failures at each level, and in the mapping 
from one level to another. The strategy may simply be wrong, if programmers aren't 
particularly motivated by money. The policy may not implement the intended strat- 
egy, if lines of code are an inappropriate metric of productivity, or if the policy has 
unintended "strategic" effects, e.g., due to programmer resentment. 

The mechanism may also fail to implement the specified policy, if the rules for 
line-counting aren't enforced by managers, or if the supplied scripts don't correctly 
implement the intended counting function. 

This distinction between strategy and policy is oversimplified, because there may 
be multiple levels of strategy that shade off into increasingly concrete policies. At 
different levels of abstraction, something might be viewed as a strategy or policy. 

The key point is that there are at least three qualitatively different kinds of levels 
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S p l i t t i n g  a n d  coa le sc ing  Two general techniques for supporting a range 
of (implementations of) placement policies are splitting and coalescing of free 
blocks. (These mechanisms are impor tant  subidiary parts of the larger mecha- 
nism that  is the allocator implementation.) 

The allocator may  split large blocks into smaller blocks arbitrarily, and use 
any sufficiently-large subblock to satisfy the request. The  remainders from this 
splitting can be recorded as smaller free blocks in their own right and used to 
satisfy future requests. 

The allocator may also coalesce (merge) adjacent free blocks to yield larger 
free blocks. After a block is freed, the allocator may  check to see whether the 
neighboring blocks are free as well, and merge them into a single, larger block. 
This is often desirable, because one large block is more likely to be useful than 
two small ones-- large or small requests can be satisfied from large blocks. 

Completely general splitting and coalescing can be supported at fairly modest 
cost in space and /o r  time, using simple mechanisms that  we'll describe later. This 
Mlows the allocator designer the maximum freedom in choosing a strategy, policy, 
and mechanism for the allocator, because the allocator can have a complete and 
accurate record of which ranges of memory are available at all times. 

The cost may  not be negligible, however, especially if splitting and coalescing 
work too well--in that  case, freed blocks will usually be coalesced with neighbors 
to form large blocks of free memory, and later allocations will have to split smaller 
chunks off of those blocks to obtained the desired sizes. It often turns out that  
most of this effort is wasted, because the sizes requested later are largely the 
same as the sizes freed earlier, and the old small blocks could have been reused 
without coalescing and splitting. Because of this, many modern allocators use 
deferred coalescing--they avoid coalescing and splitting most of the time, but  
use intermittently,  to combat fragmentation. 

2 A C l o s e r  L o o k  a t  F r a g m e n t a t i o n ,  a n d  H o w  t o  S t u d y  I t  

In this section, we will discuss the traditional conception of fragmentation,  and 
the usual techniques used for studying it. We will then explain why the usual 

of abstraction involved [McC91]; at the upper levels, there are is the general design 
goal of exploiting expected regularities, and a set of strategies for doing so; there 
may be subsidiary strategies, for example to resolve conflicts between strategies in 
the best possible way. 

At at a somewhat lower level there is a general policy of where to place objects, 
and below that is a more detailed policy that exactly determines placement: 

Below that there is an actual mechanism that is intended to implement the policy 
(and presumably effect the strategy), using whatever algorithms and data structures 
are deemed appropriate. Mechanisms are often layered, as well, in the usual manner of 
structured programming [Dij69]. Problems at (and between) these levels are the best 
understood--an algorithm may not implement its specification, or may be improperly 
specified. (Analogous problems occur at the upper levels occur as well--if expected 
regularities don't actually occur, or if they do occur but the strategy does't actually 
exploit them, and so on.) 
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understanding is not strong enough to support  scientific design and evaluation 
of allocators. We then propose a new (though nearly obvious) conception of 
fragmentat ion and its causes, and describe more suitable techniques used to 
s tudy it. (Most of the experiments using sound techniques have been performed 
in the last few years, but  a few notable exceptions were done much earlier, e.g., 
[MPS71] and [LH82], discussed in Section 4.) 

2.1 Internal  and External  Fragmentat ion 

Traditionally, fragmentat ion is classed as external or internal [Ran69], and is 
combat ted  by splitting and coalescing free blocks. 

External  fragmentation arises when free blocks of memory are available for 
allocation, but  can' t  be used to hold objects of the sizes actually requested by a 
program. In sophisticated allocators, that 's  usually because the free blocks are 
too small, and the program requests larger objects. In some simple allocators, 
external fragmentat ion can occur because the allocator is unwilling or unable to 
split large blocks into smaller ones. 

Internal fragmentation arises when a large-enough free block is allocated to 
hold an object, but there is a poor fit because the block is larger than needed. In 
some allocators, the remainder is simply wasted, causing internal fragmentation. 
(It 's called internal because the wasted memory is inside an allocated block, 
rather than being recorded as a free block in its own right.) 

To combat  internal fragmentation, most allocators will split blocks into mul- 
tiple parts, allocating part  of a block, and then regarding the remainder as a 
smaller free block in its own right. Many allocators will also coalesce adjacent 
free blocks (i.e., neighboring fi'ee blocks in address order), combining them into 
larger blocks that  can be used to satisfy requests for larger objects. 

In some allocators, internal fragmentat ion arises due to implementation con- 
straints within the al locator--for  speed or simplicity reasons, the allocator de- 
sign restricts the ways memory may be subdivided. In other allocators, internal 
f ragmentat ion may be accepted as part of a strategy to prevent external frag- 
m e n t a t i o n - t h e  allocator may be unwilling to fragment a block, because if it 
does, it may  not be able to coalesce it again later and use it to hold another 
large object.  

2.2 T h e  T r a d i t i o n a l  M e t h o d o l o g y :  P r o b a b i l i s t i c  A n a l y s e s ,  and 
S i m u l a t i o n  U s i n g  S y n t h e t i c  T r a c e s  

(Note: readers who are uninterested in experimental methodology may wish to 
skip this section, at least on a first reading. Readers uninterested in the history 
of allocator research may skip the footnotes. The following section (2.3) is quite 
important ,  however, and should not be skipped.) 

Allocators are sometimes evaluated using probabilistic analyses. By reasoning 
about  the likelihood of certain events, and the consequences of those events for 
future events, it may be possible to predict what will happen on average. For the 
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general problem of dynamic storage allocation, however, the mathematics  are too 
difficult to do this for most algorithms and most workloads. An alternative is to 
do simulations, and find out "empirically" what really happens when workloads 
interact with allocator policies. This is more common, because the interactions 
are so poorly understood that  mathematical  techniques are difficult to apply. 

Unfortunately, in both cases, to make probabilistic techniques feasible, im- 
portant  characteristics of the workload must be known--i .e. ,  the probabilities of 
relevant characteristics of "input" events to the allocation routine. The relevant 
characteristics are not understood, and so the probabilities are simply unknown. 

This is one of the major  points of this paper. The paradigm of statistical 
mechanics has been used in theories of memory allocation, but  we believe that  it 
is the wrong paradigm, at least as it is usually applied. Strong assumptions are 
made that  frequencies of individual events (e.g., allocations and deallocations) 
are the base statistics from which probabilistic models should be developed, and 
we think that  this is false. 

The great success of statistical mechanics in other areas is due to the fact 
that  such assumptions make sense there. Gas laws are pre t ty  good idealizations, 
because aggregate effects of a very large number of individual events (e.g., col- 
lisions between molecules) do concisely express the most impor tant  regularities. 

This paradigm is inappropriate for memory allocation, for two reasons. The 
first is simply that  the number of objects involved is usually too small for asymp- 
totic analyses to be relevant, but this is not the most impor tant  reason. 

The main weakness of the statistical mechanics approach is that  there are 
impor tant  sys t emat i c  interactions that  occur in memory allocation, due to phase 
behavior of programs. No mat ter  how large the system is, basing probabilistic 
analyses on individual events is likely to yield the wrong answers, if there are 
systematic effects involved which are not captured by the theory. Assuming that  
the analyses are appropriate for "sufficiently large" systems does not help he re - -  
the systematic errors will simply attain greater statistical significance. 

Consider the case of evolutionary biology. If a overly simple statistical ap- 
proach about individual animals' interactions is used, the theory will not capture 
predator /prey and host /symbiote  relationships, sexual selection, or other perva- 
sive evolutionary effects as niche filling3 4 Developing a highly predictive evolu- 
t ionary theory is extremely difficult--and some would say impossible--because 
too many low-level details matter ,  15 and there may intrinsic unpredictabilities 
in the systems described3 6 

We are not saying that  the development of a good theory of memory alloca- 
tion is as hard as developing a predictive evolutionary theory- - fa r  from it. The 

14 Some of these effects may emerge from lower-level modeling, but for simulations to 
reliably predict them, many important lower-level issues must be modeled correctly, 
and sufficient data are usually not available, or sufficiently understood. 

15 For example, the different evolutionary strategies implied by the varying replication 
techniques and mutation rates of RNA-based vs. DNA-based viruses. 

16 For example, a single mutation that results in an adaptive characteristic in one 
individual may have a major impact on the subsequent evolution of a species and its 
entire ecosystem. 
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problem of memory allocation seems far simpler, and we are optimistic that  a 
useful predictive theory can be developed. 

Our point  is simply that  the paradigm of simple statistical mechanics must 
be evaluated relative to other alternatives, which we find more plausible in this 
domain. There are major  interactions between workloads and allocator policies, 
which are usually ignored. No mat ter  how large the system, and no mat ter  
how asymptot ic  the analyses, ignoring these effects seems likely to yield major  
errors--e.g. ,  analyses will simply yield the wrong asymptotes. 

A useful probabilistic theory of memory allocation may be possible, but  if 
so, it will be based on a quite different set of statistics from those used so f a r - -  
statistics which capture effects of systematicities, rather than assuming such 
systematicities can be ignored. As in biology, the theory must be tested against 
reality, and refined to capture systematicities that had previously gone unno- 
ticed. 

R a n d o m  s i m u l a t i o n s .  The traditional technique for evaluating allocators is 
to construct several traces (recorded sequences of allocation and deallocation 
requests) thought  to resemble "typical" workloads, and use those traces to drive 
a variety of actual allocators. Since an allocator normally responds only to the 
request sequence, this can produce very accurate simulations of what the alloca- 
tor would do if the workload were rea l - - tha t  is, if a real program that  generated 
that  request sequence. 

Typically, however, the request sequences are not real traces of the behavior 
of actual programs. They are "synthetic" traces that  are generated automatically 
by a small subprogram; the subprogram is designed to resemble real programs 
in certain statistical ways. In particular, object size distributions are thought to 
be important ,  because they affect the fragmentation of memory into blocks of 
varying sizes. Object lifetime distributions are also often thought  to be impor tant  
(but not always), because they affect whether blocks of memory are occupied or 
free. 

Given a set of object size and lifetime distributions, the small "driver" sub- 
program generates a sequence of requests that  obeys those distributions. This 
driver is simply a loop that  repeatedly generates requests, using a pseudo-random 
number generator; at any point in the simulation, the next data  object is chosen 
by "randomly" picking a size and lifetime, with a bias that  (probabilistically) 
preserves the desired distributions. The driver also maintains a table of objects 
that  have been allocated but not yet freed, ordered by their scheduled death 
(deallocation) time. (That  is, the step at which they were allocated, plus their 
randomly-chosen lifetime.) At each step of the simulation, the driver deallocates 
any objects whose death times indicate that  they have expired. One convenient 
measure of simulated "time" is the volume of objects allocated so far--i .e. ,  the 
sum of the sizes of objects that  have been allocated up to that  step of the 
simulation. 17 

17 In many early simulations, the simulator modeled real time, rather than just dis- 
crete steps of allocation and dealloeation. Allocation times were chosen based on 
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An important  feature of these simulations is that  they tend to reach a "steady 
state." After running for a certain amount  of time, the volume of live (simulated) 
objects reaches a level that  is determined by the size and lifetime distributions, 
and after that objects are allocated and deallocated in approximately equal 
numbers. The memory usage tends to vary very little, wandering probabilistically 
(in a random walk) around this "most likely" level. Measurements are typically 
made by sampling memory usage at points after the steady state has presumably 
been reached, or by averaging over a period of "steady-state" variation. These 
measurements "at equilibrium" are assumed to be important .  

There are three common variations of this simulation technique. One is to use 
a simple mathematical  function to determine the size and lifetime distributions, 
such as uniform or (negative) exponentiM. Exponential distributions are often 
used because it has been observed that programs are typically more likely to al- 
locate small objects than large ones, is and are more likely to Mlocate short-lived 
objects than long-lived ones. 19 (The size distributions are generally truncated at 
some plausible minimum and maximum object size, and discretized, rounding 
them to the nearest integer.) 

The second variation is to pick distributions intuitively, i.e., out of a hat, but  
in ways thought to resemble real program behavior. One motivation for this is 
to model the fact that  many  programs allocate objects of some sizes and others 
in small numbers or not at all; we refer to these distributions as "spiky. "2~ 

The third variation is to use statistics gathered from real programs, to make 
the distributions more realistic. In almost all cases, size and lifetime distributions 
are assumed to be independent-- the fact that  different sizes of objects may have 
different lifetime distributions is generally assumed to be unimportant .  

In general, there has been something of a trend toward the use of more real- 

randomly chosen "arrival" times, generated using an "interarrival distribution" and 
their deaths scheduled in continuous time rather than discrete time based on the 
number and/or sizes of objects allocated so far. We will generally ignore this dis- 
tinction in this paper, because we ttfink other issues are more important. As will 
become clear, in the methodology we favor, this distinction is not important because 
the actual sequences of actions are sufficient to guarantee exact simulation, and the 
actual sequence of events is recorded rather than being (approximately) emulated. 

18 Historically, uniform size distributions were the most common in early experiments; 
exponential distributions then became increasingly common, as new data became 
available showing that real systems generally used many more small objects than 
large ones. Other distributions have also been used, notably Poisson and hyper- 
exponential. Still, relatively recent papers have used uniform size distributions, some- 
times as the only distribution. 

19 As with size distributions, there has been a shift over time toward non-uniform 
lifetime distributions, often exponential. This shift occurred later, probably because 
real data on size information was easier to obtain, and lifetime data appeared later. 

~0 In general, this modeling has not been very precise. Sometimes the sizes chosen 
out of a hat are allocated in uniform proportions, rather than in skewed proportions 
reflecting the fact that (on average) programs allocate many more small objects than 
large ones. 
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istic distributions, 21 but  this trend is not dominant .  Even now, researchers often 
use simple and smooth  mathemat ica l  functions to generate traces for allocator 
evaluation. 2~ The  use of smooth  distributions is questionable, because it bears 
directly on issues of f r agmen ta t ion - - i f  objects of only a few sizes are allocated, 
the free (and uncoalescable) blocks are likely to be of those sizes, making it 
possible to find a perfect fit. If  the object sizes are smoothly  distributed, the 
requested sizes will a lmost  always be slightly different, increasing the chances of 
f ragmenta t ion.  

P r o b a b i l i s t i c  a n a l y s e s .  Since Knu th ' s  derivation of the "fifty percent rule" 
[Knu73] (discussed later, in Section 4), there have been many  a t t empts  to reason 
probabilist ically about  the interactions between program behavior and allocator 
policy, and assess the overall cost in terms of f ragmentat ion (usually) and /or  
CPU time. 

These analyses have generally made the same assumptions as random-trace  
s imulat ion exper iments- -e .g . ,  r andom object allocation order, independence of 
size and lifetimes, s teady-state  behav io r - - and  often stronger assumptions as well. 

These simplifying assumptions have generally been made in order to make 
the ma themat i c s  tractable.  In particular,  assumptions of randomness and inde- 
pendence make  it possible to apply well-developed theory of stochastic processes 
(Markov models, etc.) to derive analytical results about  expected behavior.  Un- 
fortunately,  these assumptions tend to be false for most  real programs,  so the 
results are of l imited utility. 

It  should be noted that  these are not merely convenient simplifying assump- 
tions that  allow solution of problems that  closely resemble real problems. If  that  
were the case, one could expect tha t  with refinement of the ana lyses- -or  with 
sufficient empirical  validation tha t  the assumptions don ' t  mat te r  in p rac t i ce - -  
the results would come close to reality. There is no reason to expect such a 
happy outcome. These assumptions dramat ical ly  change the key features of the 
problem; the abili ty to perform the analyses hinges on the very facts tha t  make 
them much less relevant to the general problem of memory  allocation. 

Assumpt ions  of randomness and independence make the problem irregular, 
in a superficial sense, but  they make it very smooth (hence mathemat ica l ly  

21 The trend toward more realistic distributions can be explained historically and prag- 
matically. In the early clays of computing, the distributions of interest were usually 
the distribution of segment sizes in an operating system's workload. Without ac- 
cess to the inside of an operating system, this data was difficult to obtain. (Most 
researchers would not have been allowed to modify the implementation of the operat- 
ing system running on a very valuable and heavily-timeshared computer.) Later, the 
emphasis of study shifted away from segment sizes in segmented operating systems, 
and toward data object sizes in the virtual memories of individual processes running 
in paged virtual memories. 

22 We are unclear on why this should be, except that a particular theoretical and 
experimental paradigm [KuhT0] had simply become thoroughly entrenched by the 
early 1970's. (It 's also somewhat easier than dealing with real data.) 
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tractable) in a probabilistic sense. This smoothness has the advantage that  it 
makes it possible to derive analytical results, but  it has the disadvantage that  it 
turns a real and deep scientific problem into a mathematical  puzzle that  is much 
less significant for our purposes. 

The problem of dynamic storage allocation is intractable, in the vernacular 
sense of the word. As an essentially data-dependent problem, we do not have 
a grip on it, because we simply do not understand the inputs. "Smoothing" 
the problem to make it mathematical ly tractable "removes the handles" from 
something that  is fundamental ly irregular, making it unlikely that  we will get any 
real purchase or leverage on the impor tant  issues. Removing the irregularities 
removes some of the problems--and most of the opportunities as well. 

A n o t e  o n  e x p o n e n t i a l l y - d i s t r i b u t e d  r a n d o m  l i f e t imes .  Exponential  life- 
t ime distributions have become quite common in both  empirical and analytic 
studies of memory fragmentation over the last two decades. In the case of empir- 
ical work (using random-trace simulations), this seems an admirable adjustment 
to some observed characteristics of real program behavior. In the case of analytic 
studies, it turns out to have some very convenient mathematical  properties as 
well. Unfortunately, it appears that  the apparently exponential appearence of 
real lifetime distributions is often an artifact of experimental  methodology (as 
will be explained in Sections 2.3 and 4.1) and that  the emphasis on distributions 
tends to distract researchers from the strongly patterned underlying processes 
that  actually generate them (as will be explained in Section 2.4). 

We invite the reader to consider a randomly-ordered trace with an exponen- 
tial lifetime distribution. In this case there is no correlation at all between an 
object 's age and its expected time until dea th - - the  "half-life" decay property of 
the distribution and the randomness ensure that  allocated objects die completely 
at random with no way to estimate their death times from any of the informa- 
tion available to the allocator. 23 (An exponential random function exhibits only 
a half-life property, and no other pattern,  much like radioactive decay.) In a 
sense, exponential lifetimes are thus the reductio ad absuvdum of the synthetic 
trace methodology--al l  of the time-varying regularities have been systematically 
eliminated from the input. If we view the allocator's job as an online problem of 
detecting and exploiting regularities, we see that  this puts the allocator in the 
awkward position of trying to extract  helpful hints from pure noise. 

This does not necessarily mean that  all allocators will perform identically 
under randomized workloads, however, because there are regularities in size dis- 
tributions, whether they are real distributions or simple mathematical  ones, and 
some allocators may  simply shoot themselves in the foot. 

Analyses and experiments with exponentially distributed random lifetimes 
may say something revealing about what happens when an allocator's strategy 
is completely orthogonal to the actual regularities. We have no real idea whether 

23 We are indebted to Henry Baker, who has made quite similar observations with 
respect to the use of exponential hfetime distributions to estimate the effectiveness 
of generational garbage collection schemes [Bak93]. 
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this is a s i tuat ion tha t  occurs regularly in the space of possible combinations of 
real workloads and reasonable strategies. ( I t ' s  clear that  it is not the usual case, 
however.) The  terrain of tha t  space is quite mysterious to us. 

A n o t e  o n  M a r k o v  m o d e l s .  Many probabilistic studies of memory  allocation 
have used first-order Markov processes to approximate  program and Mlocator 
behavior,  and have derived conclusions based on the well-understood properties 
of Markov models. 

In a first-order Markov model, the probabilities of state transitions are known 
and fixed. In the case of f ragmenta t ion studies, this corresponds to assuming tha t  
a p rogram allocates objects at random, with fixed probabilities of allocating 
different sizes. 

The  space of possible states of memory  is viewed as a graph, with a node for 
each configuration. There is a start  state, representing an empty  memory,  and 
a transit ion probabil i ty  for each possible allocation size. For a given placement  
policy, there will be a known transition from a given state for any possible 
allocation or deallocation request. The state reached by each possible allocation 
is another  configuration of memory.  

For any given request distribution, there is a network of possible states reach- 
able f rom the s tar t  state, via successions of more or less probable transitions. In 
general, for any memory  above a very, very smM1 size, and for arbi trary distrib- 
utions of sizes and lifetimes, this network is inconceivably large. As described so 
far, it is therefore useless for any practical analyses. 

To make  the problem more tractable,  certain assumptions are often made.  
One of these is tha t  lifetimes are exponential ly distributed as well as random, and 
have the convenient half-life proper ty  described above, i.e., they die completely 
at r andom as well as being born at  random. 

This  assumption can be used to ensure that  both the states and the tran- 
sitions between states have definite probabilities in the long run. Tha t  is, if 
one were to run a random-trace  simulation for a long enough period of t ime, 
all reachable states would be reached, and all of them would be reached many  
t i m e s - - a n d  the number  of t imes they were reached would reflect the probabili-  
ties of their being reached again in the future, if the simulation were continued 
indefinitely. I f  we put  a counter on each of the states to keep track of the number  
of t imes each s tate  was reached, the rat io between these counts would eventually 
stabilize, plus or minus small shor t - term variations. The relative weights of the 
counters would "converge" to a stable solution. 

Such a network of states is called an ergodic Markov model,  and it has very 
convenient ma themat ica l  properties. In some cases, i t 's  possible to avoid running 
a simulation at all, and analytically derive what the network's  probabiblit ies 
would converge to. 

Unfortunately,  this is a very inappropriate  model for real program and al- 
locator behavior.  An ergodic Markov model is a kind of (probabilistic) finite 
au tomaton ,  and as such the pat terns  it generates are very, very simple, though 
randomized and hence unpredictable. They ' re  almost  unpatterned,  in fact, and 

hence very predictable in a certain probabilistic sense. 
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Such an au tomaton  is extremely unlikely to generate m a n y  pat terns  that  
seem likely to be impor tan t  in real programs,  such as the creation of the objects 
in a linked list in one order, and their later destruction in exactly the same 
order, or exactly the reverse order. 24 There are much more powerful kinds of 
machines- -which  have more complex state, like a real p rog ram- -wh ich  are ca- 
pable of generating more realistic patterns.  Unfortunately,  the only machines 
tha t  we are sure generate the "right kinds" of pat terns  are actual  real programs.  

We do not understand what  regularities exist in real programs well enough 
to model them formally and perform probabilistic analyses tha t  are directly 
applicable to real program behavior.  The models we have are grossly inaccurate 
in respects tha t  are quite relevant to problems of memory  allocation. 

There are problems for which Markov models are useful, and a smaller num- 
ber of  problems where assumptions of ergodicity are appropriate .  These problems 
involve processes that  are literally random, or can be shown to be effectively ran- 
dom in the necessary ways. The  general heap allocation problem is not in either 
category. (If this is not clear, the next section should make it much clearer.) 

Ergodic Markov models are also sometimes used for problems where the basic 
assumptions are known to be false in some cases - -bu t  they should only be used in 
this way if they can be validated, i.e., shown by extensive testing to produce the 
right answers most  of the t ime, despite the oversimplifications they ' re  based on. 
For some problems it "just turns out" that  the differences between real systems 
and the mathemat ica l  models are not usually significant. For the general problem 
of memory  allocation, this turns out to be false as wel l - - recent  results clearly 
invalidate the use of simple Markov models [ZG94, WJNB95] 25 

24 Technically, a Markov model will eventually generate such patterns, but the proba- 
bility of generating a particular pattern within a finite period of time is vanishingly 
small if the pattern is large and not very strongly reflected in the arc weights. That is, 
many quite probable kinds of patterns are extremely improbable in a simple Markov 
model. 

25 It might seem that the problem here is the use of first-order Markov models, whose 
states (nodes in the reachability graph) correspond directly to states of memory, and 
that perhaps "higher-order" Markov models would work, where nodes in the graph 
represent sequences of concrete state transitions. However, we do not believe these 
higher-order models will work any better than first-order models do. 

The important kinds of patterns produced by real programs are generally not 
simple very-short-term sequences of a few events, but large-scale patterns involving 
many events. To capture these, a Markov model would have to be of such high 
order that analyses would be completely infeasible. It would essentially have to be 
pre-programmed to generate specific literal sequences of events. This not only begs 
the essential question of what real programs do, but seems certain not to concisely 
capture the right regularities. 

Markov models are simply not powerful enough--i.e., not abstract enough in the 
right ways--to help with this problem. They should not be used for this purpose, 
or any similarly poorly understood purpose, where complex patterns may be very 
important. (At least, not without extensive validation.) The fact that the regularities 
are complex and unknown is not a good reason to assume that they're effectively 
random [ZG94, WJNB95] (Section 4.2). 
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2.3 W h a t  Fragmentat ion  Really Is, and Why  the Traditional 
Approach  is U n s o u n d  

A single death is a tragedy. A million deaths is a statistic. 
- -Joseph Stalin 

We suggested above tha t  the shape of a size distribution (and its smoothness) 
might  be impor tan t  in determining the f ragmentat ion caused by a workload. 
However, even if the distributions are completely realistic, there is reason to 
suspect tha t  randomized synthetic traces are likely to be grossly unrealistic. 

As we said earlier, the allocator should embody  a s trategy designed to exploit 
regularities in p rogram behavior - -o therwise  it cannot be expected to do partic- 
ularly well. The use of randomized allocation order eliminates some regularities 
in workloads, and introduces others, and there is every reason to think tha t  
the differences in regularities will affect the performance of different strategies 
differently. To make  this concrete, we must  understand f ragmentat ion and its 
Causes. 

The technical distinction between internal and external f ragmenta t ion is use- 
ful, but  in a t t empt ing  to design experiments  measuring fragmentat ion,  it is 
worthwhile to stop for a momen t  and consider what f ragmentat ion really is, 
and how it arises. 

Fragmenta t ion  is the inability to reuse memory  that  is free. This can be due 
to policy choices by the allocator, which may  choose not to reuse memory  that  
in principle could be reused. More impor tan t ly  for our purposes, the allocator 
m a y  not have a choice at the moment  an allocation request must  be serviced: 
there m a y  be free areas that  are too small  to service the request and whose 
neighbors are not free, making it impossible to coalesce adjacent free areas into 
a sufficiently large contiguous block. 26 

Note tha t  for this lat ter  (and more fundamental)  kind of f ragmentat ion,  the 
problem is a function both of the p rogram's  request s t ream and the allocator 's  
choices of where to allocate the requested objects. In satisfying a request, the 
al locator usually has considerable leeway; it may  place the requested object in 
any sufficiently large free area. On the other hand, the allocator has no control 
over the ordering of requests for different-sized pieces of memory,  or when objects 
are freed. 

We have not made the notion of f ragmentat ion particularly clear or quan- 
tifiable here, and this is no accident. An allocator 's  inability to reuse memory  
depends not only on the number  and sizes of holes, but on the future behavior 

26 Beck [Bec82] makes the only clear statement of this principle which we have found in 
our exhausting review of the literature. As we will explain later (in our chronological 
review, Section 4.1), Beck also made some important inferences from this principle, 
but his theoretical model and his empirical methodology were weakened by working 
within the dominant paradigm. His paper is seldom cited, and its important ideas 
have generally gone unnoticed. 
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of the program, and the future responses of the allocator itself. (That  is, it is a 
complex mat ter  of interactions between patterned workloads and strategies.) 

For example, suppose there are 100 free blocks of size 10, and 200 free blocks 
of size 20. Is memory highly fragmented? It depends. If future requests are all for 
size 10, most allocators will do just fine, using the size 10 blocks, and splitting 
the size 20 blocks as necessary. But if the future requests are for blocks of size 
30, that 's  a problem. Also, if the future requests are for 100 blocks of size 10 
and 200 blocks of size 20, whether it's a problem may depend on the order in 
which the requests arrive and the allocator's moment-by-moment  decisions as to 
where to place them. Best fit will do well for this example, but  other allocators 
do better  for some other examples where best fit performs abysmally. 

We leave the concept of fragmentation somewhat poorly defined, because in 
the general case the actual phenomenon is poorly defined. 27 

F r a g m e n t a t i o n  is c a u s e d  b y  i s o l a t e d  d e a t h s .  A crucial issue is the creation 
of free areas whose neighboring areas are not free. This is a function of two 
things: which objects are placed in adjacent areas and when those objects die. 
Notice that if the allocator places objects together in memory, and they die 
"at the same time" (with no intervening allocations), no fragmentat ion results: 
the objects are live at the same time, using contiguous memory, and when they 
die they free contiguous memory. An allocator that  can predict which objects 
will die at approximately the same time can exploit that  information to reduce 
fragmentation, by placing those objects in contiguous memory. 

F r a g m e n t a t i o n  is c a u s e d  b y  t i m e - v a r y i n g  b e h a v i o r .  Fragmentation arises 
from changes in the way a program uses memory- - fo r  example, freeing small 
blocks and requesting large ones. This much is obvious, but  it is impor tant  to 
consider patterns in the changing behavior of a program, such as the freeing 
of large numbers of objects and the allocation of large numbers of objects of 
different types. Many programs allocate and free different kinds of objects in 
different stereotyped ways. Some kinds of objects accumulate over time, but  
other kinds may be used in bursty patterns. (This will be discussed in more 
detail in Section 2.4.) The  allocator's job is to exploit these patterns, if possible, 
or at least not let the patterns undermine its strategy. 

27 Our concept of fragmentation has been called "startlingly nonoperational," and we 
must confess that it is, to some degree. We think that this is a strength, however, 
because it is better to leave a concept somewhat vague than to define it prema- 
turely and incorrectly. It is important to first identify the "natural kinds" in the 
phenomena under study, and then figure out what their most important character- 
istics are [Kri72]. (We are currently working on developing operational measures of 
"fragmentation-related" program behavior.) 

Later in the paper we will express experimental "fragmentation" results as per- 
centages, but this should be viewed as an operational shorthand for the effects of 
fragmentation on memory usage at whatever point or points in program execution 
measurements were made; this should be clear in context. 
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I m p l i c a t i o n s  f o r  e x p e r i m e n t a l  m e t h o d o l o g y .  (Note: this section is con- 
cerned only with experimental  techniques; uninterested readers may skip to the 
following section.) 

The tradit ional methodology of using random program behavior implicitly 
assumes that  there is no ordering information in the request stream that could 
be exploited by the allocator--i .e. ,  there's nothing in the sequencing of requests 
which the allocator will use as a hint to suggest which objects should be allocated 
adjacent to which other objects. Given a random request stream, the allocator 
has little control--wherever  objects are placed by the allocator, they die at 
random, randomly creating holes among the live objects. If some allocators do 
in fact tend to exploit real regularities in the request stream, the randomization 
of the order of object creations (in simulations) ensures that the information 
is discarded before the allocator can use it. Likewise, if an algorithm tends to 
systematically make mistakes when faced with real patterns of allocations and 
deallocations, randomization may hide that  fact. 

It should be clear that  random object deaths may systematically create seri- 
ous fragmentat ion in ways that  are unlikely to be realistic. Randomization also 
has a potentially large effect on large-scale aggregate behavior of large numbers 
of objects. In real programs, the total volume of objects varies over time, and 
often the relative volumes of objects of different sizes varies as well. This often 
occurs due to phase behavior--some phases may use many more objects than 
others, and the objects used by one phase may be of very different sizes than 
those used by another phase. 

Now consider a randomized synthetic t race- - the  overall volume of objects is 
determined by a random walk, so that  the volume of objects rises gradually until 
a steady state is reached. Likewise the volume of memory allocated to objects 
of a given size is a similar random walk. If the number of objects of a given size 
is large, the random walk will tend to be relatively smooth, with mostly gradual 
and small changes in overall allocated volume. This implies that  the proportions 
of  memory  allocated to different-sized objects tends to be relatively stable. 

This has major  implications for external fragmentation. External fragmenta- 
tion means that  there are fl'ee blocks of memory of some sizes, but those are the 
wrong sizes to satisfy current needs. This happens when objects of one size are 
freed, and then objects of another size are a l located-- that  is, when there is an 
unfortunate change in the relative proportions of objects of one size and objects 
of a larger size. (For allocators tha t  never split blocks, this can happen with 
requests for smaller sizes as well.) For synthetic random traces, this is less likely 
to occur - - they  don' t  systematically free objects of one size and then allocate 
objects of another. Instead, they tend to allocate and free objects of different 
sizes in relatively stable proportions. This minimizes the need to coalesce ad- 
jacent free areas to avoid fragmentation; on average, a free memory block of 
a given size will be reused relatively soon. This may bias experimental results 
by hiding an allocator's inability to deal well with external fragmentation, and 
favor allocators that  deal well with internal fragmentation at a cost in external 
fragmentation. 
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Notice that  while random deaths cause fragmentation, the aggregate behavior 
of random walks may reduce the extent of the problem. For some allocators, this 
balance of unrealistically bad and unrealistically good properties may  average 
out to something like realism, but for others it may not. Even i f - -by  sheer 
luck-- random traces turn out to yield realistic fragmentat ion "on average," over 
many allocators, they are inadequate for comparing different allocators, which 
is usually the primary goal of such studies. 

2.4 S o m e  R e a l  P r o g r a m  B e h a v i o r s  

...and suddenly the memory  returns. 
--Marcel Proust, Swann's Way 

Real programs do not generally behave r andomly- - they  are designed to solve 
actual problems, and the methods chosen to solve those problems have a strong 
effect on their patterns of memory usage. To begin to understand the alloca- 
tot 's  task, it is necessary to have a general understanding of program behavior. 
This understanding is almost absent in the literature on memory allocators, 
apparently because many researchers consider the infinite variation of possible 
program behaviors to be too daunting. 

There are strong regularities in many real programs, however, because sim- 
ilar techniques are applied (in different combinations) to solve many problems. 
Several common patterns have been observed. 

R a m p s ,  pe a ks ,  a n d  p l a t e a u s .  In terms of overall memory usage over time, 
three patterns have been observed in a variety of programs in a variety of con- 
texts. Not all programs exhibit all of these patterns, but most seem to exhibit one 
or two of them, or all three, to some degree. Any generalizations based on these 
patterns must therefore be qualitative and qualified. (This implies that  to under- 
stand the quantitat ive importance of these patterns, a small set of programs is 
not sufficient.) 

- Ramps. Many programs accumulate certain data  structures monotonically 
over time. This may be because they keep a log of events, or because the 
problem-solving strategy requires building a large representation, after which 
a solution can be found quickly. 

- Peaks. Many programs use memory in bursty patterns, building up relatively 
large data  structures which are used for the duration of a particular phase, 
and then discarding most or M1 of those data  structures. Note that  the 
"surviving" data  structures are likely to be of different types, because they 
represent the results of a phase, as opposed to intermediate values which may 
be represented differently. (A peak is like a ramp, but  of shorter duration.) 

- Plateaus. Many programs build up da ta  structures quickly, and then use 
those da ta  structures for long periods (often nearly the whole running t ime 
of the program). 
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These patterns are well-known, from anecdotal experience by many people 
(e.g., [Ros67, Han90]), from research on garbage collection (e.g., [Whi80, WM89, 
UJ88, Hay91, Hay93, BZ95, Wi195]), 2s and from a recent study of C and C + +  
programs [WJNB95]. 

(Other patterns of overall memory usage also occur, but appear less com- 
mon. As we describe in Section 4, backward ramp functions have been observed 
[GM85]. Combined forward and backward ramp behavior has also been observed, 
with one data  structure shrinking as another grows [Abr67].) 

Notice that  in the case of ramps and ramp-shaped peaks, looking at the 
statistical distributions of object lifetimes may be very misleading. A statistical 
distribution suggests a random decay process of some sort, but it may actually 
reflect sudden deaths of groups of objects that  are born at different times. The 
difference between these two models, in terms of fragmentation, is major. For a 
statistical decay process, the allocator is faced with isolated deaths, which are 
likely to cause fragmentation. For a phased process where many objects often 
die at the same time, the allocator is presented with an opportunity to get back 
a significant amount  of memory all at once. 

In real programs, these patterns may be composed in different ways at dif- 
ferent scales of space and time. A ramp may be viewed as a kind of peak that  
grows over the entire duration of program execution. (The distinction between a 
ramp and a peak is not precise, but  we tend to use "ramp" to refer to something 
that  grows slowly over the whole of a program, and drops off suddenly at the 
end, and "peak" to refer to faster-growing volumes of objects that  are discarded 
before the end of execution. A peak may also be flat on top, making it a kind of 
tall, skinny plateau.) 

Whether the overall long-term pattern is often a ramp or plateau, it often 
has smaller features (peaks or plateus) added to it. This crude model of program 
behavior is thus recursive. (We note that  it is not generally fracta129--features 
at one scale may bear no resemblance to features at another scale. At tempting 
to characterize the behavior of a program by a simple number such as fractal 
dimension is not appropriate, because program behavior is not that  simple, a~ ) 

e8 It may be thought that garbage collected systems are sufficiently different from 
those using conventional storage management that these results are not relevant. It 
appears, however, that these patterns are common in both kinds of systems, because 
similar problem-solving strategies are used by programmers in both kinds of systems. 
(For any particular problem, different qualitative program behaviors may result, but 
the general categories seem to be common in conventional programs as well. See 
[WJNB95].) 

29 We are using the term "fractal" rather loosely, as is common in this area. Typically, 
"fractal" models of program behavior are not infinitely recursive, and are actually 
graftals or other finite fractal-like recursive entities. 

30 We believe that this applies to studies of locality of reference as well. Attempts to 
characterize memory referencing behavior as fractal-like (e.g., [VMH+83, Thi89]) are 
ill-conceived or severely limited--if only because memory allocation behavior is not 
generally fractal, and memory-referencing behavior depends on memory allocation 
policy. (We suspect that it's ill-conceived for understanding program behavior at 
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Ramps,  peaks, and plateus have very different implications for f ragmentat ion.  
An overall r amp  or plateau profile has a very convenient property,  in that  

if short- term fragmentat ion can be avoided, long term fragmentat ion is not a 
problem either. Since the da ta  making up a plateau are stable, and those mak-  
ing up a r amp  accumulate  monotonically, inabili ty to reuse freed memory  is not 
an issue--nothing is freed until the end of program execution. Short - term frag- 
menta t ion can be a cumulat ive problem, however, leaving m a n y  small holes in 
the mass of long lived-objects. 

Peaks and tall, skinny plateaus can pose a challenge in terms of fragmen- 
tation, since many  objects are allocated and freed, and many  other objects are 
likely to be allocated and freed later. I f  an earlier phase leaves scattered survivors, 
it may  cause problems for later phases that  must  use the spaces in between. 

More generally, phase behavior is the major  cause of f r agmen ta t ion - - i f  a 
program's  needs for blocks of part icular  sizes change over t ime in an awkward 
way. If  m a n y  small objects are freed at the end of a phase - -bu t  scattered objects 
su rv ive - -a  later phase may  run into trouble. On the other hand, if the survivors 
happen to have been placed together, large contiguous areas will come free. 

F r a g m e n t a t i o n  a t  p e a k s  is i m p o r t a n t .  Not all periods of program execution 
are equal. The most  impor tan t  periods are usually those when the most  memory  
is used. Fragmentat ion is less impor tan t  at t imes of lower overall memory  usage 
than it is when memory  usage is "at its peak," either during a short-lived peak 
or near the end of a r amp of gradually increasing memory  usage. This means 
that  average f ragmentat ion is less impor tan t  than peak f ragmenta t ion- -sca t te red  
holes in the heap most of the time may not be a problem if those holes are well- 
filled when it counts. 

This has implications for the interpretat ion of analyses and simulations based 
on steady-state behavior (i.e., equilibrium conditions). Real programs may  ex- 
hibit some steady-state  behavior,  but  there are usually ramps  and /or  peaks as 
well. It  appears  tha t  most programs never reach a truly steady state, and if they 
reach a t empora ry  steady state, it may not matter much. (It can matter ,  how- 
ever, because earlier phases m a y  result in a configuration of blocks that  is more 
or less problematic  later on, at peak usage.) 

Overall memory  usage is not the whole story, of course. Locality of reference 
mat ters  as well. All other things being equal, however, a larger total  "footprint" 

the level of references to objects, as well as at the level of references to memory.) If 
the fractal concept is used in a strong sense, we believe it is simply wrong. If it is 
taken in a weak sense, we believe it conveys little useful information that couldn't 
be better summarized by simple statistical curve-fitting; using a fractal conceptual 
framework tends to obscure more issues than it clarifies. Average program behavior 
may resemble a fractal, because similar features can occur at different scales in 
different programs; however, an individual program's behavior is not fractal-like in 
general, any more than it is a simple Markov process. Both kinds of models fail 
to capture the "irregularly regular" and scale-dependent kinds of patterns that are 
most important. 
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matters  even for locality. In virtual memories, many programs never page at 
all, or suffer dramatic  performance degradations if they do. Keeping the overall 
memory usage lower makes this less likely to happen. (In a time-shared machine, 
a larger footprint is likely to mean that a different process has its pages evicted 
when the peak is reached, rather than its own less-recently-used pages.) 

E x p l o i t i n g  o r d e r i n g  a n d  size d e p e n d e n c i e s .  If the Mlocator can exploit 
the phase information from the request stream, it may be able to place objects 
that  will die at about the same time in a contiguous area of memory. This may 
suggest that  the allocator should be adaptive, 31 but much simpler strategies also 
seem likely to work [WJNB95]: 

- Objects allocated at about the same time are likely to die together at the 
end of a phase; if consecutively-allocated objects are allocated in contiguous 
memory, they will free contiguous memory. 

- Objects of different types may be likely to serve different purposes and die at 
different times. Size is likely to be related to type and purpose, so avoiding 
the intermingling of different sizes (and likely types) of objects may reduce 
the scattering of long-lived objects among short-lived ones. 

This suggests that  objects allocated at about the same time should be al- 
located adjacent to each other in memory, with the possible amendment  that, 
different-sized objects should be segregated [WJNB95]. 32 

h n p l i c a t i o n s  for  s t r a t e g y .  The phased behavior of many programs provides 
an opportuni ty for the allocator to reduce fragmentation. As we said above, if 
successive objects are allocated contiguously and freed at about the same time, 
free memory will again be contiguous. We suspect that  this happens with many 
existing allocators--even though they were not designed with this principle in 
mind, as far as we can tell. It may well be that this accidental "strategy" is the 
major  way that  good allocators keep fragmentation low. 

31 Barrett and Zorn have recently built an allocator using profile information to heuris- 
tically separate long-lived objects from short-lived ones [BZ93]. (Section 4.2.) 

32 We have not found any other mention of these heuristics in the literature, although 
somewhat similar ideas underlie the "zone" allocator of Ross [Ros67] and Hanson's 
"obstack" system (both discussed later). Beck [Bec82], Delners et al., and and Barrett 
and Zorn [BZ93] have developed systems that predict the lifetimes of objects for 
similar purposes, but we note that it is not necessary to predict w~Lich groups of 
objects will die when. It is only necessary to predict which groups of objects will die 
at similar times, and which will die at dissimilar times, without worrying about which 
group will die first. We refer to tlfis as "death time discrimination." This simpler 
discrimination seems easier to achieve than lifetime prediction, and possibly more 
robust. Intuitively, it also seems more directly related to the causes of fragmentation. 
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I m p l i c a t i o n s  fo r  r e s e a r c h .  A major  goal of allocator research should be to 
determine which patterns are common, and which can be exploited (or at least 
guarded against). Strategies that  work well for one program may work poorly for 
another, but it may be possible to combine strategies in a single robust policy 
that  works well for almost all programs. If that  fails, it may  be possible to have 
a small set of allocators with different properties, at least one of which works 
well for the vast major i ty  of real problems. 

We caution against blindly experimenting with different combinations of pro- 
grams and complex, optimized allocators, however. It is more impor tant  to de- 
termine what regularities exist in real program behavior, and only then decide 
which strategies are most appropriate, and which good strategies can be com- 
bined successfully. This is not to say that  experiments with many variations on 
many  designs aren' t  useful--we're in the midst of such experiments ourselves--  
but  that  the goal should be to identify fundamental  interactions rather than just  
"hacking" on things until they work well for a few test applications. 

P r o f i l e s  o f  s o m e  r ea l  p r o g r a m s .  To make our discussion of memory usage 
patterns more concrete, we will present profiles of memory use for some real 
programs. Each figure plots the overall amount  of live data  for a run of the 
program, and also the amounts  of data  allocated to objects of the five most 
popular  sizes. ("Populari ty" here means most volume allocated, i.e., sum of sizes, 
rather than object counts.) These are profiles of program behavior, independent 
of any particular allocator. 

GCC. Figure 1 shows memory usage for GCC, the GNU C compiler, compiling 
the largest file of its own source code (combine. c). (A high optimization switch 
was used, encouraging the compiler to perform extensive inlining, analyses, and 
optimization.) We used a trace processor to remove "obstack" allocation from 
the trace, creating a trace with the equivalent allocations and frees of individual 
objects; obstacks are heavily used in this program. 33 The use of obstacks may 
affect programming style and memory usage patterns; however, we suspect that  
the memory usage patterns would be similar without obstacks, and that  obstacks 
are simply used to exploit them. 34 

This is a heavily phased program, with several strong and similar peaks. 
These are two-horned peaks, where one (large) size is allocated and deallocated, 
and much smaller size is allocated, out of phase. (This is an unusual feature, in 
our limited experience.) Notice that  this program exhibits very different usage 
profiles for different sized objects. The use of one size is nearly steady, another 
is strongly peaked, and another is peaked, but  different. 

s3 See the discussion of [Han90] (Section 4.1) for a description of obstacks. 
34 We've seen similarly strong peaks in a profile of a compiler of our own, which relies 

on garbage collection rather than obstacks. 
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Fig.  1. Profile of m em ory  usage in the GNU C compiler. 

G,vbner- Figure 2 shows memory  usage for the Grobner program a5 which de- 
composes complex expressions into linear combinations of polynomials  (Grgbner 
bases), a6 As we understand it, this is done by a process of expression rewriting, 
ra ther  like term rewriting or rewrite-based theorem proving techniques. 

Overall memory  usage tends upward in a general r amp  shape, but with minor 
shor t - term variations, especially small plateaus, while the profiles for usage of 
different-sized objects are roughly similar, their ramps  s tar t  at different points 
during execution and have different slopes and irregularities---the proportions of 
different-sized objects vary somewhat .  

tlypercube. Figure 3 shows memory  usage for a hypercube message-passing sim- 
ulator, writ ten by Don Lindsay while at CMU. I t  exhibits a large and simple 
plateau.  

a5 This program (and the hypercube simulator described below) were also used by 
Detlefs in [Det92] for evaluation of a garbage collector. Based on several kinds of 
profiles, we now think that Detlefs' choice of test programs may have led to an over- 
estimation of the costs of his garbage collector for C++.  Neither of these programs 
is very friendly to a simple GC, especially one without compiler or OS support. 

as The function of this program is rather aaalogous to that of a Fourier transform, but 
the basis functions are polynomials rather than sines and cosines, and the mechanism 
used is quite different. 
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Fig.  2. Profile of memory usage in the Grobner program. 

This program allocates a single very large object near the beginning of execu- 
tion, which lives for almost the entire run; it represents the nodes in a hypercube 
and their interconnections. A very large number of other objects are created, but  
they are small and very short-lived; they represent messages sent between nodes 
randomly. This program quickly reaches a steady state, but  the steady state is 
quite different from the one reached by most randomized allocator s imulat ions--  
a very few sizes are represented, and lifetimes are both extremely skewed and 
strongly correlated with sizes. 

Perl. Figure 4 shows memory usage for a script (program) written in the Perl 
scripting language. This program processes a file of string data. (We're not sure 
exactly what it is doing with the strings, to be honest; we do not really under- 
stand this program.) This program reaches a steady state, with heavily skewed 
usage of different sizes in relatively fixed proportions. (Since Perl is a fairly gen- 
eral and featureful programming language, its memory usage may vary tremen- 
dously depending on the program being executed.) 

LRUsim. Figure 5 shows memory usage for a locality profiler written by Doug 
van Wieren. This program processes a memory reference trace, keeping track 
of how recently each block of memory has been touched and a accumulating a 
histogram of hits to blocks at different recencies (LRU queue positions). At the 
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Fig .  3. Profile of memory  usage in Lindsay's hypercube simulator.  

end of a run, a PostScript grayscale plot of the t ime-varying locality character- 
istics is generated. The recency queue is represented as a large modified AVL 
tree, which dominates  memory  usage- -only  a single object size really mat te rs  
much. At the parameter  setting used for this run, no blocks are ever discarded, 
and the tree grows monotonically; essentially no heap-allocated objects are ever 
freed, so memory  usage is a simple ramp.  At other settings, only a bounded 
number  of i tems are kept in the LRU tree, so that  memory  usage ramps up to a 
very stable plateau.  This program exhibits a kind of dynamic stability, either by 
steady accumulat ion (as shown) or by exactly replacing the least-recently-used 
objects within a plateau (when used with a fixed queue length). 

This is a small and simple program, but  a very real one, in the sense tha t  we 
have used it to tie up m a n y  megabytes  of memory  for about  a trillion instruction 
cycles. 37 

Espresso. Figure 6 shows memory  usage for a run of Espresso, an optimizer for 
p rog rammable  logic array designs. 

37 We suspect that in computing generally, a large fraction of CPU time and memory 
usage is devoted to programs with more complex behavior, but another significant 
fraction is dominated by highly regular behavior of simple useful programs, or by 
long, regular phases of more complex programs. 
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Fig.  4. Profile of memory usage in Perl running a string-processing script. 

Espresso appears to go through several qualitatively different kinds of phases, 
using different sizes of objects in quite different ways. 

Discussion of Program Profiles. In real programs, memory usage is usually 
quite different from the memory usage of randomized traces. Ramps, peaks, 
and plateaus are common, as is heavily skewed usage of a few sizes. Memory 
usage is neither Markov nor interestingly fractal-like in most cases. Many pro- 
grams exhibit large-scale and small-scale patterns which may be of any of the 
common feature types, and different at different scales. Usage of different sizes 
may be strongly correlated, or it may not be, or may  be related in more subtle 
t ime-varying ways. Given the wide variation within this small sample, it is clear 
that  more programs should be profiled to determine which other patterns occur 
in a significant number of programs, and how often various patterns are likely 
to occur. 

S u m m a r y .  In summary, this section makes six related points: 

- Program behavior is usually time-varying, not steady. 
- Peak memory usage is important ;  fragmentation at peaks is more impor tant  

than at intervening points. 
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Fig.  5. Profile of memory usage in van Wieren's locality profiler. 

- Fragmentat ion is caused by time-varying behavior, especially peaks using 
different sizes of objects. 

- Known program behavior invalidates previous experimental and analytical 
results, 

- Nonrandom behavior of programs can be exploited, and 
- Different programs may display characteristically different nonrandom be- 

havior. 

2.5 D e f e r r e d  C o a l e s c i n g  a n d  D e f e r r e d  R e u s e  

D e f e r r e d  coa le sc ing .  Many allocators a t tempt  to avoid coalescing blocks of 
memory  that  may  be repeatedly reused for short-lived objects of the same size. 
This deferred coalescing can be added to any allocator, and usually avoids coa- 
lescing blocks that  will soon be split again to satisfy requests for small objects. 
Blocks of a given size may  be stored on a simple free list, and reused without 
coalescing, splitting, or formatt ing (e.g., putt ing in headers and/or  footers). If 
the application requests the same size block soon after one is freed, the request 
can be satisfied by simply popping the pre-formatted block off of a free list in 
very small constant time. 

While deferred coalescing is traditionally thought  of as a speed optimization, 
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Fig.  6. Profile of memory usage in the Espresso PLA Optimizer. 

it is important  to note that  fragmentation considerations come into play, in three 
ways. 3s 

- The lower fragmentation is, the more impor tant  deferred coalescing will be in 
terms of speed-- i f  adjacent objects generally die at about the same time, ag- 
gressive coalescing and splitting will be particularly expensive, because large 
areas will be coalesced together by repeatedly combining adjacent blocks, 
only to be split again into a large number of smaller blocks. If fragmentat ion 
is low, deferred coalescing may be especially beneficial. 

- Deferred coalescing may have significant effects on fragmentation, by chang- 
ing the allocator's decisions as to which blocks of memory to use to hold 
which objects. For example, blocks cannot be used to satisfy requests for 
larger objects while they remain uncoalesced. Those larger objects may  there- 
fore be allocated in different places than they would have been if small blocks 
were coalesced immediately; that  is, deferred coalescing can affect placement 
policy. 

3s To our knowledge, none of these effects has been noted previously in the literature, 
although it's likely we've seen at least the first but forgotten where. In any event, 
these effects have received little attention, and don't seem to have been studied 
directly. 
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- Deferred coalescing may  decrease locality of reference for the same reason, 
because recently-freed small blocks will usually not be reused to hold larger 
objects. This  may  force the program to touch more different areas of memory  
than  if small blocks were coalesced immediately and quickly used again. 
On the other hand, deferred coalescing is very likely to increase locality 
of reference if used with an allocator that  otherwise would not reuse most  
memory  immed ia t e ly - - the  deferred coalescing mechanism will ensure that  
mos t  freed blocks are reused soon. 

D e f e r r e d  r e u s e .  Another  related not ion--which  is equally poorly under- 
s tood- - i s  deferred reuse. 39 Deferred reuse is a property of some allocators that  
recently-freed blocks tend not to be the soonest reused. For many  allocators, free 
memory  is managed  in a most ly  stack-like way. For others, it is more queue-like, 
with older free blocks tending to be reused in preference to newly-freed blocks. 

Deferred reuse may have effects on locMity, because the al locator 's  choices 
affect which parts  of memory  are used by the p r o g r a m - - t h e  program will tend 
to use m e m o r y  briefly, and then use other memory  before reusing tha t  memory.  

Deferred reuse m a y  also have effects on fragmentat ion,  because newly-allo- 
cated objects will be placed in holes left by old objects that  have died. This  
m a y  make  f ragmenta t ion  worse, by mixing objects created by different phases 
(which m a y  die at different times) in the same area of memory.  On the other 
hand, it m a y  be very beneficial because it may  gradually pack the "older" areas 
of m emory  with long-lived objects, or because it gives the neighbors of a freed 
block more t ime to die before the freed block is reused. Tha t  may  allow slightly 
longer-lived objects to avoid causing much fragmentat ion,  because they will die 
relatively soon, and be coalesced with their neighbors whose reuse was deferred. 

2.6 A S o u n d  M e t h o d o l o g y :  S i m u l a t i o n  U s i n g  R e a l  T r a c e s  

The tradi t ional  view has been that  programs '  f ragmentat ion-causing behavior  
is determined only by their object size and lifetime distributions. Recent exper- 
imental  results show tha t  this is false ([ZG94, WJNB95], Section 4.2), because 
orderings of requests have a large effect on f ragmenta t iom Until a much deeper 
understanding of program behavior is available, and until allocator strategies 
and policies are as well understood as allocator mechanisms, the only reliable 
method  for allocator simulation is to use real traces--i .e. ,  the actual record of 
allocation and deailocation requests from reM programs. 

T r a c i n g  a n d  s i m u l a t i o n .  Allocation traces are not particularly difficult to 
obtain (but see the caveats about  p rogram selection in Section 5.5). A slightly 
modified allocator can be used, which writes information about  each allocation 
and deallocation request to a file--i.e., whether the request is an allocation or 

39 Because it is not generally discussed in any systematic way in the literature, we 
coined this term for this paper. 
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deallocation, the address of the block, and (for allocations) the requested block 
size. This allocator can be linked with a program of interest and used when 
running the program. These traces tend to be long, but they can be stored in 
compressed form, on inexpensive serial media (e.g., magnetic tape),  and later 
processed serially during simulation. (Allocation traces are generally very com- 
pressible, due to the strong regularities in program behavior. 4~ Large amounts 
of disk space and /or  main memory  are not required, although they are certainly 
convenient. 

To use the trace for a simulation, a driver routine reads request records out of 
the file, and submits them to the allocator being tested by calling the allocator 
in the usual way. The driver maintains a table of objects that  are currently 
allocated, which maps the object identifier from the trace file to the address 
where it is allocated during simulation; this allows it to request the deallocation 
of the block when it encounters the deallocation record in the trace. 

This simulated program doesn't  actually do anything with the allocated 
blocks, as a real program would, but  it imitates the real program's  request se- 
quences exactly, which is sufficient for measuring the memory  usage. Modern 
profiling tools [BL92, CK93] can also be used with the simulation program to 
determine how many instruction cycles are spent in the allocator itself. 

An alternative strategy is to actually link the program with a variety of al- 
locators, and actually re-run the program for each "simulation". This has the 
advantage that  the traces needn't  be stored. It has the disadvantages that  it 
requires being able to re-run the program at will (which may depend on having 
similar systems, input data  sets being available and in the right directories, envi- 
ronment variables, etc.) and doesn' t  allow convenient sharing of traces between 
different experimenters for replication of experiments. It also has the obvious 
disadvantage that  instructions spent executing the actual program are wasted, 
but  on fast machines this may be preferable to the cost of trace I /O,  for many 
programs. 

L o c a l i t y  s t u d i e s .  While locality is mostly beyond the scope of this paper, it is 
worth making a few comments about  locality studies. Several tools are available 

40 Conventional text-string-oriented compression algorithms [Nel91] (e.g, UNIX 
compress or GNU gzip) work quite well, although we suspect that sophisticated 
schemes could do significantly better by taking advantage of the numerical prop- 
erties of object identifiers or addresses; such schemes have been proposed for use 
in compressed paging and addressing [WLM91, FP91]. (Text-oriented compression 
generally makes Markov-like modeling assumptions, i.e., that literal sequences are 
likely to occur. This is clearly true to a large degree for allocation and reference 
traces, but other regularities could probably be exploited as well [WB95].) 

Dain Samples [Sam89] used a simple and effective approach for compressing mem- 
ory-reference traces; his "Mache" trace compactor used a simple preprocessor to 
massage the trace into a different format, making the the relevant regularities eas- 
ier for standard string-oriented compression algorithms to recognize and exploit. A 
similarly simple system may work well for allocation traces. 
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to make  it relatively easy to gather memory-reference traces, and severM cache 
and vir tual  memory  simulators are available for processing these traces. 

Larus '  Q P T  tool (a successor to the earlier AE system [BL92]) modifies an 
executable p rogram to make it self-tracing. The Shade tool from SunLabs [CK93] 
is essentially a CPU emulator ,  which runs a program in emulat ion and records 
various kinds of events in an extremely flexible way. For good performance,  it 
uses dynamic  compilat ion techniques to increase speed relative to a s traightford 
interpret ive simulator .  

Either of these systems can save a reference trace to a file, but  the file is 
generally very large for long-running programs.  Another al ternative is to perform 
incremental  simulation, as the trace is recorded--event  records are saved to a 
fairly small  buffer, and batches of event records are passed to a cache s imulator  
which consumes them on the fly. 

Efficient cache simulators are available for processing reference traces, in- 
cluding Mark  Hill 's Tycho and Dinero systems [HS89].41 

3 A Taxonomy of Allocators  

Allocators are typically categorized by the mechanisms they use for recording 
which areas of memory  are free, and for merging adjacent free blocks into larger 
free blocks (coalescing). Equally impor tan t  are the policy and strategy impliea- 
t ions-- i .e . ,  whether the allocator properly exploits the regularities in real request 
s treams.  

In this section, we survey the policy issues and mechanisms in memory  alloca- 
tion; since deferred coalescing can be added to any allocator, it will be discussed 
after the basic general allocator mechanisms have been covered, in Section 3.11. 

3.1 A l l o c a t o r  P o l i c y  I s s u e s  

We believe tha t  there are several impor tan t  policy issues that  must  be made  
clear, and tha t  real al locators '  performance must  be interpreted with regard to 
them: 

- Patterns of Memory Reuse. Are recently-freed blocks reused in preference to 
older free areas? Are free blocks in an area of memory  preferentially reused 

41 Before attempting locality studies, however, allocation researchers should become 
familiar with the rather subtle issues in cache design, in particular the effects and 
interactions of assoeiativity, fetch and prefetch policies, write buffers, victim buffers, 
and subblock placement. 

Such details have been shown to be important in assessing the impact of locality 
of allocation on performance; a program with apparently "poor" locality for a simple 
cache design may do quite well in a memory hierarchy well-suited to its behavior. The 
literature on garbage collection is considerably more sophisticated in terms of locality 
studies than the literature on memory allocation, and should not be overlooked. (See, 
e.g., [BaeT3, KLS92, Wilg0, WLM92, DTMg3, Rei94, GA95, Wi195].) Many of the 
same issues must arise in conventionally-managed heaps as well. 
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for objects of the same size (and perhaps type) as the live objects nearby? 
Are free blocks in some areas reused in preference to free blocks in other 
areas (e.g., preferentially reusing free blocks toward one end of the heap 
area)? 

- Spl i t t ing  and  Coalescing.  Are large free blocks split into smaller blocks to sat- 
isfy requests for smaller objects? Are adjacent free blocks merged into larger 
areas at all? Are all adjacent free areas coalesced, or are there restrictions 
on when coalescing can be done because it simplifies the implementation? Is 
coalescing always done when it's possible, or is it deferred to avoid needless 
merging and splitting over short periods of t ime? 

- Fi ts .  When a block of a particular size is reused, are blocks of about the 
same size used preferentially, or blocks of very different sizes? Or perhaps 
blocks whose sizes are related in some other useful way to the requested size? 

- Spl i t t ing  thresholds.  When a too-large block is used to satisfy a request, is 
it split and the remainder made available for reuse? Or is the remainder 
left unallocated, causing in terna l  f r a g m e n t a t i o n ,  either for implementation 
simplicity or as part  of a policy intended to trade internal fragmentat ion for 
reduced external fragmentation? 

All of these issues may affect overall fragmentation, and should be viewed 
as policies,  even if the reason for a particular choice is to make the mechanism 
(implementation) simpler or faster. They may also have effects on locality; for 
example, reusing recently-freed blocks may increase temporal  locality of reference 
by reusing memory that  is still cached in high-speed memory, in preference to 
memory that  has gone untouched for a longer while. (Locality is beyond the 
scope of this paper, but it is an important  consideration. We believe that  the 
best policies for reducing fragmentation are good for locality as well, by and 
large, but  we will not make that  argument in detail here. 42) 

3.2 S o m e  I m p o r t a n t  L o w - L e v e l  M e c h a n i s m s  

Several techniques are used in different combinations with a variety of alloca- 
tors, and can help make sophisticated policies surprisingly easy to implement 
efficiently. We will describe some very low-level mechanisms that  are pieces of 
several "basic" (higher-level) mechanisms, which in turn implement a policy. 

(The casual reader may wish to skim this section.) 

H e a d e r  f ie lds  a n d  a l i g n m e n t .  Most allocators use a hidden "header" field 
within each block to store useful information. Most commonly, the size of the 
block is recorded in the header. This simplifies freeing, in many  algorithms, 
because most s tandard allocator interfaces (e.g., the standard C f r e e  () routine) 

42 Briefly, we believe that the allocator should heuristically attempt to cluster objects 
that are likely to be used at about the same times and in similar ways. This should 
improve locality [Bae73, WLM91]; it should also increase the chances that adjacent 
objects will die at about the same time, reducing fragmentation. 



39 

do not require a p rogram to pass the size of the freed block to the deallocation 
routine at  deallocation time. 

Typically,  the allocation function (e.g., C's  m a l l o c  ()  memory  allocation rou- 
tine) passes only the requested size, and the allocator returns a pointer to the 
block allocated; the free routine is only passed that  address, and it is up to the 
allocator to infer the size if necessary. (This may  not be true in some systems 
with stronger type systems, where the sizes of objects are usually known at s tat-  
ically. In tha t  case, the compiler may  generate code that  supplies the object size 
to the freeing routine automatically.)  

Other  information may  be stored in the header as well, such as information 
about  whether the block is in use, its relationship to its neighbors, and so on. 
Having information about  the block stored with the block makes many  common 
operat ions fast. 

Header fields are usually one machine word; on most  modern  machines, tha t  
is four 8-bit bytes,  or 32 bits. (For convenience, we will assume tha t  the word 
size is 32 bits, unless indicated otherwise.) In most  situations, there is enough 
room in one machine word to store a size field plus two or three one-bit "flags" 
(boolean fields). This is because most  systems allocate all heap-allocated ob- 
jects on whole-word or double-word address boundaries, but most  hardware is 
byte-addressable.  43 (This constraint  is usually imposed by compilers, because 
hardware issues make unaligned da ta  s lower--or  even i l legal- - to  operate on.) 

This a l ignment  means that  partial  words cannot be a l located--requests  for 
non-integral  numbers  of words are rounded up to the nearest word. The rounding 
to word (or doubleword) boundaries ensures that  the low two (or three) bits of 
a block address are always zero. 

Header fields are convenient, but they consume space--e.g. ,  a word per block. 
It  is common  for block sizes in many  modern systems to average on the order 
of 10 words, give or take a factor of two or so, so a single word per header may  
increase memory  usage by about  10% [BJW70, Ung86, ZG92, DDZ93, WJNB95].  

B o u n d a r y  t a g s .  Many allocators that  support  general coalescing are imple- 
mented using boundary tags (due to Knuth  [Knu73]) to support  the coalescing 
of free areas. Each block of memory  has a both  header and a "footer" field, 
both  of which record the size of the block and whether it is in use. (A footer, 
as the name suggests, is a hidden field withiu the block, at the opposite end 
f rom the header.) When a block is freed, the footer of the preceding block of 
memory  is examined to see if it is free; likewise, the header of the following block 
is examined.  Adjacent free areas are merged to form larger free blocks. 

Header and footer overhead are likely to be s ignif icant--with an average 
object size of about  ten words, for example,  a one-word header incurs a 10% 
overhead and a one-word footer incurs another 10%. 

43 For doubleword aligned systems, it is still possible to use a one-word header while 
maintaining alignment. Blocks are allocated "off by one" from the doubleword boun- 
dary, so that the part of the block that actually stores an object is properly aligned. 
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Luckily there is a simple opt imizat ion tha t  can avoid the footer overhead. 44 
Notice that  when an block is in use (holding a live object),  the size field in 
the footer is not actually needed--al l  tha t  is needed is the flag bit saying tha t  
the storage is unavailable for coalescing. The size field is only needed when the 
block is free, so tha t  its header can be located for coalescing. The size field can 
therefore be taken out of the last word of the block of m e m o r y - - w h e n  the block 
is allocated, it can be used to hold par t  of the object; when the object is freed, 
the size field can be copied f rom the header into the footer, because tha t  space 
is no longer needed to hold par t  of the object.  

The  single bit  needed to indicate whether a block is in use can be stolen f rom 
the header word of the following block without  unduly l imiting the range of the 
size field. 45 

L i n k  f ie lds  w i t h i n  b l o c k s .  For allocators using free lists or indexing trees 
to keep track of free blocks, the list or tree nodes are generally embedded in 
the free blocks themselves. Since only free blocks are recorded, and since their 
space would otherwise be wasted, it is usually considered reasonable to use the 
space within the "empty"  blocks to hold pointers linking them together. Space 
for indexing structures is therefore "free" (almost).  

Many systems use doubly-linked linear lists, with a "previous" and "next" 
pointer  taken out of the free area. This supports  fast coalescing; when objects 
are merged together, at least one of them must  be removed from the linked list so 
tha t  the resulting block will appear  only once in the list. Having pointers to both  
the predecessor and successor of a block makes it possible to quickly remove the 
block from the list, by adjusting those objects '  "next" and "previous" pointers 
to skip the removed object. 

Some other allocators use trees, with space for the "left child" and "right 
child" (and possibly "parent")  pointers taken out of the free area. 

The hidden cost of put t ing link fields within blocks is that  the block must  
be big enough to hold them, along with the header field and footer field, if any. 
This imposes a minimum block size on the allocator implementat ion,  and any 
smaller request must  be rounded up to tha t  size. A common situation is having a 
header with a size field and boundary  tags, plus two pointers in each block. This 
means that  the smallest block size must  be at least three words. (For doubleword 
alignment,  it must  be four.) 

Assuming only the header field is needed on allocated blocks, the effective 
object size is three words for one-, two-, or three-word objects. I f  m a n y  objects 

44 This optimization is described in [StaB0], but it appears not to have been noticed 
and exploited by most implementors of actual systems, or by researchers in recent 
years. 

45 Consider a 32-bit byte-addressed system where blocks may be up to 4GB. As long as 
blocks are word-aligned, the least significant bits of a block address are always zero, 
so those two "low bits" can be used to hold the two flags. In a doubleword-aligned 
system, three "low bits" are available. 
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are only one or two words long- -and  two is fairly common--s ignif icant  space 
m a y  be wasted. 

L o o k u p  t a b l e s .  Some allocators treat  blocks within ranges of sizes s imi la r ly - -  
rather  than  indexing free blocks by their exact size, they lump together blocks 
of roughly the same size. The size range may  also be impor tan t  to the coalescing 
mechanism.  Powers of two are often used, because it is easy to use bit  selection 
techniques on a binary representation of the size to figure out which power-of-two 
range it falls into. Powers of two are coarse, however, and can have drawbacks, 
which we'll discuss later. 

Other  functions (such as Fibonacci series) may  be more useful, but  they are 
more expensive to compute  at run time. A simple and effective solution is to use 
a lookup table, which is s imply an array, indexed by the size, whose values are 
the numbers  of the ranges. To look up which range a size falls into, you simply 
index into the array and fetch the value stored there. This technique is simple 
and very fast. 

I f  the values used to index into the table are potential ly large, however, the 
lookup table itself m a y  be too big. This is often avoided by using lookup tables 
only for values below some threshold (see below). 

S p e c i a l  t r e a t m e n t  o f  s m a l l  o b j e c t s .  In most  systems, many  more small 
objects are allocated than  large ones. It  is therefore often worthwhile to t reat  
small objects specially, in one sense or another. This can usually be done by 
having the allocator check to see if the size is small, and if so, use an optimized 
technique for small values; for large values, it may  use a slower technique. 

One application of this principle is to use a fast allocation technique for 
small objects, and a space-efficient technique for large ones. Another is to use 
fast lookup table techniques for small values, and slower computat ions  for large 
ones, so that  the lookup tables don ' t  take up much space. In this case, consider 
the fact tha t  it is very difficult for a program to use a large number  of large 
objects in a short period of t ime---it  generally must  do something with the space 
it allocates, e.g., initialize the fields of the allocated objects, and presumably do 
something more with at least some of their values. For some modera te  object 
size and above, the possible frequency of allocations is so low tha t  a little extra 
overhead is not significant. (Counterexamples are possible, of course, but we 
believe they are rare.) The basic idea here is to ensure that  the t ime spent 
allocating a block is small  relative to the computat ions  on the da ta  it holds. 

S p e c i a l  t r e a t m e n t  o f  t h e  e n d  b l o c k  o f  t h e  h e a p .  The  allocator allocates 
memory  to programs on request, but  the allocator itself must  get memory  from 
somewhere. The  mos t  common si tutat ion in modern systems is tha t  the heap 
occupies a range of virtual addresses and grows "upward" through the address 
space. To request more (virtual) memory,  a system call such as the UNIX b r k  ( )46 

46 brk () is often called indirectly, via the library routine sbrk( ) .  
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call is used to request that  storage be mapped to that  region of address space, so 
that  it can be used to hold data. 47 Typically, the allocator keeps a "high-water 
mark" that  divides memory into the part  that  is backed by storage and the part  
that  is not. 

(In systems with a fixed memory, such as some non-virtual memory systems, 
many allocators maintain a similar high-water mark for their own purposes, to 
keep track of which part  of memory is in use and which part  is a large contiguous 
free space.) 

We will generally assume that  a paged virtual memory is in use. In that  
case, the system call that  obtains more memory obtains some integral number 
of pages, (e.g., 4KB, 8KB, 12KB, or 16KB on a machine with 4KB pages.) If 
a larger block is requested, a larger request (for as many pages as necessary) is 
made.  

Typically the allocator requests memory from the operating system when it 
cannot otherwise satisfy a memory request, but it actually only needs a small 
amount  of memory to satisfy the request (e.g., 10 words). This raises the question 
of what is done with the rest of the memory returned by the operating system. 

While this seems like a trivial bookkeeping matter ,  it appears that  the treat- 
ment of this "end block" of memory may have significant policy consequences 
under some circumstances. (We will return to this issue in Section 3.5.) 

3.3 Bas ic  M e c h a n i s m s  

We will now present a relatively conventional taxonomy of allocators, based 
mostly on mechanisms, but  along the way we will point out policy issues, and 
alternative mechanisms that  can implement similar policies. (We would prefer 
a strategy-based taxonomy, but strategy issues are so poorly understood that  
they would provide little structure. Our taxonomy is therefore roughly similar 
to some previous ones (particularly Standish's [Sta80]), but  more complete.) 

The basic allocator mechanisms we discuss are: 

- Sequent ia l  Fi ts ,  including first fit, next fit, best fit, and worst fit, 
- Segregated Free  Lis ts ,  including simple segregated storage and segregated 

fits, 
- B u d d y  Sys t ems ,  including conventional binary, weighted, and Fibonacci bud- 

dies, and double buddies, 
- Indexed  Fits ,  which use structured indexes to implement a desired fit policy, 

and 
- B i t m a p p e d  Fi ts ,  which are a particular kind of indexed fits. 

The  section on sequential fits, below, is particularly im p o r t an t - -m an y  basic 
policy issues arise there, and the policy discussion is applicable to many different 
mechanisms. 

47 Other arrangements are possible. For example, the heap could be backed by a (grow- 
able) memory-mapped file, or several files mapped to non-contiguous ranges of ad- 
dress space. 
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After describing these basic allocators, we will discuss deferred coalescing 
techniques applicable to all of them. 

3.4 Sequential  Fits  

Several classic allocator algorithms are based on having a single linear list of all 
free blocks of memory. (The list is often doubly-linked and/or  circularly-linked.) 
Typically, sequential fits algorithms use Knuth 's  boundary tag technique, and a 
doubly-linked list to make coalescing simple and fast. 

In considering sequential fits, it is probably most important  to keep strategy 
and policy issues in mind. The classic linear-list implementations may not scale 
well to large heaps, in terms of time costs; as the number of free blocks grows, the 
t ime to search the list may become unacceptable. 4s More efficient and scalable 
techniques are available, using totally or partially ordered trees, or segregated 
fits (see Section 3.6).49 

Best fit. A best fit sequential fits allocator searches the free list to find the 
smallest free block large enough to satisfy a request. The basic strategy here is 
to minimize the amount  of wasted space by ensuring that  fragments are as small 
as possible. This strategy might backfire in practice, if the fits are too good, but 
not perfect-- in  that  case, most of each block will be used, and the remainder 
will be quite small and perhaps unusable. ~~ 

In the general case, a best fit search is exhaustive, although it may stop 
when a perfect fit is found. This exhaustive search means that  a sequential 
best fit search does not scale well to large heaps with many free blocks. (Better 
implementations of the best fit policy therefore generally use indexed fits or 
segregated fits mechanisms, described later.) 

Best fit generally exhibits quite good memory usage (in studies using both 
synthetic and real traces). Various scalable implementations have been built 
using balanced binary trees, self-adjusting trees, and segregated fits (discussed 
later). 

The  worst-case performance of best fit is poor, with its memory usage pro- 
portional to the product  of the amount  of allocated data  and the ratio between 
the largest and smallest object size (i.e., Mn) [GGU72, Rob77]. This appears 
not to happen in practice, or at least not commonly. 

48 This is not necessarilv true, of course, because the average search time may be much 
lower than the worst case. For robustly good performance, however, it appears that 
simple linear lists shotfld generally be avoided for large heaps. 

49 The confusion of mechanism with strategy and policy has sometimes hampered ex- 
perimental evaluations; even after obviously scalable implementations had been dis- 
cussed in the literature, later researchers often excluded sequential fit policies from 
consideration due to their apparent time costs. 

50 This potential accumulation of small fragments (often called "splinters" or "saw- 
dust") was noted by Knuth [Knu73], but it seems not to be a serious problem for 
best fit, with either real or synthetic worldoads. 



44 

First fit. First fit simply searches the list from the beginning, and uses the 
first free block large enough to satisfy the request. If the block is larger than 
necessary, it is split and the remainder is put  on the free list. 

A problem with sequential first fit is that  the larger blocks near the beginning 
of the list tend to be split first, and the remaining fragments result in having a 
lot of small blocks near the beginning of the list. These "splinters" can increase 
search times because many small free blocks accumulate, and the search must 
go past them each t ime a larger block is requested. Classic (linear) first fit 
therefore may scale poorly to systems in which many objects are allocated and 
many different-sized free blocks accumulate. 

As with best fit, however, more scalable implementations of first fit are pos- 
sible, using more sophisticated data  structures. This is somewhat more difficult 
for first fit, however, because a first fit search must find the first block that  is 
also large enough to hold the object being allocated. (These techniques will be 
discussed under the heading of Indexed Fits, in Section 3.8.) 

This brings up an important  policy question: what ordering is used so that  
the "first" fit can be found? When a block is freed, at what position is it inserted 
into the ordered set of free blocks? The most obvious ordering is probably to 
simply push the block onto the front of the free list. Recently-freed blocks would 
therefore be "first," and tend to be reused quickly, in LIFO (last-in-first-out) 
order. In that  case, freeing is very fast but  allocation requires a sequentiM search. 
Another possibility is to insert blocks in the list in address order, requiring list 
searches when blocks are freed, as well as when they are allocated. 

An advantage of address-ordered first fit is that  the address ordering encodes 
the adjacency of free blocks; this information can be used to support  fast coa- 
lescing. No boundary tags or double linking (backpointers) are necessary. This 
can decrease the minimum object size relative to other schemes. 51 

In experiments with both real and synthetic traces, it appears tha t  address- 
ordered first fit may  cause significantly less fragmentation than LIFO-ordered 
first fit (e.g., [WelT6, WJNB95]); the address-ordered variant is the most studied, 
and apparently the most used. 

Another Mternative is to simply push freed blocks onto the rearof a (doubly- 
linked) list, opposite the end where searches begin. This results in a FIFO 
(first-in-first-out) queue-like pat tern of memory use. This variant has not been 
considered in most studies, but recent results suggest that  it can work quite 
wel l - -bet ter  than the LIFO ordering, and perhaps as well as address ordering 
[WJNB95]. 

51 Another possible implementation of address-ordered first fit is to use a linked list 
of all blocks, allocated or free, and use a size field in the header of each block as a 
"relative" pointer (offset) to the beginning of the next block. This avoids the need to 
store a separate link field, making the minimum object size quite small. (We've never 
seen this technique described, but would be surprised if it hasn't been used before, 
perhaps in some of the allocators described in [KV85].) If used straightforwardly, 
such a system is likely to scale very poorly, because live blocks must be traversed 
during search, but this technique might be useful in combination with some other 
indexing structure. 
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A first fit policy may tend over t ime toward behaving rather like best fit, 
because blocks near the front of the list are split preferentially, this may result in 
a roughly size-sorted list. 52 Whether  this happens for real workloads is unknown. 

Next fit. A common "optimization" of first fit is to use a roving pointer for allo- 
cation [Knu73]. The pointer records the position where the last search was sat- 
isfied, and the next search begins from there. Successive searches cycle through 
the free list, so that  searches do not always begin in the same place and result in 
an accumulation of splinters. The usual rationale for this is to decrease average 
search times when using a linear list, but this implementation technique has 
major  effects on the policy (and effective strategy) for memory reuse. 

Since the roving pointer cycles through memory regularly, objects from dif- 
ferent phases of program execution may become interspersed in memory. This 
may  affect fragmentat ion if objects from different phases have different expected 
lifetimes. (It may  also seriously affect locality. The roving pointer itself may  have 
bad locality characteristics, since it examines each free block before touching the 
same block again. Worse, it may affect the locality of the program it allocates 
for, by scattering objects used by certain phases and intermingling them with 
objects used by other phases.) 

In several experiments using both real traces [WJNB95] and synthetic traces 
(e.g., [Bay77, Wei76, Pag84, KV85]), next fit has been shown to cause more frag- 
mentat ion than best fit or address-ordered first fit, and the LIFO-order variant 
may  be significantly worse than address order [WJNB95]. 

As with the other sequential fits algorithms, scalable implementations of next 
fit are possible using various kinds of trees rather than linear lists. 

3.5 D i s c u s s i o n  o f  S e q u e n t i a l  F i t s  a n d  G e n e r a l  P o l i c y  Issues .  

The sequential fits algorithms have many possible variations, which raise policy 
issues relevant to most other kinds of allocators as well. 

List order and policy. The classic first fit or next fit mechanisms may actually 
implement very different policies, depending on exactly how the free list is main- 
tained. These policy issues are relevant to many other allocation mechanisms as 
well, but  we will discuss them in the context of sequential fits for concreteness. 

LIFO-ordered variants of first fit and next fit push freed blocks onto the 
front of the list, where they will be the next considered for reuse. (In the case 
of next fit, this immediate  reuse only happens if the next allocation request can 
be satisfied by that  block; otherwise the roving pointer will rove past it.) 

If a FIFO-ordered free list is used, freed blocks may tend not to be reused 
for a long time. If an address-ordered free list is used, blocks toward one end 
of memory will tend to be used preferentially. Seemingly minor changes to a 

22 This has also been observed by Ivor Page [Pag82] in randomized simulations, and 
similar (but possibly weaker) observations were made by Knuth and Shore and others 
in the late 1960's and 1970's. (Section 4.) 
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few of lines of  code may  change the placement  policy dramatically,  and in effect 
implement a whole new strategy with respect to the regularities of the request 
stream. 

Address-ordered free lists may  have an advantage in tha t  they tend to pack 
one end of memory  with live objects, and gradually move upward through the 
address space. In terms of clustering related objects, the effects of this s t rategy 
are potentially complex. If  adjacent objects tend to die together, large contiguous 
areas of memory  will come free, and later be carved up for consecutively-allocated 
objects. If  deaths are scattered, however, scattered holes will be filled with related 
objects, perhaps decreasing the chances of contiguous areas coming free at about  
the same time. (Locality considerations are similarly complex.) 

Even for best fit, the general s trategy does not determine an exact policy. 
I f  there are mult iple equally-good best fits, how is the tie broken? We do not 
know whether this choice actually occurs often in practice. It  may  be tha t  large 
blocks tend to come free due to clustered deaths. I f  free blocks become scattered, 
however, it choosing among them may  be part icularly significant. 

Splitting. A common variation is to impose a splitting threshold, so tha t  blocks 
will not be split if they are already small. Blocks generally can ' t  be split if 
the resulting remainder  is smaller than the min imum block size (big enough to 
hold the header (and possibly a footer) plus the free list link(s)). In addition, 
the allocator m a y  choose not to split a block if the remainder is "too small," 
either in absolute terms [Knu73] or relative to the size of  the block being split 
[WJNB95]. 

This policy is intended to avoid allocating in the remainder  a small object 
that  may  outlive the large object, and prevent the reclamation of a larger free 
area. Splitting thresholds do not appear  to be helpful in practice, unless (per- 
haps) they are very small. 

Splitting raises other policy questions; when a block is split, where is the 
remainder left in the free list? For address-ordered variants,  there is no choice, 
but for others, there are several possibil i t ies--leave it at  the point  in the list 
where the split block was found (this seems to be common) ,  or put  it on one 
end or the other of the free list, or anywhere in between. 53 And when the block 
is split, is the first part  used, or the last, or even the middle? 54 

Other policies. Sequential fits techniques m a y  also be used to intentionally im- 
plement unusual policies. 

58 Our guess is that putting it at the head of the list would be advantageous, all 
other things being equal, to increase the chances that it would be used soon. This 
might tend to place related objects next to each other in memory, and decrease 
fragmentaton if they die at about the same time. On the other hand, if the remainder 
is too small and only reusable for a different size, this might make it likely to be 
used for a different purpose, and perhaps it should not be reused soon. 

54 Using the last part has the minor speed advantage that the first part can be left 
linked where it is in the free list--if that is the desired policy--rather than unlinking 
the first part and having to link the remainder back into the list. 



47 

One policy is worst fit, where the largest free block is always used, in the 
hope tha t  small f ragments  will not accumulate.  The idea of worst fit is to avoid 
creating small,  unusable f ragments  by making the remainder  as large as possible. 
This extreme policy seems to work quite badly (in synthetic trace studies, at 
l ea s t ) - -p robab ly  because of its tendency to ensure that  there are no very large 
blocks available. The general idea may  have some merit ,  however, as part  of a 
combinat ion of strategies. 

Another  policy is so-cMled "optimal  fit," where a l imited search of the list is 
usually used to "sample" the list, and a further search finds a fit tha t  is as good 
or bet ter  [Cam71]. 5~ 

Another  policy is "half fit" [FP74], where the allocator preferentially splits 
blocks twice the requested size, in hopes tha t  the remainder will come in handy 
if a similar request occurs soon. 

Scalability. As mentioned before, use of a sequentially-searched list poses poten- 
tially serious scalability p rob lems- -as  heaps become large, the search times can 
in the worst case be proport ional  to the size of the heap. The use of balanced 
binary trees, self-adjusting ("splay")  trees, 56 or partially ordered trees can re- 
duce the worst-case performance so that  it is logarithmic in the number  of free 
blocks, rather  than linear. 57 

Scalability is also sensitive to the degree of fragmentat ion.  If there are many  
small fragments,  the free list will be long and may  take much longer to search. 

Plausible pathologies. It  may  be worth noting that  LIFO-ordered variants  of first 
fit and next fit can suffer from severe fragmentatioll  in the face of certain simple 
and plausible pat terns  of allocation and deallocation. The simplest of these is 
when a p rogram repeatedly does the following: 

1. allocates a (short-lived) large object, 
2. allocates a long-lived small object,, and 
3. allocates another  short-lived large object of the same size as the freed large 

object.  

In this case, each t ime a large block is freed, a small block is soon taken 
out of it to satisfy the request for the small object. When the next large object 
is allocated, the block used for the previously-deallocated large object is now 

s5 This is not really optimal in any useful sense, of course. See also Page's critique in 
[Pag82] (Section 4.1). 

56 Splay trees are particularly interesting for this application, since they have an adap- 
tive characteristic that may adjust well to the patterns in allocator requests, as well 
as having amortized complexity within a constant factor of optimal [ST85]. 

5~ We suspect that earlier researchers often simply didn't worry about this because 
memory sizes were quite small (and block sizes were often rather large). Since ttfis 
point was not generally made explicit, however, the obvious applicability of scalable 
data structures was simply left out of most discussions, and the confusion between 
policy and mechanism became entrenched. 
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too small to hold it, and more memory  must be requested from the operating 
system. The small objects therefore end up effectively wasting the space for large 
objects, and fragmentat ion is proportional to the ratio of their sizes. This may 
not be a common occurrence, but  it has been observed to happen in practice 
more than once, with severe consequences. 5s 

A more subtle possible problem with next fit is that  clustered deallocations 
of different-sized objects may result in a free list that has runs of similar-sized 
blocks, i.e., batches of large blocks interspersed with batches of small blocks. 
The occasional allocation of a large object may often force the free pointer past 
many small blocks, so that  subsequent allocations are more likely to carve small 
blocks out of large blocks. (This is a generalization of the simple kind of looping 
behavior that  has been shown to be a problem for some programs.) 

We do not yet know whether this particular kind of repetitive behavior ac- 
counts for much of the fragmentation seen for next fit in several experiments. 

Treatment of the end block. As mentioned before, the t reatment  of the last block 
in the heap- -a t  the point where more memory is obtained from the operating 
system, or from a preallocated pool - -can  be quite important .  This block is usu- 
ally rather large, and a mistake in managing it can be expensive. Since such 
blocks are allocated whenever heap memory grows, consistent mistakes could 
be disastrous [KV85]--all of the memory obtained by the allocator could get 
"messed up" soon after it comes under the Mlocator's control. 

There is a philosophical question of whether the end block is "recently freed" 
or not. On the one hand, the block just  became available, so perhaps it should be 
put  on whichever end of the free list freed blocks are put  on. On the other hand, 
it 's not being freed--in a sense, the end block has been there all along, ignored 
until needed. Perhaps it should go on the opposite end of the list because it 's 
conceptually the oldest block-- the  very large block that  contains all as-yet-un- 
used memory. 

Such philosophical fine points aside, there is the practical question of how to 
treat  a virgin block of significant size, to minimize fragmentation. (This block is 
sometimes called "wilderness" [Ste83] to signify that  it is as yet unspoiled.) 

Consider what happens if a first fit or next fit policy is being used. In that  
case, the allocator will most likely carve many small objects out of it immediately, 
greatly increasing the chances of being unable to recover the contiguous free 
memory of the block. On the other hand, putt ing it on the opposite end of the 
list will tend to leave it unused for at least a while, perhaps until it gets used 
for a larger block or blocks. An alternative strategy is to keep the wilderness 
block out of the main ordering da ta  structure entirely, and only carve blocks 
out of it when no other space can be found. (This "wilderness" block can also 
be extended to include more memory by expanding the heap segment, so that  

ss One example is in an early version of the large object manager for the Lucid Common 
Lisp system (Jon L. White, personal communication, 1991); another is mentioned in 
[KV85] (Section 4.1). 
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the entire area  above  the h igh-water  mark  is viewed as a single huge block. 59 ) 
Korn  and Vo call this a "wilderness preservat ion heuristic," and report  tha t  it is 
helpful for some al locators  [KV85] (No quant i ta t ive  results are given, however.)  

For policies like best  fit and address-ordered first fit, it seems na tura l  to 
s imply  pu t  the end block in the indexing s t ructure  like any  other  block. If  the 
end block is viewed as par t  of  the (very large) block of  as-yet-unused memory ,  
this means  t h a t  a best  fit or address-ordered first fit policy will a lways use any  
other  available m e m o r y  before carving into the wilderness. If  it is not  viewed 
this way, the end block will usual ly be a little less than  a page (or whatever  
uni t  is used to ob ta in  m e m o r y  f rom the opera t ing  system);  typically,  it will not  
be used to satisfy small  requests unless there are no other  similarly-large blocks 
available. 

We therefore s u s p e c t - - b u t  do not  k n o w - - t h a t  it does not  ma t t e r  m u c h  
whether  the  block is viewed as the beginning of  a huge block, or as a modera te -  
sized block in its own right,  as long as the al locator  tends to use smaller  or 
lower-addressed blocks in preference to larger or higher-addressed blocks. 6~ 

Summary of policy issues. While  best  fit and address-ordered first fit seem to 
work well, it is not  clear tha t  other  policies can ' t  do quite as well; F IFO-orde red  
first fit m a y  be abou t  as good,  however.  

The  sensi t ivi ty of  such results to slight differences in details suggests tha t  we 
do not  have a good model  of  p rog ra m  behavior  and al locator  p e r f o r m a n c e - - a t  
this point ,  it is quite unclear which seemingly small details will have significant 
policy consequences.  

Few exper iments  have been performed with novel policies and real p rog ram 
behavior ;  research has largely focused on the obvious variat ions of  a lgor i thms 
tha t  da te  f rom the early 1960's or before. 61 

59 In many simple UNIX and roughly UNIX-like systems, the allocator should be de- 
signed so that other routines can request pages from the operating system by extend- 
ing the (single) "data segment" of the address space. In that case, the allocator must 
be designed to work with a potentially non-contiguous set of pages, because there 
may be intervening pages that belong to different routines. (For example, our Texas 
persistent store allows the data segment to contain interleaved pages belonging to a 
persistent heap and a transient heap [SKW92].) 

Despite this possible interleaving of pages used by different modules, extending 
the heap will typically just extend the "wilderness block," because it's more likely 
that successive extensions of the data segment are due to requests by the allocator, 
than that memory requests from different sources are interleaved. 

60 It is interesting to note, however, that  the direction of the address ordering matters 
for first fit, if the end block is viewed as the beginning of a very large block of 
all unused memory. If reverse-address-order is used, it becomes pathological. It will 
simply march through all of "available" memory--i.e.,  all memory obtainable from 
the operating system--without  reusing any memory. Tiffs suggests to us that address- 
ordered first fit (using the usual preference order) is somehow more "right" than its 
opposite, at least in a context where the size of memory can be increased. 

sl Exceptions include Fenton and Payne's "half fit" policy (Section 4.1), and Beck's 
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Speculation on strategy issues. We have observed that  best fit and address- 
ordered first fit perform quite similarly for both  real and synthetic traces. 

Page [Pag82] has also observed tha t  (for random traces using uniform distrib- 
utions), the short- term placement choices made by best fit and address-ordered 
first fit are usually identical. Tha t  is, if one of these policies is used up to a 
certain point in a trace, switching to the other for the next allocation request 
will not change the placement  decision made  for that  request. 

We speculate that  this reflects a fundamenta l  similarity between best fit and 
address-ordered first fit, in terms of how they exploit regularities in the request 
stream. These allocators seem to perform wel l - -and  very similarly--for both real 
and randomized workloads. In some sense, perhaps, each is an approximat ion of 
the other. 

But  a more impor tan t  question is this: what is the successful strategy that 
both of these policies implement? 

One possibility is something we might  call the "open space preservation" 
heuristic, i.e., try not to cut into relatively large unspoiled areas. 62 A t  some level, 
of course, this is obv ious - - i t ' s  the same general idea that  was behind best fit in 
the first place, over three decades ago. 

As we mentioned earlier, however, there are at least two ideas behind best 
fit, at  least in our view: 

- Minimize the remainder~i .e . ,  if a block must  be split, split the block tha t  
will leave the smallest remainder.  If  the remainder goes unused, the smaller 
it is, the better.  

- Don't break up large free areas unnnecessarilg--preferentially split areas that  
are already small, and hence less likely to be flexibly usable in the future. 

In some cases, the first principle m a y  be more impor tan t ,  while the second 
m a y  be more impor tan t  in other cases. Minimizing the remainder  may  have a 
tendency to result in small blocks that  are unlikely to be used soon; the resul tmay 
be similar to having a splitting threshold, and to respect the second principle. 63 

These are very different strategies, at least on the surface. I t ' s  possible tha t  
these strategies can be combined in different ways - - and  perhaps they are com- 
bined in different ways by best fit and address-ordered first fit. 

Shore [Sho75] designed and implemented a hybrid best fit/first fit policy tha t  
outperformed either plain first fit or plain best fit for his randomized workloads. 
(Discussed in Section 4.1.) The strategic implications of this hybrid policy have 

"age match" policy (Section 4.1). Barrett and Zorn's "lifetime prediction" allocator 
(Section 4.2) is the only recent work we know of (for conventional allocators) that 
adopts a novel and explicit strategy to exploit interesting regularities in real request 
streams. 

82 Korn and Vo's "wilderness preservation heuristic" can be seen as a special case or 
variant of the "open space preservation heuristic." 

63 This could explain why explicit splitting thresholds don't seem to be very helpful-- 
policies like best fit may already implement a similar strategy indirectly, and adding 
an explicit splitting threshold may be overkill. 
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not been explored, and it is unclear whether they apply to real workloads. Shore's 
results should be interpreted with considerable caution, because real workloads 
exhibit regularities (e.g., plateaus and ramps) that  seem likely to interact with 
these strategies in subtle ways. 64 

Address-ordered first fit seems likely to have other strategic implications as 
well. The  use of address ordering seems likely to result in clustering of related 
da ta  under some circumstances, increasing the chances that  contiguous areas 
will come free, if the related objects die together. However, in cases where free 
blocks are small, of varied sizes, and widely scattered, first fit may tend to 
decluster related objects, as will best fit. Amending these policies may  allow 
bet ter  clustering, which could be impor tant  for long-run fragmentation. 

It should now be quite unclear why best fit and address-ordered first fit work 
well in practice, and whether they work for the same reasons under randomized 
workloads as for real workloads. 

For randomized workloads, which cause more scattered random deaths, there 
may be very few placement choices, and little contiguous free memory. In that  
case, the strategy of minimizing the remainder may be crucial. For real work- 
loads, however, large contiguous areas may come free at the ends of phases, and 
tend to be carved up into small blocks by later phases as live data  accumulate. 
This may  often result in contiguous allocation of successively-allocated blocks, 
which will again create large free blocks when they die together at the end of 
the later phase. In that  case, the effects of small "errors" due to unusually long- 
lived objects may be important;  they may lead to cumulative fragmentation for 
long-running programs, or fragmentation may stabilize after a while. We simply 
don ' t  know. 

There are many possible subtle interactions and strategic implications, all of 
which are quite poorly understood for these seemingly simple and very popular 
policies. 

3.6 S e g r e g a t e d  F r e e  Lis t s  

One of the simplest allocators uses an array of free lists, where each list holds 
free blocks of a particular size [Com64]. When a block of memory is freed, it is 
simply pushed onto the free list for that  size. When a request is serviced, the 
free list for the appropriate size is used to satisfy the request. There are several 
impor tan t  variations on this segregated free lists scheme. 

It is impor tan t  to note tha t  blocks in such schemes are logically segregated 
in terms of indexing, but usually not physically segregated in terms of storage. 
Many segregated free list allocators support general splitting and coalescing, 
and therefore must  allow mixing of blocks of different sizes in the same area of 
memory. 

64 For example, address-ordered first fit has a tendency to pack one end of memory 
with live data, and leave larger holes toward the other end. This seems particularly 
relevant to programs that allocate large and very long-lived data structures near the 
beginning of execution. 
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One common variation is to use size classes to lump similar sizes together 
for indexing purposes, and use free blocks of a given size to satisfy a request for 
that  size, or for any size that  is slightly smaller (but still larger than any smaller 
size class). A common size-class scheme is to use size classes that  are a power of 
two apart (e.g., 4 words, 8 words, 16 words...) and round the requested size up 
to the nearest size class, but closer size class spacings have also been used. 

Simple segregated storage. In this variant , no splitting of free blocks is done to 
satisfy requests for smaller sizes. When a request for a given size is serviced, and 
the free list for the appropriate size class is empty, more storage is requested from 
the underlying operating system (e.g., using UNIX s b r k ( )  to extend the heap 
segment); typically one or two virtual memory pages are requested at a time, and 
split into same-sized blocks which are then strung together and put  on the free 
list. We call this simple segregated storage because the result is tha t  pages (or 
some other relatively large unit) contain blocks of only one size class. (This differs 
from the tradit ional terminology in an impor tant  way. "Segregated storage" is 
commonly used to refer both to this kind of scheme and what we call segregated 
fits [PSC71]. We believe this terminology has caused considerable confusion, 
and will generally avoid it; we will refer to the larger class as "segregated free 
list" schemes, or use the more specific terms "simple segregated storage" and 
"segregated fits." 65 66) 

An advantage of this simple scheme is that  no headers are required on allo- 
cated objects; the size information can be recorded for a page of objects, rather 
than for each object individually. This may  be impor tant  if the average object 
size is very smMl. Recent studies indicate that  in modern programs, the aver- 
age object size is often quite small by earlier standards (e.g., around 10 words 
[WJNB95]), and that  header and footer overheads alone can increase memory 
usage by ten percent or twenty percent [ZG92, WJNB95]. This is comparable to 
the "real" fragmentat ion for good allocators [WJNB95]. 

Simple segregated storage is quite fast in the usual case, especially when 
objects of a given size are repeatedly freed and reMlocated over short periods 
of time. The freed blocks simply wait until the next allocation of the same size, 
and can be reallocated without splitting. Allocation and freeing are both fast 
constant-t ime operations. 

The disadvantage of this scheme is that  it is subject to potentially severe 
external f ragmenta t ion- -no  a t tempt  is made to split or coalesce blocks to satisfy 
requests for other sizes. The worst case is a program that  allocates many  objects 
of one size class and frees them, then does the same for many  other size classes. 
In that  case, separate storage is required for the maximum volume of objects of 
all sizes, because none of memory allocated to one size block can be reused for 
the another. 

ss Simple segregated storage is sometimes incorrectly called a buddy system; we do not 
use that terminology because simple segregated storage does not use a buddy rule 
for coalescing--no coalescing is done at all. 

66 Standish [StaS0] refers to simple segregated storage as "partitioned storage." 
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There  is some tradeoff between expected internal f ragmentat ion and external 
f ragmentat ion;  if the spacing between size classes is large, more different sizes 
will fall into each size class, allowing space for some sizes to be reused for others. 
(In practice, very coarse size classes generally lose more memory  to internal 
f ragmenta t ion  than they save in external fragmentat ion.)  In the worst case, 
m e m o r y  usage is proport ional  to the product  of the m a x i m u m  amount  of live 
da ta  (plus worst-case internal f ragmentat ion due to the rounding up of sizes) 
and the number  of size classes. 

A crude but  possibly effective form of coalescing for simple segregated storage 
(used by Mike Haertel in a fast allocator [GZH93, Vo95], and in several garbage 
collectors [Wil95]) is to main ta in  a count of live objects for each page, and notice 
when a page is entirely empty.  If  a page is empty,  it can be made available for 
allocating objects in a different size class, preserving the invariant that  all objects 
in a page are of a single size class. 67 

Segregated fits. This variant  uses an array of free lists, with each array holding 
free blocks within a size class. When servicing a request for a part icular  size, 
the free list for the corresponding size class is searched for a block at least large 
enough to hold it. The  search is typically a sequential fits search, and many  
significant variations are possible (see below). Typical ly first fit or next fit is used. 
I t  is often pointed out tha t  the use of multiple free lists makes the implementat ion 
faster than searching a single fl'ee list. Wha t  is often not appreciated is that  this 
also affects the placement  in a very impor tan t  w a y - - t h e  use of segregated lists 
excludes blocks of very different sizes, meaning good fits are usually found---the 
policy therefore embodies a good fit or even best fit strategy, despite the fact tha t  
i t 's  often described as a variat ion on first fit. 

I f  there is not a free block in the appropriate  free list, segregated fits algo- 
r i thms t ry  to find a larger block and split it to satisfy the request. This usually 
proceeds by looking in the list for the next larger size class; if it is empty,  the 
lists for larger and larger sizes are searched until a fit is found. If this search fails, 
more m e m o r y  is obtained from the operating system to satisfy the request. For 
most  systems using size classes, this is a logari thmic-t ime search in the worst 
case. (For example for powers-of-two size classes, the total  number  of lists is 
equM to the logar i thm of the m a x i m u m  block size. For a somewhat  more refined 
series, it is still generally logarithmic, but  with a larger constant  factor.) 

In te rms of policy, this search order means that  smaller blocks are used in 
preference to larger ones, as with best fit. In some cases, however, the details of 
the size class system and the searching of size-class lists m a y  cause deviations 
f rom the best fit policy. 

67 This invariant can be useful in some kinds of systems, especially systems that provide 
persistence [SKW92] and/or garbage collection for languages such as C or C + +  
[BW88, WDH89, WJ93], where pointers may point into the interior parts of objects, 
and it is important to be able to find the object headers quickly. In garbage-collected 
systems, it is common to segregated objects by type, or by implementation-level 
characteristics, to facilitate optimizations of type checking and/or garbage collection 
[Yua90, De192, DEB94]. 
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Note that  in a segregated fits scheme, coalescing m a y  increase search times. 
When blocks of a given size are freed, they may  be coalesced and put  on different 
free lists (for the resulting larger sizes); when the program requests more objects 
of tha t  size, it may  have to find the larger block and split it, ra ther  than still 
having the same small blocks on the appropriate  free list. (Deferred coalescing 
can reduce the extent of this problem, and the use of multiple free lists makes 
segregated fits a particularly natural  context for deferred coalescing.) 

Segregated fits schemes fall into three general categories: 

1. Exact Lists. In exact lists systems, where there is (conceptually) a separate 
free list for each possible block size [Com64]. This can result in a very large 
number  of free lists, but  the "array" of free lists can be represented sparsely. 
Standish and T adm an ' s  "Fast Fits" scheme 6s uses an array of free lists for 
small size classes, plus a binary tree of free lists for larger sizes (but only the 
ones that  actually occur) [StaB0, Tad78]. ~9 

2. Strict Size Classes with Rounding. When sizes are grouped into size classes 
(e.g., powers of two), one approach is to mainta in  an invariant tha t  all blocks 
on a size list are exactly of the same size. This can be done by rounding up 
requested sizes to one of the sizes in the size class series, at some cost in 
internal f ragmentat ion.  In this case, it is also necessary to ensure that  the 
size class series is carefully designed so that  split blocks always result in a 
size tha t  is also in the series; otherwise blocks will result tha t  a ren ' t  the right 
size for any free list. (This issue will be discussed in more detail when we 
come to buddy systems.) 

3. Size Classes with Range Lists. The most  common way of dealing with the 
ranges of sizes that  fall into size classes is to allow the lists to contain blocks 
of slightly different sizes, and search the size lists sequentially, using the 
classic best fit, first fit, or next fit technique [PSC71]. (The choice affects 
the policy implemented,  of course, though probably much less than in the 
case of a single free list.) This  could introduce a linear component  to search 
times, though this does not seem likely to be a common problem in practice, 
at least if size classes are closely spaced. 7~ 71 If  it is, then exact list schemes 
are preferable. 

6s Not to be confused with Stephenson's better-known indexed fits scheme of the same 
name. 

6~ As with most tree-based allocators, the nodes of the tree are embedded in the blocks 
themselves. The tree is only used for larger sizes, and the large blocks are big enough 
to hold left and right child pointers, as well as a doubly linked list pointers. One block 
of each large size is part of the tree, and it acts as the head of the doubly-linked list 
of same-sized blocks. 

7o Lea's allocator uses very closely spaced size classes, dividing powers of two linearly 
into four uniform ranges. 

71 Typical size distributions appear to be both spiky and heavily skewed, so it seems 
hkely that for small size ranges, only zero or one actual sizes (or popular sizes) will 
fall into a given range. In that case, a segregated fits scheme may approximate a best 
fit scheme very closely. 
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An efficient segregated fits scheme with general coalescing (using boundary 
tags) was described and shown to perform well in 1971 [PSC71], but it did not 
become well-known; Standish and Tadman's  apparently better scheme was pub- 
lished (but only in a textbook) in 1980, and similarly did not become particularly 
well known, even to the present. Our impression is that  these techniques have 
received too little attention, while considerably more attention has been given to 
techniques that  are inferior in terms of scalability (sequential fits) or generality 
(buddy systems). 

Apparently, too few researchers realized the full significance of Knuth 's  in- 
vention of boundary tags for a wide variety of allocation schemes--boundary 
tags can support fast and general splitting and coalescing, independently of the 
basic indexing scheme used by the allocator. This frees the designer to use more 
sophisticated higher-level mechanisms and policies to implement almost any de- 
sired strategy. (It seems likely that  the original version of boundary tags was 
initially viewed as too costly in space, in a time when memory was a very scarce 
resource, and the footer optimization [StaB0] simply never became well-known.) 

3.7 B u d d y  S y s t e m s  

Buddy systems [Kno65, PN77] are a variant of segregated lists that  supports 
a limited but efficient kind of splitting and coalescing. In the simple buddy 
schemes, the entire heap area is conceptually split into two large areas, and 
those areas are further split into two smaller areas, and so on. This hierarchical 
division of memory is used to constrain where objects are allocated, what their 
allowable sizes are, and how they may be coalesced into larger free areas. For each 
allowable size, a separate free list is maintained, in an array of fi'ee lists. Buddy 
systems are therefore actually a special case of segregated fits, using size classes 
with rounding, and a peculiar limited technique for splitting and coalescing. 

Buddy systems therefore implement an approximation of a best fit policy, but 
with potentially serious variations due to peculiarities in splitting and coalescing. 

(In practical terms, buddy systems appear to be distinctly inferior to more 
general schemes supporting arbitrary coalescing; without heroic efforts at opti- 
mization and/or  hybridization, their cost in internal fi'agmentation alone seems 
to be higher than the total fragmentation costs of better schemes.) 

A free block may only be merged with its buddy, which is its unique neighbor 
at the same level in the binary hierarchical division. The resulting free block is 
therefore always one of the free areas at the next higher level in the memory- 
division hierarchy--at  any level, the first block may only be merged with the 
following block, which follows it in memory; conversely, the second block may 
only be merged with the first, which precedes it in memory. This constraint on 
coalescing ensures that  the resulting merged free area will always be aligned on 
one of the boundaries of the hierarchical splitting. 

(This is perhaps best understood by example; the reader may wish to skip 
ahead to the description of binary buddies, which are the simplest kind of buddy 
systems.) 
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The purpose of the buddy allocation constraint is to ensure that  when a 
block is freed, its (unique) buddy can always be found by a simple address 
computation,  and its buddy will always be either a whole, entirely free block, 
or an unavailable block. An unavailable block may be entirely allocated, or may  
have been split and have some of its sub-parts allocated but not others. Either 
way, the address computat ion will always be able to locate the beginning of the 
buddy- - i t  will never find the middle of an allocated object. The  buddy will be 
either a whole (allocated or free) block of a determinate size, or the beginning 
of a block of that  size that  has been split in a determinate way. If (and only 
if) it turns out to be the header of a free block, and the block is the whole 
buddy, the buddies can be merged. If the buddy is entirely or part ly allocated, 
the buddies cannot be merged--even if there is an adjacent free area within the 
(split) buddy. 

Buddy coalescing is relatively fast, but perhaps the biggest advantage in 
some contexts is tha t  it requires little space overhead per objec t - -only  one bit 
is required per buddy, to indicate whether the buddy is a contiguous free area. 
This can be implemented with a single-bit header per object or free block. Un- 
fortunately, for this to work, the size of the block being freed must be known--the 
buddy mechanism itself does not record the sizes of the blocks. This is workable 
in some statically-typed languages, where object sizes are known statically and 
the compiler can supply the size argument to the freeing routine. In most current 
languages and implementations, however, this is not the case, due to the pres- 
ence of variable-sized objects and/or  because of the way libraries are typically 
linked. Even in some languages where the sizes of objects are known, the "single" 
bit ends up up costing an entire word per object, because a single bit cannot 
be "stolen" from the space for an allocated object--objects  must  be aligned on 
word boundaries for architectural reasons, and there is no provision for stealing 
a bit from the space allocated to an object. 7= Stealing a bit from each object 
can be avoided, however, by keeping the bits in a separate table "off to the side" 
[IGKT1], but  this is fairly awkward, and such a bit table could probably be put  
to better  use with an entirely different basic allocation mechanism. 

In practical terms, therefore, buddy systems usually require a header word 
per object, to record the type and/or  size. Other, less restrictive schemes can 
get by with a word per object as well. Since buddy systems also incur internal 
fragmentation, this apparently makes buddy systems unat tract ive relative to 
more general coalescing schemes such as segregated fits. 7a 

In experiments using both real and synthetic traces, buddy systems generally 
exhibit significantly more fragmentat ion than segregated fits and indexed fits 

72 In some implementations of some languages, this is less of a problem, because all 
objects have headers that encode type information, and one bit can be reserved for 
use by the allocator and ignored by the language implementation. This complicates 
the language implementation, but may be worthwhile if a buddy system is used. 

7a Of course, buddy systems could become more attractive if it were to turn out that 
the buddy policyhas significant beneficial interactions with actual program behavior, 
and unexpectedly reduced external fragmentation or increased locality. At present, 
this does not appear to be the case. 
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schemes using boundary tags to support  general coalescing. (Most of these results 
come from synthetic trace studies, however; it appears that  only two buddy 
systems have ever been studied using real traces [WJNB95].) 

Several significant variations on buddy systems have been devised: 

Binary buddies. Binary buddies are the simplest and best-known kind of buddy 
system [Kno65]. In this scheme, all buddy sizes are a power of two, and each size 
is divided into two equal parts. This makes address computations simple, because 
all buddies are aligned on a power-of-two boundary offset from the beginning of 
the heap area, and each bit in the offset of a block represents one level in the 
buddy system's hierarchical splitting of memory - - i f  the bit is 0, it is the first of 
a pair of buddies, and if the bit is 1, it is the second. These operations can be 
implemented efficiently with bitwise logical operations. 

On the other hand, systems based on closer size class spacings may be simi- 
larly efficient if lookup tables are used to perform size class mappings quickly. 

A major  problem with binary buddies is that  internal fragmentation is usually 
relatively h igh- - the  expected case is (very roughly) about 28% [Knu73, PN77],74 
because any object size must  be rounded up to the nearest power of two (minus 
a word for the header, if the size field is stored). 

Fibonacci buddies. This variant of the buddy scheme uses a more closely-spaced 
set of size classes, based on a Fibonacci series, to reduce internal fragmentation 
[Hir73]. Since each number in the Fibonacci series is the sum of the two previous 
numbers, a block can always be split (unevenly) to yield two blocks whose sizes 
are also in the series. This limits the number of free lists required. 

A further refinement, called generalized Fibonacci buddies [Hir73, Bur76, 
PN77] uses a Fibonacci-like number series that  starts with a larger number  
and generates a somewhat more closely-spaced set of sizes. 

A possible disadvantage of Fibonacci buddies is that when a block is split to 
satisfy a request for a particular size, the remaining block is of a different size, 
which is less likely to be useful if the program allocates many objects of the same 
size [Wis78]. 

Weighted buddies. Weighted buddy systems [SP74] use a different kind of size 
class series than either binary or Fibonacci buddy systems. Some size classes can 
be split only one way, while other size classes can be split in two ways. The size 
classes include the powers of two, but in between each pair of successive sizes, 
there is also a size that  is three times a power of two. The series is thus 2, 3, 4, 
6, 8, 12... (words). (Often, the series actually starts at 4 words.) 

Sizes that  are powers of two may only be split evenly in two, as in the binary 
buddy system. This always yields another size in the series, namely the next 
lower power of two. 

Sizes that  are three times a power of two can be split in two ways. They may 
be split evenly in two, yielding a size that  is another three-times-a-power-of-two 

74 This figure varies somewhat depending on the expected range and skew of the size 
distribution [PN77]. 
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size. (E.g., a six may  be split into two threes.) They may also be split unevenly 
into two sizes tha t  are one third and two thirds of the original size; these sizes 
are always a power of two. (E.g., six may  be split into two and four.). 

Double buddies. Double buddy systems [Wis78, PH86, WJNB95] use a different 
technique to allow a closer spacing of size classes. They use two different binary 
buddy systems, with staggered sizes. For example, one buddy system may use 
powers-of-two sizes (2, 4, 8, 16...) while another uses a powers-of-two spacing 
starting at a different size, such as 3. (The resulting sizes are 3, 6, 12, 24 ...). 
This is the same set of sizes used in weighted buddies, but the splitting rule is 
quite different. Blocks may only be split in half, as in the binary buddy system, 
so the resulting blocks are always in the same binary buddy series. 

Request sizes are rounded up to the nearest size class in either series. This 
reduces the internal fragmentation by about half, but means that  space used for 
blocks in one size series can only coalesced or split into sizes in that  series. Tha t  
is, splitting a size whose place in the combined series is odd always produces 
another size whose place is odd; likewise, splitting an even-numbered size always 
produces an even-numbered size. (E.g., a block of size 16 can be split into 8's 
and 4's, and a block of size 24 can be split into 12's and 6's, but  not 8's or 4's.) 

This may cause external fragmentation if blocks in one size series are freed, 
and blocks in the other are requested. As an optimization, free areas of a rela- 
tively large size (e.g., a whole free page) may be made available to the other size 
series and split according to that  size series' rules. (This complicates the treat- 
ment  of large objects, which could be treated entirely differently, or by another 
buddy system for large units of free storage such as pages.) 

Naturally, more than two buddy systems could be combined, to decrease 
internal fragmentation at a possible cost in external fragmentat ion due to limi- 
tations on sharing free memory between the different buddy systems. 

As with simple segregated storage, it is possible to keep per-page counts of live 
objects, and notice when an entire page is empty. Empty  pages can be transferred 
from one buddy series to another. To our knowledge, such an optimization has 
never been implemented for a double buddy scheme. 

Buddy systems can easily be enhanced with deferred coalescing techniques, 
as in "recombination delaying" buddy systems [Kau84]. Another optimization 
is to tailor a buddy system's size class series to a particular program, picking a 
series that  produces little internal fragmentation for the object sizes the program 
uses heavily. 

3.8 I n d e x e d  F i t s  

As we saw in Section 3.4 simple linear list mechanisms can be used to implement 
a wide variety of policies, with general coalescing. 

An alternative is to use a more sophisticated indexing data  structure, which 
indexes blocks by exactly the characteristics of interest to the desired policy, 
and supports efficient searching according to those characteristics. We call this 
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kind of mechanism indexed fits. (This is really an unsatisfying catch-all category, 
showing the limitations of a mechanism-based taxonomy.) 

The simplest example of an indexed fit scheme was mentioned earlier, in the 
discussion of sequential fits: a best fit policy implemented using a balanced or 
self-adjusting binary tree ordered by block size. (Best fit policies may be easier 
to implement scalably than address-ordered first fit policies.) 

Another example was mentioned in the section on segregated free lists (3.6); 
Standish and Tadman 's  exact lists scheme is the limiting case of a segregated fits 
scheme, where the indexing is precise enough that no linear searching is needed 
to find a fit. On the other hand, it is also a straighforward two-step optimization 
of the simple balanced-tree best fit. (The first optimization is to keep a tree with 
only one node per size that  occurs, and hang the extra blocks of the same sizes 
off of those nodes in linear lists. The second optimization is to keep the most 
common size values in an array rather than the tree itself.) Our mechanism- 
based taxonomy is clearly showing it seams here, because the use of hybrid data  
structures blurs the distinctions between the basic classes of allocators. 

The best-known example of an indexed fits scheme is probably Stephenson's 
"Fast Fits" allocator [Ste83], which uses a Cartesian tree sorted on both size 
and address. A Cartesian tree [VuiS0] encodes two-dimensionM information in a 
binary tree, using two constraints on the tree shape. It is effectively sorted on a 
primary key and a secondary key. The tree is a normal totally-ordered tree with 
respect to the pr imary key. With respect to the secondary key, it is a "heap" data  
structure, i.e., a partiMly ordered tree whose nodes each have a value greater 
than their descendants. This dual constraint limits the ability to rebalance the 
tree, because the shape of the tree is highly constrained by the dual indexing 
keys. 

In Stephenson's system, this indexing data  structure is embedded in the free 
blocks of memory themselves, i.e., the blocks become the tree nodes in much the 
same way that  free blocks become list nodes in a sequential fits fits scheme. Tile 
addresses of blocks are used as the primary key, and the sizes of blocks are used 
as the secondary key. 

Stephenson uses this structure to implement either an address-ordered first 
fit policy (called "leftmost fit") or a "better fit" policy, which is intended to 
approximate best fit. (It is unclear how good an approximation this is.) 

As with address-ordered linear lists, the address ordering of free blocks is 
encoded directly in the tree structure, and the indexing structure can be used to 
find adjacent free areas for coalescing, with no additional overhead for boundary 
tags. In most situations, however, a size field is still required, so that  blocks 
being freed can be inserted into the tree in the appropriate place. 

While Cartesian trees give logarithmic expected search times for random 
inputs, they may become unbalanced in the face of patterned inputs, and in the 
worst case provide only linear time searches. 75 

7~ Data from [Zor93] suggest that actual performance is reasonable for real data, being 
among the faster algorithms used in that study, and having good memory usage. On 
the other hand, data from a different experiment [GZ93] show it being considerably 
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D i s c u s s i o n  o f  i n d e x e d  fi ts .  In terms of implementat ion,  it appears  tha t  size- 
based policies m a y  be easier to implement  efficiently than  address-based policies; 
a tree that  total ly orders all actual block sizes will typically be fairly small, and 
quick to search. I f  a FIFO- or LIFO- ordering of same-sized blocks implements  
an acceptable policy, then a linear list can be used and no searching among 
same-sized blocks is required. 76 Size-based policies also easier to opt imize the 
common case, namely small sizes. 

A tree tha t  total ly orders all block addresses m a y  be very much larger, and 
searches will take more time. On the other hand, adapt ive structures (e.g., splay 
trees) may  make  these searches fast in the common case, though this depends on 
subtleties of the request s t ream and the policy tha t  are not currently understood. 

Deferred coalescing may  be able to reduce tree searches to the point where 
the differences in speed are not critical, making the f ragmentat ion implications 
of the policy more impor tan t  than  minor differences in speed. 

Totally ordered trees m a y  not be necessary to implement  the best policy, 
whatever that  should turn out to be. Part ial  orders may  work just  as well, and 
lend themselves to very efficient and scalable implementat ions.  At this point,  the 
main problem does not seem to be t ime costs, but  understanding what  policy 
will yield the least f ragmentat ion and the best locality. 

Many other indexed fits policies and mechanisms are possible, using a variety 
of da ta  structures to accelerate searches. One of these is a set of free lists seg- 
regated by size, as discussed earlier, and another  is a simple b i tmap,  discussed 
next. 

3.9 B i t m a p p e d  F i t s  

A particularly interesting form of indexed fits is bitmapped fits, where a bitmap 
is used to record which par ts  of the heap area are in use, and which parts  are 
not. A b i tmap  is a simple vector of one-bit flags, with one bit  corresponding to 
each word of the heap area. (We assume here tha t  heap memory  is allocated 
in word-Migned units that  are multiples of one word. In some systems, double- 
word al ignment  is required for architecturM reasons. In tha t  case, the b i tmap  
will include one bit for each double-word al ignment boundary.)  

To our knowledge, b i tmapped  allocation has never been used in a conven- 
tional allocator, but  it is quite conamon in other contexts, part icularly mark-  
sweep garbage collectors (notably the conservative collectors of Boehm, et al. 
f rom Xerox PAI~C [BW88, BDS91, DWH+90] 77) and file sys tems '  disk block 

slower than a set of allocators designed primarily for speed. Very recent data [Vo95] 
show it being somewhat slower than some other algorithms with similar memory 
usage, on average. 

76 If an algorithm relies on an awkward secondary key, e.g., best fit with address-ordered 
tie breaking, then it may not make much difference what the ordering function is--  
one total ordering of blocks is likely to cost about as much as another. 

77 Actually, these systems use bitmaps ~o detect contiguous areas of free memory, but 
then accumulate free lists of the detected free blocks. The advantage of this is that 
a single scan through a region of the bitmap can find blocks of all sizes, and make 
them available for fast allocation by putting them on free lists for those sizes. 
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managers. We suspect that  the main reason it has not been used for conven- 
tional memory allocation is that  it is perceived as too slow. 

We believe that  b i tmap operations can be made fast enough to use in allo- 
cators by the use of clever implementation techniques. For example, a b i tmap 
can be quickly scanned a byte at a time using a 256-way lookup table to detect 
whether there are any runs of a desired length. 7s 

If object sizes are small, bi tmapped allocation may have a space advantage 
over systems that  use whole-word headers. A bit per word of heap memory only 
incurs a 3% overhead, while for object sizes averaging 10 words, a header incurs 
a 10% overhead. In the most obvious scheme, two bitmaps are required (one to 
encode the boundaries of blocks, and another to encode whether blocks are in 
use), but we believe there are ways around that. 79 

Bitmapped allocators have two other advantages compared to conventional 
schemes. One is that  they support searching the free memory indexed by address 
order, or localized searching, where the search may begin at a carefully-chosen 
address. (Address-ordered searches may result in less fl 'agmentation than similar 
policies using some other orderings.) Another advantage is that  bitmaps are "off 
to the side," i.e., not interleaved with the normal data  storage area. This may be 
exploitable to improve the locality of searching itself, as opposed to traversing 
lists or trees embedded in the storage blocks themselves. (It may also reduce 
checkpointing costs in systems that checkpoint heap memory, by improving the 
locality of writes; freeing an object does not modify heap memory, only the 
bitmap.) Bi tmapped techniques therefore deserve further consideration. 

It may  appear that bi tmapped allocators are slow, because search times are 
linear, and to a first approximation this may be true. But notice that if a good 
heuristic is available to decide which area of the bi tmap to search, searching is 
linear in the size of the area searched, rather than the number of fl'ee blocks. The 
cost of bi tmapped allocation may then be proportional to the rate of allocation, 
rather than the number of free blocks, and may scale better than other indexing 
schemes. If the associated constants are low enough, bi tmapped allocation may 
do quite well. It may  also be valuable in conjunction with other indexing schemes. 

78 This can be enhanced in several ways. One enhancement allows the fast detection of 
longer runs that cross 8-bit boundaries by using a different lookup tables to compute 
the number of leading and trailing zeroes, so that a count can be maintained of the 
number of zeroes seen so far. Another is to use redundant encoding of the size by 
having headers in large objects, obviating long scans when determining the size of a 
block being freed. 

79 It is increasingly common for allocators to ensure double-word alignment (even on 
32-bit machines), padding requests as necessary, for architectural reasons. In that 
case, half as many bits are needed. There may also be clever encodings that can 
make some of the bits in a bitmap do double duty, especially if the minimum object 
size is more than two alignment units. 
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3.10 D i sc u s s ion  of  Basic  Mechan i sms .  

By now it should be apparent that our conventional taxonomy is of only very 
limited utility, because the implementation focus obscures issues of policy. At a 
sufficiently high level of abstraction, all of these allocators are really "indexed" 
fits--they record which areas of memory are free in some kind of data struc- 
t u r e - b u t  they vary in terms of the policies they implement, how efficiently 
their mechanisms support the desired policy, and how flexible the mechanism 
are in supporting policy variations. Even in its own mechanism-based terms, the 
taxonomy is collapsing under its own weight due to the use of hybrid algorithms 
that can be categorized in several ways. 

Simple segregated storage is simple and quite fast--allocation and dealloca- 
tion usually take only a few instructions each--but lacks freedom to split and 
coalesce memory blocks to support later requests for different-sized objects. It is 
therefore subject to serious external fragmentation, as well as internal fragmen- 
tation, with some tradeoff between the two. 

Buddy systems support fairly flexible splitting, but significantly restricted 
coalescing. 

Sequential fits support flexible splitting and (with boundary tags) general 
coalescing, but cannot support most policies without major scalability con- 
cerns. (More precisely, the boundary tag implementation technique supports 
completely generM coalescing, but the "index" is so simple that searches may be 
very expensive for some policies.) 

This leaves us with the more general indexed storage techniques, which in- 
clude tree-structured indexes, segregated fits using boundary tags, and bitmap- 
ped techniques using bitmaps for both boundary tags and indexing. All of these 
can be used to implement a variety of policies, including exact or approximate 
best fit. None of them require more space overhead per object than buddy sys- 
tems, for typical conventional language systems, and all can be expected to have 
lower internal fragmentation. 

In In considering any indexing scheme, issues of strategy and policy should 
be conconsidered carefully. Scalability is a significant concern for large systems, 
and may become increasingly important. 

Constant factors should not be overlooked, however. Alignment and header 
and footer costs may be just as significant as actual fragmentation. Similarly, 
the speed of common operations is quite important, as well as scalability to large 
heaps. In the next section, we discuss techniques for increasing the speed of a 
variety of general allocators. 

3.11 Quick Lists and  Defer red  Coalescing 

Deferred coalescing can be used with any of the basic allocator mechanisms we 
have described. The most common way of doing this is to keep an array of free 
lists, often called "quick lists" or "subpools" IMPS71], one for each size of block 
whose coMescing is to be deferred. Usually, this array is only large enough to have 
a separate free list for each individual size up to some maximum, such as 10 or 
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32 words; only those sizes will be treated by deferred coalescing [Wei76]. Blocks 
larger than this maximum size are simply returned directly to the "general" 
allocator, of whatever type. 

The following discussion describes what seems to be a typical (or at least 
reasonable) arrangement.  (Some allocators differ in significant details, notably 
Lea's segregated fits scheme.) 

To the general allocator, a block on a quick list appears to be allocated, i.e., 
uncoalescable. For example, if boundary tags are used for coalescing, the flag 
indicates that  the block is allocated. The fact that the block is free is encoded 
only in its presence on the quick list. 

When allocating a small block, the quick list for that  size is consulted. If 
there is a free block of that  size on the list, it is removed from the list and used. 
If not, the search may continue by looking in other quick lists for a larger-sized 
block that  will do. If this fails, the general allocator is used, to allocate a block 
from the general pool. When freeing a small block, the block is simply added to 
the quick list for that  size. Occasionally, the blocks in the quick lists are removed 
and added to the general pool using the general allocator to coalesce neighboring 
free blocks. 

The quick lists therefore act as caches for the location and size information 
about free blocks for which coalescing has not been at tempted,  while the general 
allocator acts as a "backing store" for this information, and implements general 
coalescing. (Most often, the backing store has been managed using an unscalable 
algorithm such as address-ordered first fit using a linear list.) Using a scalable 
algorithm for the general allocator seems preferable. 

Another alternative is to use an allocator which in its usual operation main- 
tains a set of free lists for different sizes or size classes, and simply to defer 
the coalescing of the blocks on those lists. This may be a buddy system (as in 
[Kan84]) or a segregated lists allocator such as segregated fits. s~ 

Some allocators, which we will call "simplified quick fit" allocators, are struc- 
tured similarly but  don' t  do any coalescing for the small blocks on the quick lists. 
In effect, they simply use a non-coMescing segregated lists allocator for small ob- 
jects and an entirely different allocator for large ones. (Examples include Wain- 
stock and Wulf 's  simplification of their own Quick Fit allocator [WW88], and an 
allocator developed by Grunwald and Zorn, using Lea's allocator as the general 
allocator[GZH93].) One of the advantages of such a scheme is that  the minimum 
block size can be very smal l - -only big enough to hold a header and and a single 
link pointer. (Doubly-linked lists aren' t  necessary, since no coalescing is done for 
small objects.) 

These simplified designs are not true deferred coalescing allocators, except 
in a degenerate sense. (With respect to small objects, they are non-coalescing 
allocators, like simple segregated storage.) 

True deferred coalescing schemes vary in significant ways besides what gen- 

80 The only deferred coalescing segregated fits algorithm that we know of is Doug Lea's 
allocator, distributed freely and used in several recent studies (e.g., [GZH93, Vo95, 
WJNB95]). 
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eral allocator is used, notably in how often they coalesce items from quick lists, 
and which items are chosen for coalescing. They  also may differ in the order in 
which they allocate items from the quick lists, e.g., LIFO or FIFO, and this may  
have a significant effect on placement policies. 

S c h e d u l i n g  o f  coa le sc ing .  Some allocators defer all coalescing until  memory 
runs out, and then coalesce all coalescable memory. This is most common in 
early designs, including Comfort 's  original proposal [Com64] sl and Weinstock's 
"Quick Fit" scheme [Wei76]. 

This is not an attractive strategy in most modern systems, however, because 
in a virtual memory, the program never "runs out of space" until backing store 
is exhausted. If too much memory remains uncoalesced, wasting virtual memory, 
locality may be degraded and extra paging could result. Most systems therefore 
a t tempt  to limit the amount  of memory that  may  be wasted because coalescing 
has not been at tempted.  

Some systems wait until a request cannot be satisfied without either coales- 
cing or requesting more memory from the operating system. They then perform 
some coalescing. They may perform all possible coalescing at that  time, or just  
enough to satisfy that  request, or some intermediate amount.  

Another possibility is to periodically flush the quick lists, returning all of the 
items on the quick lists to the general store for coalescing. This may  be done 
incrementally, removing only the older items from the quick lists. 

In Margolin et al.'s scheme [MPS71], the lengths of the free lists are bounded, 
and those lengths are based on the expected usage of different sizes. This ensures 
that  only a bounded amount  of memory can be wasted due to deferred coalescing, 
but  if the estimates of usage are wrong, deferred coalescing may not work as 
wel l - -memory may sit idle on some quick lists when it could otherwise be used 
for other sizes. 

In Oldehoeft and Allah's system [OA85], the number of quick lists varies over 
time, according to a FIFO or Working Set policy. This has an adaptive character, 
especially for the Working Set policy, in that  sizes that have not been freed 
recently are quickly coalesced, while "active" sizes are not. This adaptat ion may 
not be sufficient to ensure that  the memory lost to deferred coalescing remains 
small, however; if the system only frees blocks of a few sizes over a long period 
of time, uncoalesced blocks may remain on another quick list indefinitely. (This 
appears to happen for some workloads in a similar system developed by Zorn 
and Grunwald [ZG94], using a fixed-length LI~U queue of quick lists.) 

Doug Lea's segregated fits allocator uses an unusual and rather  complex pol- 
icy to perform coalescing in small increments. (It is optimized as much for speed 
as for space.) Coalescing is only performed when a request cannot otherwise be 
satisfied without obtaining more memory from the operating system, and only 

81 In Comfort's proposed scheme, there was no mechanism for immediate coalescing. 
(Boundary tags had not been invented.) The only way memory could be coalesced 
was by examining all of the free lists, and this was considered a awkward and 
expensive. 
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enough coalescing is done to satisfy that request. This incremental coalescing 
cycles through the free lists for the different size classes. This ensures that  co- 
alescable blocks will not remain uncoalesced indefinitely, unless the heap is not 
growing. 

In our view, the best policy for minimizing space usage without undue time 
costs is probably an adaptive one that limits the volume of uncoalesced blocks--  
i.e. the actual amount  of potentially wasted space--and adapts the lengths of 
the free lists to the recent usage patterns of the program. Simply flushing the 
quick lists periodically (after a bounded amount  of allocation) may be sufficient, 
and may  not incur undue costs if the general allocator is reasonably fast. s2 s3 

On the other hand, it may be preferable to avoid at tempting to coalesce very 
recently-freed blocks, which are very likely to be usable for another request soon. 
One possible technique is to use some kind of "high-water mark" pointer into 
each list to keep track of which objects were freed after some point in time, such 
as the last allocate/coalesce cycle. However, it may be easier to accomplish by 
keeping two lists, one for recently-freed blocks and one for older blocks. At each 
a t tempt  at coalescing, the older blocks are given to the general allocator, and 
the younger blocks are promoted to "older" status, s4 (If a more refined notion 
of age is desired, more than two lists can be used.) 

W h a t  t o  coa lesce .  As mentioned earlier, several systems defer the coalescing 
of small objects, but not large ones. If allocations of large objects are relatively 
infrequent--and they generally are-- immediately coalescing them is likely to be 
worthwhile, all other things being equal. (This is true both because the time 
costs are low and the savings in potentially wasted memory are large.) Deferred 
coalescing usually affects the placement policy, however, and the effects of that  
interaction are not understood. 

82 The issues here are rather analogous to some issues in the design and tuning of 
generational garbage collectors, particularly the setting of generation sizes and ad- 
vancement thresholds [Wi195]. 

83 If absolute all-out speed is important, Lea's strategy of coalescing only when a search 
fails may be more attractive--it does not require incrementing or checking an allo- 
cation total at each allocation or deallocation. (Another possibility would be to use 
a timer interrupt, but this is quite awkward. Most allocator designers do not wish to 
depend on using interrupts for what is otherwise a fairly simple library, and it also 
raises obscure issues of reentrancy--the interrupt handier must be careful not to do 
anything that would interfere with an allocation or deallocation that is interrupted.) 

84 This is similar to the "bucket brigade" advancement technique used in some gener- 
ational garbage collectors [Sha88, WM89, Wi195]. A somewhat similar technique is 
used in Lea's allocator, but for a different purpose. Lea's allocator has a quick list 
(called the "dirty" list) for each size class used by the segregated fits mechanism, 
rather than for every small integer word size. (This means that allocations from the 
quick list have to search for a block that fits, but a close spacing of size classes 
ensures that there is usually only one popular size per list; the searches are usually 
short.) The quick lists are stored in the same array as the main ("clean") free lists. 
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Di scus s ion .  There are many possible strategies for deferred coalescing, and any 
of them may affect the general allocator's placement policy and /or  the locality of 
the program's references to objects. For example, it appears that  for normal free 
lists, FIFO ordering may produce less fragmentation than LIFO ordering, but it 
is unknown whether that  applies to items on quick lists in a deferred coalescing 
scheme. 85 Similarly, when items are removed from the quick list and returned to 
the general allocator, it is unknown which items should be returned, and which 
should be kept on the quick lists. 

To date, only a few sound experiments evaluating deferred coalescing have 
been performed, and those that  have been performed are rather limited in terms 
of identifying basic policy issues and the interactions between deferred coalescing 
and the general allocator. 

Most experiments before 1992 used synthetic traces, and are of very dubious 
validity. To understand why, consider a quick list to be a buffer that  absorbs 
variations in the number of blocks of a given size. If variations are small, most 
allocation requests can be satisfied from a small buffer. If there are frequent 
variations in the sizes in use, however, many buffers (quick lists) will be required 
in order to absorb them. 

Randomization may reduce clustered usage of the same sizes, spreading all 
requested sizes out over the whole trace. This may make the system look bad, be- 
cause it could increase the probabili ty that  the buffers (i.e., the set of quick l ists)  
contain objects of the wrong sizes. On the other hand, the smoothed (random 
walk) nature of a synthetic trace may flatter deferred coalescing by ensuring that  
allocations and frees are fairly balanced over small periods of time; real phase 
behavior could overwhelm a too-small buffer by performing many frees and later 
many allocations. 

3.12 A N o t e  o n  T i m e  Cos t s  

An allocator can be made extremely fast if space costs are not a major  issue. 
Simple segregated storage can be used to allow allocation or deallocation in a 
relatively small number of instruct ions--a few for a table lookup to find the 
right size class, a few for indexing into the free list array and checking to ensure 
the free list is not empty, and a few for the actual unlinking or linking of the 
allocated block, s6 

This scheme can be made cosiderably faster if the allocator can be compiled 
together with the application program, rather than linked as a library in the 
usual way. The usual-case code for the allocator can be compiled as an "inline" 
procedure rather than a runt ime procedure call, and compile-time analyses can 

s5 Informal experiments by Lea suggest that FIFO produces less fragmentation, at least 
for his scheme. (Lea, personal communication 1995.) 

86 For a closely-spaced series of size classes, it may be necessary to spend a few more 
instructions on checking the size to ensure that (in the usual case) it's small enough to 
use table lookup, and occasionally use a slower computation to find the appropriate 
list for large-sized requests. 
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perform the size-class determination at compile time. In the usual case, the 
runt ime code will simply directly access the appropriate free list, check that  
it is not empty, and link or unlink a block. This inlined routine will incur no 
procedure call overhead. (This kind of alloction inlining is quite common in 
garbage collected systems. It can be a little tricky to code the inlined allocation 
routine so that  a compiler will optimize it appropriately, but it is not too hard.) 

If space is an issue, naturally things are more complicated--space efficient al- 
locators are more complicated than simple segregated storage. However, deferred 
coalescing should ensure that  a complex allocator behaves like simple segrega- 
ted storage most of the time; with some space/t ime tradeoff. If extreme speed 
is desired, coalescing can be deferred for a longer period, to ensure that  quick 
lists usually have free blocks on them and allocation is fast. s7 Adjusting this 
space-time tradeoff is a topic for future research, however. 

4 A C h r o n o l o g i c a l  R e v i e w  o f  T h e  L i t e r a t u r e  

Given the background presented by earlier sections, we will chronologically re- 
view the literature, paying special at tention to methodological considerations 
that  we believe are important .  To our knowledge, this is by far the most 
thorough review to date, but it should not be considered detailed or exhaus- 
tive; valuable points or papers may  have escaped our notice, ss We have left 
out work on concurrent and parallel allocators (e.g., [GW82, Sto82, BAO85, 
MK88, E088,  For88, Joh91, JS92, JS92, MS93, lye93]), which are beyond 
the scope of this paper. We have also neglected mainly analytical work (e.g., 
[GGU72, Kro73, Bet73, Ree79, ReeS0, McI82, Ree82, BCW85]) to some degree, 
because we are not yet familiar enough with all of this literature to do it justice. 

The two subsections below cover periods before and after 1991. The period 
from 1960 to 1990 was dominated by the gradual development of various allocator 
designs and by the synthetic trace methodology. The period after 1990 has (so 
far) shown that  that  methodology is in fact unsound and biased, and that  much 
still needs to be done, both in terms of reevaluating old designs and inventing 
new ones on the basis of new results. (Readers who are uninterested in the history 
of allocator design and evaluation may wish to skip to Section 4.2.) 

In much of the following, empirical results are presented qualitatively (e.g., 
allocator A was found to use space more efficiently than allocator B). In part,  
this is due to the fact that  early results used figures of merit that  are awkward to 
explain in a brief review, and difficult to relate to measures that  current readers 
are likely to find most interesting. In addition, workloads have changed so much 
over the last three decades that  precise numbers would be of mostly historical 

s7 This is not quite necessarily true. For applications that do little freeing, the initial 
carving of memory requested from the operating system will be a significant fraction 
of the allocation cost. This can be made quite fast as well, however. 

8s A few papers have not escaped our attention but seem to have escaped our libary. In 
particular, we have had to rely on secondary sources for Graham's influential work 
in worst-case analyses. 
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interest. (Early papers were mostly about managing operating system segments 
(or overlays) in fixed main memories, s9 while recent papers are mostly about 
managing small objects within the memory of a single process.) The qualitative 
presentation is also due in part to our skepticism of the methodology underlying 
most of the results before 1991; citing precise numbers would lend undue weight 
to quantities we consider questionable. 

4.1 T h e  f i rs t  t h r e e  decades :  1960 to  1990 

Structure of this section. Our review of the work in this period is structured 
chronologically, and divided into three parts, roughly a decade each. Each of the 
three sections begins with an overview; the casual reader may want to read the 
overviews first, and skim the rest. We apologize in advance for a certain amount  
of redundancy--we have at tempted to make this section relatively free-standing, 
so that  it can be read straight through (by a reader with sufficient fortitude) 
given the basic concepts presented by earlier sections. 

1960 t o  1969. 

Overview. Most of the basic designs still in use were conceived in the 1960's, in- 
cluding sequential fits, buddy systems, simple segregated storage, and segregated 
lists using exact lists, and sequential fits. (Some of these, particularly sequential 
fits, already existed in the late 50's, but were not well described in the literature. 
Knuth [Knu73] gives pointers to early history of linked list processing.) In the 
earliest days, interest was largely in managing memory segments in segmented 
operating systems, i.e., managing logical (program and data) segments to phys- 
ical memory. By the mid-1960's, the problem of managing storage for different- 
sized objects within the address space of a single process was also recognized as 
an important  one, largely due to the increasing use (and sophistication) of list 
processing techniques and languages [Ros61, Com64, BR64]. 9~ 

Equally important ,  the 1960's saw the invention of the now-traditional meth- 
odology for allocator evaluation. In early papers, the assumptions underlying 
this scheme were explicit and warned against, but as the decade progressed, the 
warnings decreased in frequency and seriousness. 

Some of the assumptions underlying this model made more sense then than 
they do now, at least for some purposes. For example, most computers were based 

89 Several very early papers (e.g., [Mah61, IJ62]) discussed memory fragmentation, but 
in systems where segments could be compacted together or swapped to secondary 
storage when fragmentation became a problem; these papers generally do not give 
any quantitative results at all, arid few qualitative results comparing different allo- 
cation strategies. 

90 Early list processing systems used only list nodes of one or two sizes, typically con- 
taining only two pointers, but later systems supported nodes of arbitrary sizes, to 
directly support structures that had multiple links. (Again, see Knuth [Knu73] for 
more references.) 
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on segmented memory systems, and highly loaded. In these systems, the memory  
utilization was often kept high, by long-term scheduling of jobs. (In some cases, 
segments belonging to a process might be evicted to backing storage to make 
room when a request couldn' t  otherwise be satisfied.) This makes steady-state 
and independence assumptions somewhat more plausible than in later decades, 
when the emphasis had shifted from managing segments in an operating system 
to managing individual program objects within the virtual memory of a single 
process. 

On the other hand, in retrospect this assumption can be seen to be unwar- 
ranted even for such systems. For example, multitasking may introduce phase 
behavior,  since the segments belonging to a process are usually only released 
when that  process is running, or when it terminates. Between time slices, a pro- 
gram does not generally acquire or release segments. Operations on the segments 
associated with a process may occur periodically. 

Other assumptions that  became common during the 1960's (and well beyond) 
also seem unwarranted in retrospect. It was widely assumed that  segment, sizes 
were independent,  perhaps because most systems were used by many users at 
the same time, so that  most segments were typically "unrelated." On reflection, 
even in such a system there is good reason to think that  particular segment sizes 
may  be quite common, for at least three reasons. First, if the same program is 
run in different processes simultaneously, the statically-allocated da ta  segment 
sizes of frequently-used programs may appear often. Second, some important  
programs may use da ta  segments of particular characteristic sizes. (Consider a 
sort utility that  uses a fixed amount  of memory chosen to make internal sorting 
fast, but  using merging fl'om external storage to avoid bringing all of the data  
into memory.) Third,  some segment sizes may be used in unusually large numbers 
due to peculiarities of the system design, e.g., the minimum and/or  maximum 
segment size. (Segments or overlays were also typically fairly large compared to 
total  memory, so statistical mechanics would not be particularly reliable even 
for random workloads.) 

The original paraphernalia for the lottery had been lost long ago, and 
the black box. . ,  had been put  into use even before Old Man Warner, 
the oldest man in town, was born. Mr. Summers spoke frequently to the 
villagers about making a new box, but no one liked to upset even as 
much tradition as was represented by the black box. There was a story 
that  the present box had been made with some pieces of the box that  
had preceded it, the one that  had been constructed when the first people 
settled down to make a village here. 
--Shirley Jackson, "The Lottery" 

Co l l ins  [Co161] apparently originated the random-trace methodology, and 
reported on experiments with best fit, worst fit, first fit, and random fit. 

Collins described his simulations as a "game," in the terminology of game 
theory. The application program and the allocator are players; the application 
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makes moves by requesting memory allocations or deallocations, and the alloca- 
tor responds with moves that  are placement decisions. 91 

Collins noted that  this methodology required further validation, and that  
experiments with real workloads would be better. Given this caveat, best fit 
worked best, but first fit (apparently address-ordered) was almost equally good. 
No quantitative results were reported, and the distributions used were not spec- 
ified. 

C o m f o r t ,  in a paper about list processing for different-sized objects [Com64], 
briefly described the segregated lists technique with splitting and coalescing, as 
well as address-ordered first fit, using an ordered linear llst. 9~ (The address order 
would be used to support coMescing without any additional space overhead.) 
Comfort did not mention that  his "multiple free lists" technique (segregated 
fits with exact lists) was an implementation of a best fit policy, or something 
very similar; later researchers would often overlook this scheme. Comfort also 
proposed a simple form of deferred coalescing, where no coalescing was done until 
memory was exhausted, and then it was all done at once. (Similar coalescing 
schemes seem to have been used in some early systems, with process swapping 
or segment eviction used when coalescing failed to obtain enough contiguous free 
memory.) No empirical results were reported. 

T o t s c h e k  [Tot65] reported the distribution of job sizes (i.e., memory as- 
sociated with each process) in the SDC (Systems Development Corporation) 
timesharing system. Later papers refer to this as "the SDC distribution". Natu- 
rally, the "block" sizes here were rather large. Totschek found a roughly trimodal 
distribution, with most jobs being either around 20,000 words, or either less than 
half or more than twice that. He did not find a significant correlation between 
job size and running time. 

K n o w l t o n  [Kno65] published the first paper on the (binary) buddy system, 
although Knuth [Knu73] reports that same idea was independently invented 
and used by H. Markowitz in the Simscript system around 1963. Knowlton also 
suggested the use of deferred coalescing to avoid unneeded overheads in the 
common case where objects of the same size were frequently used. 

Ross,  in [Ros67] described a sophisticated storage management system for 
the AED engineering design support system. While no empirical results were 
reported, Ross describes different patterns of memory usage that  programs may 
exhibit, such as mostly monotonic accumulation (ramps), and fragmentation 
caused by different characteristic lifetimes of different-sized objects. 

The storage allocation scheme divided available memory into "zones," which 
could be managed by different allocators suitable to different application's usual 

91 We suspect that the history of allocator research might have been quite different 
if this metaphor had been taken more seriously--the application program in the 
randomized methodology is a very unstable individual, or one using a very peculiar 
strategy. 

92 Knuth [Knu73] reports that this paper was written in 1961, but unpublished until 
1964. 
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behavior.  93 Zones could be nested, and the system was extens ib le- -a  zone could 
use one of the default allocators, or provide its own allocation and deallocation 
routines. I t  was also possible to free an entire zone at once, rather  than  freeing 
each object individually. The default allocators included first fit and simple seg- 
regated storage. (This is the first published mention of simple segregated storage 
tha t  we have found, though Comfor t ' s  multiple free list scheme is similar.) 

G r a h a m ,  in an unpublished technical report  [Gra], described the problem of 
analyzing the worst-case memory  use of allocators, and presented lower bounds 
on worst case f ragmentat ion.  94 (An earlier memo by Doug McIlroy may  have 
mot iva ted  this work, as well as Robson's  later work.) 

G r a h a m  characterized the problem metaphorical ly as a board game between 
an "attacker," who knows the exact policy used by the allocator ("defender") 
and submits  requests ("makes moves" ) that  will force the defender's policy to do 
as badly as possible. (This is a common metaphor  in "minimax" game theory; 
such an omniscient, malevolent  opponent  is commonly called a "devil" or "evil 
demon." ) 

K n u t h  surveyed memory  allocation techniques in Volume One of The Art of 
Computer Programming [Knu73], which has been a s tandard text  and reference 
ever since. It  has been part icularly influential in the area of memory  allocation, 
both  for popularizing existing ideas and for presenting novel algori thms and 
analyses. 

Knuth  introduced next fit (called "modified first fit" in many  subsequent 
papers),  the boundary  tag technique, and splitting thresholds. In an exercise, 
he suggested the Fibonacci buddy system (Ex. 2.5.31) In another exercise, he 
suggests using balanced binary trees for best fit (Answer to Ex. 2.5.9). 

Knuth  adopted Collins' random-trace  simulation methodology to compare 
best fit, first fit, next fit, and binary buddy. Three size distributions were used, 
one smooth  (uniform) and two spiky. 95 The published results are not very de- 
tailed. First fit was found to be bet ter  than best fit in terms of space, while 
next fit was bet ter  in terms of time. The (binary) buddy system worked better  
than expected; its l imited coalescing usually worked. Simple segregated storage 
worked very poorly. 96 

93 Comparable schemes were apparently used in other early systems, including one that 
was integrated with overlaying in the IBM PL/I  compiler [Boz84]. 

94 We do not have a copy of this report at this writing. Our information comes from 
secondary sources. 

95 One consisted of the six powers of two from 1 to 32, chosen with probability inversely 
proportional to size, and the other consisted of 22 sizes from 10 to 4000, chosen with 
equal probability. The latter distribution appears (now) to be unrealistic in that 
most real programs' size distributions are not only spiky, but skewed toward a few 
heavily-used sizes. 

98 This contrasts strongly with our own recent results for synthetic traces using ran- 
domized order (but real sizes and lifetimes), described later. We are unsure why this 
is, but there are many variables involved, including the relative sizes of memories, 
pages, and objects, as well as the size and lifetime distributions. 
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Knuth also presented the "fifty-percent rule" for first fit, and its derivation. 
This rule states that  under several assumptions (effectively random allocation 
request order, steady-state memory usage, and block sizes infrequently equal to 
each other) the length of the free list will tend toward being about half the num- 
ber of blocks actually in use. (All of these assumptions now appear to be false for 
most programs, as we will explain later in the discussions of IMPS71], [ZG94] and 
[WJNB95]. Shore would later show that  Knuth 's  simplifying assumptions about 
the lack of systematicity in the allocator's placement were also unwarranted. 97 
Betteridge [Bet82] provides a somewhat different critique of the fifty percent 
rule.) 

In a worst-case analysis, Knuth showed that  the binary buddy system requires 
at most 2M log 2 n memory. 

After Knuth 's  book appeared, many  papers showed that  (in various random- 
ized simulations) best fit had approximately the same memory usage as address- 
ordered first fit, and sometimes better, and that  next fit had significantly more 
fragmentation. Nonetheless, next fit became quite popular in real systems. It is 
unclear whether this is because next fit seems more obviously scalable, or simply 
because Knuth seemed to favor it and his book was so widely used. 

R a n d e l l  [Ran69] defined internal and external fragmentation, and pointed 
out that  internal fragmentation can be traded for reduced external fragmentation 
by allocating memory in multiples of some grain size g; this reduces the effective 
number of sizes and increases the chances of finding a fit. 

Randell Mso reported on simulation experiments with three storage allocation 
methods: best fit, random fit, and an idealized method that  compacts memory 
continually to ensure optimal memory usage. (All of these methods used a ran- 
dom free list order.) He used the synthetic trace methodology, basing sizes on an 
exponential distribution and on Totschek's SDC distribution. He found that  the 
grain size g must be very small, or the increase in external fragmentation would 
outweigh the decrease in internal fragmentation. 9s (Given the smoothing effects 
of the randomization of requests, and its possibly different effects on internal 
and externM fragmentation, this result should be interpreted with caution.) 

Randell used three different placement algorithms. The first (called RELOC) 
was an idealized algorithm that  continually compacted memory to obtain the 
best possible space usage. The other two (non-compacting) algorithms were best 
fit (called MIN) and random. Comparisons between these two are not given. The 
only quantitative da ta  obtainable from the paper are from figures 2 and 3, which 
show that  for best fit, the SDC distribution exhibits less fragmentation (about 

97 Nonetheless, his fifty-percent rule (and others' corollaries) are still widely quoted in 
textbooks on data structures and operating systems. (To our minds, the fault for 
this does not lie with Knuth, who presented eminently reasonable first-cut analyses 
in the course of writing a tremendously ambitious, valuable and general series of 
books.) 

9s On first reading, RandeU's grain sizes seem quite large---the smallest (nonzero) value 
used was 16 words. Examining Totschek's distribution, however, it is clear that this 
is quite small relative to the average "object" (segment) size [Tot65]. 
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11 or 12 percent) than an exponential distribution (about 17 or 18 percent), and 
both suffer considerably as the grain size is increased. 

M i n k e r  et  al. [M+69] published a technical report which contained a distri- 
bution of "buffer sizes" in the University of Maryland UNIVAC Exee 8 system.99 
Unfortunately, these data  are imprecise, because they give counts of buffers 
within ranges of sizes, not exact sizes. 

These data  were later used by other researchers, some of whom described 
the distribution as roughly exponential. The distribution is clearly not a simple 
exponential, however, and the use of averaging over ranges may conceal distinct 
spikes. 1~176 

1970 t o  1979. 

Overview. The 1970's saw a few significant innovations in allocator design and 
methodology. However, most research was focused on at tempts to refine known 
allocator designs (e.g., the development of vorious buddy systems), on exper- 
iments using different combinations of distributions and allocators, or on at- 
tempts to derive analytical formulae that could predict the performance of actual 
implementations for (randomized) workloads. 

Analytic techniques had much greater success within a certain limited scope. 
Bounds were found for worst-case fragmentation, both for specific algorithms 
and for all algorithms. The results were not encouraging. Building on Graham's  
analysis framework, Robson's 1971 paper dashed any hope of finding an allocator 
with low fragmentation in the worst case. 

Most empirical studies used synthetic trace techniques, which were refined 
as more information about real lifetime and size distributions became available, 
and as it became obvious that the relative performance of different algorithms 
depended on those factors. Exponential distributions became the most com- 
mon size distribution, and a coramon lifetime distribution, because empirical 
da ta  showed that  allocations of small and short-lived objects were frequent. The 
fact that  these distributions were often spiky--or  effectively smoothed in the 
statistics-gathering process--was often overlooked, as was the non-independence 
of requests. 

Perhaps the most innovative and empirical paper of this period was Mar- 
golin's, which used sound methodology, and evaluated a new form of deferred 
coalescing. 

o9 We have not yet obtained a copy of this report--our information is taken from [Rus77] 
and other secondary sources. We are unclear on exactly what sense of "buffer" is 
meant, but believe that it means mean memory used to cache logical segments for 
processes; we suspect that the sizes reported are ranges because the system used a 
set of fixed buffer sizes, and recorded those, rather than the exact sizes of segments 
allocated in those buffers. We are also unsure of the exact units used. 

100 Our tentative interpretation of the data is that the distribution is at least bimodal, 
with modes somewhere around roughly 5 units (36% of all requests) and roughly 20 
units (30% of all requests). 
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Fenton and Payne's "half fit" policy is also novel and interesting; it is based 
on a very different strategy from those used in other allocators. Wise's (unpub- 
lished) double buddy design is also well-motivated. Purdom, Stigler and Cheam 
introduced the segregated fits mechanism, which did not receive the attention it 
was due. 

Batson and Brundage's statistics for Algol-60 segment sizes and lifetimes were 
quite illuminating, and their commentary insightfully questioned the plausibility 
of the usual assumptions of randomness and independence. They underscored 
the difficulty of predicting allocator performance. Unfortunately, though their 
results and commentary were available in 1974 in a technical report, they were 
not published in a journal until 1977. 

Denn ing  [Den70] used Knuth's fifty percent rule to derive an "unused mem- 
ory rule", which states that under assumptions of randomness and steady-state 
behavior, fragmentation generally increases memory usage by about half; he also 
pointed out that sequential free list searches tend to be longer when memory is 
heavily loaded. Ge l enbe  also derived a similar "two thirds rule" [Gel71] in a 
somewhat different way. (These essentially identical rules are both subject to 
the same criticisms as Knuth's original rule.) 

P u r d o m  and  $t igler  [PS70] performed statistical analyses of the binary 
buddy system, and argued that limitations on buddy system coalescing were 
seldom a problem. Their model was based on strong assumptions of independence 
and randomness in the workload, including exponentially distributed random 
lifetimes. 

Batson ,  J u  and  W o o d  [BJWT0] reported segment size and lifetime distrib- 
utions in the University of Virginia B5500 system. Most segments were "small"-- 
about 60 percent of the segments in use were 40 (48-bit) words or less in length. 

About 90 percent of the programs run on this system, including system pro- 
grams, were written in Algol, and the sizes of segments often corresponded to the 
sizes of individual program objects, e.g., Algol arrays. (In many other systems, 
e.g., Totschek's SDC system, segments were usually large and might contain 
many individual program objects.) The data were obtained by sampling at var- 
ious times, and reflect the actual numbers of segments in use, not the number 
of allocation requests. 

This distribution is weighted toward small objects, but Batson et al. note 
that it is not well described as an exponential. Unfortunately, their results are 
presented only in graphs, and in roughly exponentially spaced bins (i.e., more 
precise for smaller objects than large ones). This effectively smooths the results, 
making it unclear what the actual distribution is, e.g., whether it is spiky. The 
general shape (after smoothing) has a rounded peak for the smaller sizes, and 
is roughly exponential after that. (In a followup study [BB77], described later, 
Batson and Brundage would find spikes.) 

A note about Algol-60 is in order here. Algol-60 does not support general 
heap allocation--all data allocations are associated with procedure activations, 



75 

and have (nested) dynamic extents. (In the case of statically allocated data,  that  
extent is the entire program run.) In the B5500 Algol system, scalar variables 
associated with a procedure were apparently allocated in a segment; arrays were 
allocated in separate segments, and referenced via an indirection. Because of the 
B5500's limit of 1023 words per segment, large arrays were represented as a set 
smMler arrays indexed by an array of descriptors (indirections) 3 ~ 

Because of this purely block-structured approach to storage allocation, Algol- 
60 data  lifetimes may be more closely tied to the phase structure of the program 
than would be expected for programs in more modern languages with a general 
heap. On the other hand, recent data  for garbage-collected systems [Wil95] and 
for C and C + +  programs [WJNB95] suggest that  the majori ty of object lifetimes 
in modern programs are also tied to the phase structure of programs, or to the 
single large "phase" that  covers the whole duration of execution. 

C a m p b e l l  introduced an "optimal fit" policy, which is a variant of next fit 
intended to improve the chances of a good fit without too much cost in extra 
searching [Cam71]. (It is not optimal in any useful sense.) The basic idea is that  
the allocator looks forward through the linear list for a bounded number of links, 
recording the best fit found. It then proceeds forward looking for another fit at 
least as good as what it found in that  (sample) range. If it fails to find one before 
traversing the whole list, it uses the best fit it found in the sample range. (That  
is, it degenerates into exhaustive best fit search when the sample contains the 
best fit.) 

Campbell  tested this technique with a real program (a physics problem), but 
the details of his design and experiment were strongly dependent on unusual 
coordination between the application program and the memory allocator. After 
an initial phase, the application can estimate the number of blocks of different 
sizes that  will be needed later. Campbell 's algorithm exploited this information 
to construct a randomized free list containing a good mix of block sizes. 

While Campbell 's  algorithm worked well in his experiment, it seems that  his 
results are not applicable to the general allocation problem, and other techniques 
might have worked as well or better. (For example, constructing multiple free 
lists segregated by size, rather than a random unified free list that  must be 
searched linearly. See also the discussion of [Pag82] in Section 4.1.) 

P u r d o m ,  S t ig l e r ,  a n d  C h e a m  [PSC71] introduced segregated fits using 
size classes with range lists (called "segregated storage" in their paper). The na- 
ture and importance of this efficient mechanism for best-fit-like policies was not 
generally appreciated by later researchers (an exception being Standish [Sta80]). 
This may be because their paper's title gave no hint that  a novel algorithm was 
presented. 

Purdom et al. used the random trace methodology to compare first fit, binary 
buddy, and segregated fits. (It is unclear which kind of first fit was used, e.g., 

101 Algol-60's dynamically sized arrays may complicate this scenario somewhat, requir- 
ing general heap allocation, but apparently a large majority of arrays were statically 
sized and stack-like usage predominated. 
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LIFO-ordered or address-ordered). Their segregated fits scheme used powers-of- 
two size classes. 

They reported that memory usage for segregated fits was almost identical to 
that of first fit, while binary buddy's was much worse. 

Every year, after the lottery, Mr. Summers began talking again about 
a new box, but every year the subject was allowed to fade off without 
anything's being done. The black box grew shabbier each year; by now 
it was no longer completely black but splintered badly among one side 
to show the original wood color, and in some places faded or stained. 
--Shirley Jackson, "The Lottery" 

Margol in  et al. used real traces to study memory allocation in the CP- 
67 control program of an IBM System/360 mainframe [MPS71]. (Note that this 
allocator allocated storage used by the operating system itself, not for application 
programs.) 

They warned that examination of their system showed that several assump- 
tions underlying the usual methodology were false, for their system's workload: 
uncorrelated sizes and lifetimes, independence of successive requests, and well- 
behaved distributions. Unfortunately, these warnings were to go generally un- 
heeded for two decades, despite the fact that some later researchers used the 
distributions they reported to generate randomly-ordered synthetic traces. (We 
suspect that their careful analysis of a single system was not given the attention 
it deserved because it seemed too ad hoc.) 

Their size distribution was both spiky and skewed, with several strong modes 
of different sizes. Nearly half (46.7%) of all objects were of size 4 or 5 double- 
words; sizes 1 and 8 (doublewords) accounted for about 11% each, and size 29 
accounted for almost 16% of the remainder. Many sizes were never allocated at 
all. 

Margolin et al. began with an address-ordered first fit scheme, and added 
deferred coalescing. Their major goal was to decrease the time spent in memory 
management inside the CP-67 control program, without an undue increase in 
memory usage. Their deferred coalescing subpools (quick lists) pre-allocated 
some fraction (50% or 95%) of the expected maximum usage of objects of those 
sizes. (This scheme does not appear to adapt to changes in program behavior.) 
Deferred coalescing was only used for frequently-allocated sizes. 

For their experiments, they used several traces from the same machine, but 
gathered at different times and on different days. They tuned the free list sizes 
using one subset of the traces, and evaluated them using another. (Their system 
was thus tuned to a particular installation, but not a particular run.) 

They found that using deferred coalescing increased memory usage by ap- 
proximately zero to 25%, while generally decreasing search traversals to a small 
fraction of the original algorithm's. In actual tests in the real system, time spent 
in memory management was cut by about a factor of six. 
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R o b s o n  [Rob74] showed that  the worst-case performance of a worst-case- 
opt imal  algorithm is bounded from below by a function that  rises logarithmically 
with the ratio n (the ratio of the largest and smallest block sizes), i.e., M log 2 n 
times a constant.  

I s oda ,  G o t o  a n d  K i m u r a  [IGKT1] introduced a bi tmapped technique for 
keeping track of allocated and unallocated buddies in the (binary) buddy system. 
Rather  than taking a bit (or several, as in Knowlton's original scheme) out of 
the storage for each block, their scheme maintains a bit vector corresponding to 
the words of memory. The bit for the last word of each block, and the bit for the 
last word occupied by a block is set. The buddy placement constraint lets these 
be used as "tail lamps" to look efficiently look through memory to find the ends 
of preceding blocks. 

G r a h a m ,  G a r e y ,  a n d  U l l m a n  presented new worst case fragmentation 
analyses in [GGU72]. (We have not yet obtained this paper, and will not com- 
ment on it further.) 

H i r s c h b e r g  [Hir73] followed Knuth 's  suggestion and devised a Fibonacci 
buddy system; he compared this experimentally to a binary buddy. Itis exper- 
iment used the usual synthetic trace methodology, using a real distribution of 
block sizes (from the University of Maryland UNIVAC Exec 8 system [M+69]) 
and exponential lifetime distribution. His results agreed well with the analytically 
derived estimates; Fibonacci buddy's fragmentation increased memory usage by 
about  25%, compared to binary buddy's  38%. 

Hirschberg also suggested a generalization of the buddy system allowing 
Fibonacci-like series where each size was the sum of the previous size and a 
size a fixed distance further clown in the size series. (For some fixed integer k, 
the ith size in the series may be split into two blocks of sizes i - 1 and i - k.) 

R o b s o n  [Rob71] put  a fairly tight upper and lower bounds on the worst- 
case performance of the best possible allocation algorithm, tie showed that a 
worst-case-optimal strategy's worst-case memory usage was somewhere between 
0.5M log 2 n and about 0.84M log 2 n. 

S h e n  a n d  P e t e r s o n  introduced the weighted buddy method [SP74], whose 
allowable block sizes are either powers of two, or three times a power of two. They 
compared this scheme to binary buddy, using the synthetic trace methodology; 
they used only a uniform lifetime distributions, and only two size distributions, 
both smooth (uniform and exponential). This is unfortunate, because skew in ob- 
ject size request may affect the effectiveness of different block-splitting schemes. 

They found that  for a uniform size distribution, weighted buddy lost more 
memory to fragmentat ion than binary buddy, about 7%. For an exponential 
distribution (which is apparently more realistic) this was reversed--weighted 
buddy did bet ter  by about  7%. By default, they used FIFO-ordered free lists. 
With LIFO-ordered free lists, memory usage was about 3% worse. 
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Using a variation of the random trace methodology intended to approximate 
a segment-based multiprogramming system, 102 F e n t o n  a n d  P a y n e  [FP74] com- 
pared best fit (called "least fit"), first fit, next fit, worst fit, and "half fit." The 
half fit policy allocator at tempts to find a block about twice the desired size, in 
the hopes that  if there is a bias toward particular sizes, remainders from splitting 
will be more likely to be a good fit for future requests. They found that  best fit 
worked best, followed by first fit, half fit, next fit, and worst fit, in that order. 
Half fit was almost as good as first fit, with next fit performing significantly 
worse, and worst fit much worse. 

All of the size distributions used in their experiments were smooth. For many 
of their experiments, they used a smooth distribution based on generalizations 
about Totschek's SDC distribution and Batson, Ju, and Wood's B5500 distribu- 
tion. (This is a "deformed exponential" distribution, which rises quickly, rounds 
off at the top, and then descends in a roughly exponential fashion.) Fenton and 
Payne apparently didn't  consider the possibility that smooth distributions (and 
randomized order) might make their half-fit policy work worse than it would in 
practice, by decreasing the chance that  a request for a particular size would be 
repeated soon. 

H i n d s  [Hin75] presented a fast scheme for recombination in binary and gener- 
alized Fibonacci buddy systems. Each block has a "left buddy count" indicating 
whether it is a right buddy at the lowest level (in which case the LBC is zero), or 
indicating for how many levels above the lowest it is a left buddy. This supports 
splitting and merging nearly as quickly as in the binary buddy scheme. 

C r a n s t o n  a n d  T h o m a s  [CT75] presented a method for quickly finding the 
buddy of a block in various buddy systems, using only three bits per block. This 
reduces the time cost of splitting and merging relative to Hirschberg's scheme, 
as well as incurring minimal space cost. 

Sho re  [Sho75] compared best fit and address-ordered first fit more thor- 
oughly than had been done previously, and also experimented with worst-fit and 
a novel hybrid of best fit and first fit. He used the then-standard methodology, 
generating random synthetic traces with (only) uniformly distributed lifetimes. 
Size distributions were uniform, normal, exponential, and hyperexponential. He 
also performed limited experiments with "partial populations" (i.e., spiky dis- 
tributions). The figure of merit was the space-time product of memory usage 
over time. (This essentially corresponds to the average memory usage, rather 
than peak usage.) 

This study was motivated in part by Wald's report of the "somewhat puzzling 
success" of best fit in actual use in the Automatic Operating and Scheduling 

102 In this model, each object (segment) is assumed to be associated with a different 
process. When a request cannot be satisfied, that process blocks (i.e., the death 
time of the segment is delayed, but time advances so that other segments may die). 
This models embodies an oversimplification relative to most real systems, in that 
processes in moss systems may have multiple associated segments whose death times 
cannot be postponed independently. 
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P r o g r a m  of the  Bur roughs  D-825 sys tem [Wa166]. (Fragmenta t ion  was expected 
to be a problem; plans were made  for compact ion ,  but  none was needed.) 

Shore found tha t  best fit and (address-ordered) first fit worked about  equally 
well, bu t  t ha t  first fit had an advan tage  when the dis t r ibut ion included block 
sizes t ha t  were relatively large compared  to the m e m o r y  size. Following K n u t h  
[Knu73], he hypothes ized tha t  this was due to its tendency to fit small  objects 
into holes near one end of  memory ,  accumula t ing  larger free areas toward  the 
other  end. l~ 

For part ia l  populat ions ,  Shore found tha t  increasing degrees of  spikiness 
seemed to favor best  fit over first fit slightly, but  tha t  the variance increased 
so quickly tha t  this result was not  reliable. 1~ 

Shore noted tha t  while first fit and best fit policies are roughly  similar,  they 
seem to have somewha t  different s t rengths  and weaknesses; he hypothesized tha t  
these migh t  be combinable  in a hybr id  a lgor i thm tha t  would ou tper fo rm either. 

Shore exper imented  with a novel parameter ized allocator,  combin ing  features 
of  first fit and best  fit. At  one extreme set t ing of the parameter ,  it behaved like 
address-ordered first fit, and at the other  extreme it behaved like best  fit. He 
found tha t  an in termedia te  pa ramete r  set t ing showed less f r agmenta t ion  than  
either s t anda rd  algori thm.  If  this were to be shown to work for real workloads,  
it could be a valuable result. I t  suggests tha t  best fit and address-ordered first 
fit m a y  be exploit ing different regularities, and tha t  the two strategies can be 
combined  to give bet ter  performance.  (Since the inputs  were r a n d o m l y  ordered, 
however,  it is not  clear whether  these regularities exist in real p rogram behavior,  
or whether  they are as i m p o r t a n t  as other  regularities.) 

Shore also exper imented  with worst-fit,  and found tha t  it performed very 
poorly.  1~ 

Shore warned tha t  his results "mus t  be interpreted with caution," and tha t  

103 We are actually unsure what Shore's claim is here. It is not clear to us whether 
he is making the general claim that first fit tends to result in a free list that is 
approximately size-ordered, or only the weaker claim that first fit more often has 
unusually large free blocks in the higher address range, and that this is important 
for distributions that include occasional very large blocks. 

i04 Wald had hypothesized that best fit worked well in his system because of the spiky 
distribution of requests. Shore notes that "Because there were several hundred pos- 
sible requests" in that system, the result "was due more probably to a nonsaturating 
workload." The latter makes sense, because Wald's system was a real-time system 
and generally not run at saturation. The tbrmer is questionable, however, because 
the distribution of actual requests (and of live data) is more important than the 
distribution of possible requests. 

105 He drew the (overly strong) conclusion that good fits were superior to poor fits; we 
suggest that  this isn't always the case, and that the strengths of worst fit and best- 
fit-like policies might be combinable. Worst fit has the advantage that it tends to 
not to create small remainders, as best fit does. It has the disadvantage that it tends 
to ensure that there are n o  very large free areas--it systematically whittles away at 
the largest free block until it is no longer the largest. A hybrid strategy might use 
poor fits, but preserve some larger areas as well. 
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some real distributions are not well behaved. Citing Margolin, he noted tht  "such 
simplifying assumptions as well-behaved distributions, independence of succes- 
sive requests, and independence of request sizes and duration are questionable." 
These warnings apparently received less at tention than his thorough (and influ- 
ential) experimentation within the random trace paradigm. 

B u r t o n  introduced a generalization of the Fibonacci buddy system [Bur76 l 
which is more general than Hirschberg's. Rather than using a fixed function 
for generating successive sizes (such as always adding size i - 1 and i - 3 to 
generate size i), Burton points out that  different sizes in the series can be used. 
(For example, adding sizes i - 1 and i - 2 to generate i, but  adding sizes j - 1 
and j - 4 to generate size j .)  Burton's  intended application was for disk storage 
management,  where it is desirable to ensure that  the block size, track size, and 
cylinder size are all in the series. The result is fairly general, however, and has 
usually been overlooked; it could be used to generate application-specific buddy 
systems tailored to particular programs'  request sizes. 

"You didn' t  give him time enough to take any paper he wanted. I saw 
you. It wasn't  fair!" 
"Be a good sport, Tessie," Mrs Delacroix called, and Mrs. Graves said, 
"All of us took the same chance." 
--Shirley Jackson, "The Lottery" 

B a t s o n  a n d  B r u n d a g e  [BB77] reported segment sizes and lifetimes in 34 
varied Algol-60 programs. Most segments were small, and the averaged size dis- 
tr ibution was somewhat skewed and spiky. (Presumably the distributions for 
individual programs were even less well-behaved, with individual spikes being 
reduced considerably by averaging across multiple programs.) 

Lifetime distributions were somewhat better-behaved, but  still irregular, l~ 
When lifetimes were normalized to program running times, evidence of plateau 
and ramp usage appeared. (In our interpretation of the data,  that  is. As men- 
tioned earlier, however, Algol-60 associates segment lifetimes with the block 
structure of the program.) 

Batson and Brundage pointed out that  lifetimes are not independent of size, 
because some blocks are entered many times, and others only once; most en- 
tries to the same block allocate exactly the same number and sizes of segments. 
They stated that  they had no success fitting any simple curve to their data,  
and that  this casts doubts on analyses and experiments assuming well-behaved 
distributions. 

They  also suggested that  the experiments of Randell, Knuth,  and Shore could 
be redone be using realistic distributions, but warned that  "we must wait for 
a bet ter  understanding" of "the dynamics of the way in which the allocated 

108 Recall that looking at distributions is often misleading, because sudden deaths of 
objects born at different times will result in a range of lifetimes. (Section 2.4) Small 
irregularities in the lifetime distribution may reflect large dynamic patterns. 
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space is used--before we can make reasonable predictions about  the comparat ive 
performance of different mechanisms." They go on to say that  "there is no reason 
to suppose that  stochastic processes could possibly generate the observed request 
distributions." 

Though based on a 1974 technical report,  this paper was not published until 
1977, the same year tha t  saw publication of a flurry of papers based on random 
traces with well-behaved distributions. (Described below.) 

W e l n s t o e k  [~u surveyed some (but not all) of the impor tant  work in 
allocators before 1976, and presented new empirical results. He also introduced 
the "QuickFit" algorithm, a deferred coalescing scheme using size-specific lists 
for small block sizes, backed by LIFO-ordered first fit as the general Mlocator. 1~ 
(Weinstock reported that  this scheme was invented several years earlier for use 
in the B l i s s / l l  compiler [WJW+75], and notes that  a similar scheme was inde- 
pendently developed and used in the Simscript II.5 language [Joh72]. Margolin's 
prior work was overlooked, however.) 

Weinstock used the conventional synthetic trace methodology; randomly- 
ordered synthetic traces were generated, using two real size distributions and 
four artificial ones. One of the real size-and-lifetime distributions came from the 
Bl i s s / l l  compiler [WJW+75], and the other was from Batson and Brundage's 
measurements of the University of Virginia B5500 system [BB77], described 
above. The four artificial size distributions were uniform, exponential,  Poisson, 
and a two-valued distribution designed to be a bad case for first fit and best fit. 
(The two-valued distribution was not used in the final evaluation of allocators.) 

The B l i s s / l l  distribution is heavily weighted toward small objects, but  is not 
well-described by an exponential curve. It has distinct spikes at 2 words (44% 
of all objects) and 9 words (14%). In between those spikes is another elevation 
at 5 words and 6 words (9% each). 

The figures of merit  for space usage in this study were probabilities of failure 
in different-sized memories. (That  is, how likely it was that  the synthetic program 
would exhaust memory and fail, given a particular limited memory size.) This 
makes the results rather difficult reading, but the use of fixed memory sizes 
allows experimentat ion with allocators which perform (deferred) coalescing only 
when memory  is otherwise exhausted. 

Weinstock experimented with QuickFit, best fit, first fit, next fit, and binary 
buddies. Variations of best fit used address-ordered or size-ordered free lists. 
Variations of first fit and next fit used address-ordered and LIFO-ordered free 
lists. The address-ordered versions of best, first, and next fit were also tried with 
immediate coalescing and deferred coalescing. Two binary buddy systems were 
used, with immediate  and deferred coalescing. (In all cases, deferred coalescing 
was only performed when memory was exhausted; no intermediate strategies 
were used.) 

In general, Weinstock found that  address-ordered best fit had the best space 
usage, followed closely by address-ordered first fit. (Both did about  equally well 

107 This is not to be confused with the later variant of QuickFit [WW88], which does 
no coalescing for small objects, or Standish and Tadman's indexed fits allocator. 



82 

under light loadings, i.e., when memory was more plentiful.) 
After address-ordered best fit came a cluster of algorithms whose ranking 

changed depending on the loading and on the distributions used: address-ordered 
first fit, address-ordered best fit with deferred coalescing, size-ordered best fit, 
and Quick Fit. 

After that came a cluster containing address-ordered first fit with deferred 
coalescing and address-ordered next fit. This was followed by address ordered 
next fit with deferred coalescing, followed in turn by LIFO-ordered first fit. 
Binary buddies performed worst, with little difference between the immediate 
and deferred coalescing variants. 

In summary, address-ordered variants tended to outperform other variants, 
and deferred coalescing (in the extreme form used) usually increased fragmen- 
tation. FIFO-ordered lists were not tried, however. 

In terms of speed, QuickFit was found to be fastest, followed by binary buddy 
with deferred coalescing. Then came binary buddy with immediate coalescing. 
Rankings are given for the remaining allocators, but these are probably not 
particularly useful; the remaining algorithms were based on linear list imple- 
mentations, and could doubtless be considerably improved by the use of more 
sophisticated indexing systems such as splay trees or (in the case of best fit) 
segregated fits. 

Weinstock made the important point that seemingly minor variations in al- 
gorithms could have a significant effect on performance; he therefore took great 
care in the describing of the algorithms he used, and some of the algorithms used 
in earlier studies. 

In a brief technical communication, Bays [Bay77] replicated some of Shore's 
results comparing first fit and best fit, and showed that next fit was distinctly in- 
ferior when average block sizes were small. When block sizes were large, all three 
methods degraded to similar (poor) performance. (Only uniformly distributed 
lifetimes and exponentially distributed sizes were used.) 

"Seems like there's no time at all between lotteries any more," Mrs. 
Delacroix said to Mrs. Graves in the back row. 
--Shirley Jackson, "The Lottery" 

Pe t e r son  and  N o r m a n  [PN77] described a very general class of buddy sys- 
tems, and experimentally compared several varieties of buddy systems: binary, 
Fibonacci, a generalized Fibonacci [HS64, Fer76], and weighted. They used the 
usual random trace methodology, with both synthetic (uniform and exponential) 
and real size distributions. Their three size distributions were Margolin's CP-67 
distribution, the University of Maryland distribution, and a distribution from 
an IBM 360 OS/MVT system at Brigham Young University. (This "BYU" dis- 
tribution was also used in several later studies.) They point out that the latter 
two distributions were imprecise, grouping sizes into ranges; they generated sizes 
randomly within those ranges. (The implication of this is that these distributions 
were smoothed somewhat; only the CP-67 distribution is truly natural.) 
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(The BYU distribution is clearly not exponential, although some later re- 
searchers would describe it that way; while it is skewed toward small sizes, it is 
at least bimodal. Given that it is reported in averages over ranges, there may be 
other regularities that have been smoothed away, such as distinct spikes.) 

We are unsure what lifetime distribution was used. 
Peterson and Norman found that  these buddy systems all had similar memory 

usage; the decreases in internal fragmentation due to more-refined size series were 
usually offset by similar increases in external fragmentation. 

R o b s o n  [Rob77] showed that the worst-case performance of address-ordered 
first fit is about M log 2 n, while best fit's is far worse, at about M log 2 n. He also 
noted that the roving pointer optimization made next fit's worst case similarly 
b a d - - b o t h  best fit and next fit can suffer about as much from fragmentation as 
any allocator with general splitting and coalescing. 

N i e l s e n  [Nie77] studied the performance of memory allocation algorithms 
for use in simulation programs. His main interest was in finding fast allocators, 
rather than memory-efficient allocators. He used a variation of the usual random 
trace methodology intended to model the workloads generated by discrete-event 
simulation systems. A workload was modeled as a set of streams of event objects; 
each stream generated only requests of a single size, but these requests were gen- 
erated randomly according to size and inter-arrival time distributions associated 
with the streams. To construct a workload, between 3 and 25 request streams 
were combined to simulate a simulation with many concurrent activities. 

Eighteen workloads (stream combinations) were used. Of these, only two 
modeled any phase behavior, and only one modeled phases that affected different 
streams (and object sizes) in correlated ways. l~ 

Nielsen's experiments were done in two phases. In the first phase a single 
workload was used to test 35 variants of best fit, first fit, next fit, binary bud- 
dies, and segregated fits. (This workload consisted of 10 streams, and modeled 
no phase behavior.) Primarily on the basis of time costs, all but seven of the 
initial set of allocators were eliminated from consideration. (This is unfortunate, 
because different implementation strategies could implement many of the same 
policies more efficiently. Best fit and address-ordered first fit were among the 
policies eliminated.) Of the surviving seven allocators, six had poor memory us- 
age. The seventh allocator, which performed quite well in terms of both speed 

10s In our view, this does not constitute a valid cross-section of discrete event simula- 
tion programs, for several reasons. (They may better reflect the state of the art in 
simulation at the time the study was done, however.) First, in many simulations, 
events are not generated at random, but in synchronized pulses or other patterns. 
Second, many events in some simulations are responses to emergent interactions of 
other events, i.e., patterns in the domain-level systems being simulated. Third, many 
simulation programs have considerable state local to simulated objects, in addition 
to the event records themselves. Fourth, many simulation systems include analysis 
facilities which may create objects with very different lifetime characteristics than 
the simulation objects themselves; for example, an event log that accumulates mon- 
otonically until the simulation terminates. 
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and memory usage, was "multiple free lists," i.e., segregated fits with exact lists. 

In [Sho77], Shore  analyzed address-ordered first fit theoretically, and showed 
that the allocator itself violates a statistical assumption underlying Knuth's fifty 
percent rule. He argued that systematicity in the placement of objects interacts 
with "the statistics of the release process" to affect the length of the the free list 
under equilibrium conditions. 

Shore demonstrated that the relative performance of best fit and (address- 
ordered) first fit depended on the shape of the lifetime distribution. 

Shore was primarily concerned with simple, well behaved distributions, how- 
ever, and made the usual assumptions of randomness (e.g., independence of 
successive allocations, independence of size and lifetime). He did not consider 
possible systematicities in the application program's allocations and releases, 
such as patterned births and deaths. (He did aptly note that "the dynamics 
of memory usage comprise complicated phenomena in which observable effects 
often have subtle causes.") 

Russel l  [Rus77] attempted to derive formulas for expected fragmentation in 
a Fibonacci and a generalized Fibonacci buddy system, 1~ based on the assump- 
tion that size distributions followed a generalization of Zipf's law (i.e., a decreas- 
ing function inversely related to the sizes). Based on this assumption, he derived 
estimated lower and upper bounds, as well as estimated average performance. 
He compared this to simulation results, using the conventional synthetic trace 
methodology and basing size distributions on three real distributions (Margolin's 
CP-67 distribution, the BYU distribution, and the U. of Maryland distribution.) 
For the generalized Fibonacci system, average fragmentation for the three work- 
loads was close to what was predicted (22% predicted, 21% observed). For the 
plain Fibonacci system, the error was significant (29% predicted, 22% observed). 
For binary buddy the error was rather large (44% predicted, 30% observed). 

Russell notes that the CP-67 data do not closely resemble a Zipf distribution, 
and for this distribution the fragmentation using conventional Fibonacci is in fact 
lower (at 15%) than his estimated lower bound (24%). Averaging just the results 
for the other two distributions brings the results closer to the predicted values 
on average, but for generalized Fibonacci they move further away. We believe 
that his estimation technique is unreliable, partly because we do not believe that 
distributions are generally exponential, and partly because of the randomness of 
request order that he assumes. 

Wise,  in an unpublished technical report [Wis78], described a double buddy 
system and its advantages over Fibonacci systems in terms of external fragmen- 
tation (producing free blocks of the same size as requested blocks). This report 
apparently went unnoticed until well after double buddy was reinvented by Page 
and Hagins [PH86]. 11~ 

109 See also Bromley [Bro80]. 
110 The first author of the present paper overlooked both and reinvented it yet again in 

1992. It is next expected to appear in the year 2000. 
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R e e v e s  [Ree79, Ree80, Ree82, Ree83] used analytic techniques to determine 
the effect of a random fit allocator policy in the face of random workloads, using 
a "generating function" approach originated by Knuth [Knu73]. This work relies 
extremely heavily on randomness assumptions--usual ly in both the workload 
and the a l loca tor - - to  enable the analyses of memories of significant size. 

1980 t o  1990.  

People at first were not so much concerned with what the story meant;  
what they wanted to know was where these lotteries were held, and 
whether they could go there and watch. 
--Shirley Jackson, "On the Morning of June 28, 1948, and 'The Lot- 
tery '  " 

Overview. The 1980-1990 period saw only modest development of new alloca- 
tor techniques, and little new in the way of evaluation methodologies, at least in 
academic publications. Despite doubts cast by Margolin and Batson, most exper- 
imenters continued to use synthetic traces, often with smooth and well-behaved 
distributions. This is probably due to the lack of a comprehensive survey address- 
ing methodological concerns. (The present paper is an a t tempt  to remedy that  
problem.) By this time, there were many papers on allocators, and Margolin's 
and Batson's were probably not among the most studied. I l l  Most theoretical 
papers continued to make strong assumptions of randomness and independence, 
as well, with the exception of papers about worst-case performance. 

Among the more interesting designs from this period are Standish and Tad- 
man's  exact lists scheme, Page and Hagins' double buddy system, Beck's age- 
match algorithm, and Hanson's obstack system. 

S t a n d i s h  surveyed memory allocation research in a (short) chapter of a book 
on da ta  structures [Sta80], describing segregated fits and introducing a segrega- 
ted free lists method using exact lists. Citing Tadman 's  masters thesis [Tad78], he 
reported that  an experimental  evaluation showed this scheme to perform quite 
similarly to best f i t - -which is not surprising, because it is best fit, in policy 
t e rms- -and  that  it was fast. (These experiments used the usual synthetic trace 
methodology, and Standish summarized some of Weinstock's results as well.) 

P a g e  [Pag84] analyzed a "cyclic placement" policy similar to next fit, both 
analytically and in randomized simulations. (Only uniformly distributed sizes 
and lifetimes were used.) The cyclic placement scheme generally resulted in sig- 
nificantly more fragmentat ion than first fit or best fit. 

111 Margolin's paper was published in an IBM journal, while the main stream of allocator 
papers was published in Communications of the A CM. Batson and Brundage's paper 
was published in CA CM, but its title may not have conveyed the significance of their 
data and conclusions. 
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"...over in the north village they're talking of giving up the lottery." 
--Shirley Jackson, "The Lottery" 

L e v e r e t t  a n d  H i b b a r d  [LH82] performed one of the all-too-rare studies 
evaluating memory allocators using real traces. Unfortunately, their workload 
consisted of five very small programs (e.g., towers of Hanoi, knight's tour) coded 
in Algol-68; none was more than 100 lines. It is unclear how well such textbook- 
style programs represent larger programs in general use. 

Algol-68 did support general heap allocation, an improvement over Algol-60. 
The Algol-68 system used for experiments used reference counting to reclaim 
space automatically, m2 (Deferred) coalescing was performed only when memory 
is exhausted. The general allocator was first fit with a LIFO-ordered free list. 

LIFO-ordered quick lists for different-sized blocks were used, as well as per- 
procedure lists for activation records, m3 and some lists for specific data  types. 
Deferred coalescing greatly improved the speed of their allocator, and usually 
decreased overall memory usage. 

Leverett and Hibbard also found that  Knuth 's  roving pointer modification 
(i.e., next fit) was disappointing; search lengths did not decrease by much, and 
for some programs got longer. 

P a g e  [Pag82] evaluated Campbell's "optimal fit" method analytically and 
in randomized trace simulations. (Page's version of optimal fit was somewhat 
different from Campbell's, of necessity, since Campbell 's was intertwined with a 
particular application program structure.) Page showed that  Campbell 's anal- 
ysis erred in assuming randomness in first-fit-like placement policies, and that  
systematicities in placement matter  considerably. In Page's analysis and simu- 
lations, Campbell 's "optimal" fit was distinctly inferior to first fit and best fit 
in both search times and memory usage. (Only uniformly distributed sizes and 
lifetimes were used, however.) 

Page also showed that  (for uniformly distributed sizes and lifetimes), a first 
fit policy resulted in the same placement decisions as best fit most of the time, if 
given the same configuration of memory and the same request. He also showed 
that  the free list for first fit tended toward being roughly sorted in size order. 
(See also similar but possibly weaker claims in [Sho75], discussed earlier.) 

B e t t e r i d g e  [Bet82] at tempted to compute fragmentation probabilities for 
different allocators using first-order Markov modeling. (This book is apparently 

112 A possibly misleading passage says that memory is freed "explicitly," but that is 
apparently referring to a level of abstraction below the reference counting mechanism. 
Another potentially confusing term, "garbage collection," is used to refer to deferred 
coalescing where coalescing is performed only when there is no sufficiently large block 
to satisfy a request. This is very different from the usual current usage of the term 
[Wi195], but it is not uncommon in early papers on allocators. 

113 Activation records were apparently allocated on the general heap; presumably this 
was used to support closures with indefinite extent (i.e., "block retention"), and/or 
"thunks" (hidden parameterless subroutines) for call-by-name parameter passing 
[Ing61]. 
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Betteridge's dissertation, completed in 1979.) The basic idea is to model all 
possible states of memory occupancy (i.e., all arrangements of allocated and free 
blocks), and the transition probabilities between those states. Given a fixed set 
of transition probabilities, it is possible to compute the likelihood of the system 
being in any particular state over the long run. This set of state probabilities can 
then be used to summarize the likelihood of different degrees of fragmentation. 

Unfortunately, the number  of possible states of memory is exponential in 
the size of memory, and Betteridge was only able to compute probabilities for 
memories of sizes up to twelve units. (These units may be words, or they may 
be interpreted as some larger grain size. However, earlier results suggest tha t  
small grain sizes are preferred.) He suggests several techniques to make it easier 
to use somewhat larger models, but had little success with the few he tried. (See 
also [Ben81, Ree82, McI82].) We are not optimistic that  this approach is useful 
for realistic memory sizes, especially since memory sizes tend to increase rapidly 
over time. 

To allow the use of a first-order Markov model, Betteridge assumed that  
object lifetimes were completely independent- -not  only must death times be 
random with respect to allocation order, but  there could be no information in 
the request stream that  might give an allocator any exploitable hint as to when 
objects might die. For this, Betteridge had to assume a random exponential 
lifetime function, i.e., a half-life function where any live object was exactly as 
likely to die as any other at a given time. (Refer to Section 2.2 for more on the 
significance of this assumption.) This is necessary to ensure that  the frequencies 
of actual transitions would stabilize over the long run (i.e., the Markov model is 
crgodic--see Section 2.2), and allows the computation of the transition probabil- 
ities without running an actual simulation for an inconveniently infinite period 
of time. The system need not keep track of the sequences of transitions that  
result in particular s ta tes--actual  sequences are abstracted away, and only the 
states where histories intersect are represented. 

Even with these extremely strong assumptions of randomness, this problem 
is combinatorially explosive. (This is true even when various symmetries and 
rotations are exploited to combine (exactly) equivalent states [Ben81, McI82].) 

We believe that  the only way to make this kind of problem remotely tractable 
is with powerful abstractions over the possible states of memory. For the gen- 
eral memory  allocation problem, this is simply not possible--for an arbitrary 
interesting allocator and real request streams, there is always the possibility of 
systematic and even chaotic interactions. The only way to make the real problem 
formalizable is to find a useful qualitative model that captures the likely range of 
program behaviors, each allocator's likely responses to classes of request streams, 
and (most important ly)  allows reliable characterization of request streams and 
allocators in the relevant ways. We are very far away from this deep understand- 
ing at present. 

B e c k  [Bec82] described the basic issue of fragmentation clearly, and designed 
two interesting classes of allocators, one idealized and one implementable. Beck 
pointed out that  basic goal of an allocator is to reduce the number of isolated 
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free blocks, and that the existence of isolated free blocks is due to neighboring 
blocks having different death times. 

This motivated the design of an idealized offline allocator that looks ahead 
into the future to find out when objects will die; it attempts to place new objects 
near objects that will die at about the same time. This policy can't be used in 
practice, because allocators must generally make their decisions online, but it 
provides an idealized standard for comparison. This "release-match" algorithm 
is philosophically similar to Belady's well-known MIN (or OPT) algorithm for 
optimal demand-paging. (It is heuristic, however, rather than optimal.) 

Beck also described an implementable "age match" algorithm intended to 
resemble release-match, using allocation time to heuristically estimate the deal- 
location (release) time. 

For an exponential size distribution and uniform lifetime distribution, he 
found that the effectiveness of the age-match heuristic depended on the lifetime 
variance (i.e., the range of the uniform distribution). This is not surprising, 
because when lifetimes are similar, objects will tend to be deallocated in the 
order that they are allocated. As the variance in lifetimes increases, however, 
the accuracy of prediction is reduced. 

Beck also experimented with hyper-exponential lifetime distributions. In this 
case, the age-match heuristic systematically failed, because in that case the age 
of an object is negatively correlated with the time until it will die. This should 
not be surprising. (In this case it might work to reverse the order of estimated 
death times.) 

S t ephenson  [Ste83] introduced the "Fast Fits" technique, using a Cartesian 
tree of free blocks ordered primarily by address and secondarily by block size. 
He evaluated the leftmost fit (address-ordered first fit) and better fit variants 
experimentally. Details of the experiment are not given, but the general result 
was that the space usage of the two policies was similar, with better fit appearing 
to have a time advantage. (A caveat is given, however, that this result appears to 
be workload-dependent, in that different distributions may give different results. 
This may be a response to the then-unpublished experiments in [BBDT84], but 
no details are given.) 

K a u f m a n  [Kau84] presented two buddy system allocators using deferred co- 
alescing. The first, "tailored list" buddy systems, use a set of size-specific free lists 
whose contents are not usually coalesced. 114 This system attempts to keep the 
lengths of the free lists proportional to the expected usage of the corresponding 
sizes; it requires estimates of program behavior. The second scheme, "recombi- 
nation delaying" buddy systems, adapts dynamically to the actual workload. In 
experiments using the usual synthetic trace methodology, Kaufman found that 
both systems worked quite well at reducing the time spent in memory manage- 
ment. These results are suspect, however, due to the load-smoothing effects of 
random traces, which flatter small caches of free blocks (Section 3.11).115 

114 This tailoring of list length should not be confused with the tailoring of size classes 
as mentioned in [PN77]. 
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B o z m a n  e t  al.  [BBDT84] studied a wide variety of Mlocators, including 
sequential fits, deferred coalescing schemes, buddy systems, and Stephenson's 
Cartesian tree system. (Not M1 allocators were compared directly to each other, 
because some were tailored to an IBM operating system and others were not.) 
They used synthetic traces based on real lifetime distributions, primarily from 
two installations of the same IBM operating system, VM-SP. (Their main goal 
was to develop an efficient allocator for that  system.) They also measured the 
performance of a resulting algorithm in actual use in the VM-SP system. 

First, Bozman et al. compared first fit, next fit and best fit with the VM-SP 
algorithm. This algorithm, based on earlier research by Margolin et al., used 
deferred coalescing with a generM pool managed by address-ordered first fit. 
In terms of fragmentation,  VM-SP was best, followed by best fit, which was 
significantly better  than first fit. This result is unclear, however, because they 
don' t  state which variety of first fit they were using (e.g., address-ordered or 
LIFO-ordered free lists). Next fit was considerably worse, using about 50% more 
memory  than the VM-SP algorithm. 

They  then compared best-fit-first (taking the first of several equally good 
fits) with best-fit-last (taking the last), and found that best-fit-last was better. 
They also added a splitting threshold, which reduced the difference between best 
fit and first fit. (We are not sure whether these got better or worse in absolute 
terms.) Adding the splitting threshold also reversed the order of best-fit-first and 
best-fit-last. 

Bozman et al. also tested a binary buddy and a modified Fibonacci buddy. 
They  found that  the memory usage of both was poor, but both were fast; the 
memory  usage of the modified Fibonacci buddy was quite variable. 

Testing Stephenson's Cartesian tree allocator, they found that  the leftmost 
fit (address ordered first fit) policy worked better than the "better fit" policy; 
they latter suffered from "severe" external fragmentation for the test workload. 
They suggest that  leftmost fit would make a good general allocator in a system 
with deferred coalescing. 

After these initial experiments,  Bozman et al. developed a fast deferred coa- 
lescing allocator. This allocator used 2 to 15 percent more memory than best fit, 
but  was much faster. We note tha t  the extra memory usage was likely caused at 
least in part  by the policy of keeping "subpools" (Dee lists caching free blocks of 
particular sizes) long enough that  the miss rate was half a percent or less. (That  
is, no more than one in two hundred allocations required the use of the general 
allocator.) 

This allocator was deployed and evaluated in the same installations of the 
VM-SP operating system from which their test statistics had been gathered, 
The performance results were favorable, and close to what was predicted. From 

115 The tailored list scheme worked better than the recombination delaying scheme, but 
this reslflt is especially suspect; the tailored list scheme does not respond dynamically 
to the changing characteristics of the workload, but this weakness is not stressed by 
an artificial trace without significant phase behavior. 
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this Bozman et al. make the general claim--which is clearly far too strong-- 
that the statistical assumptions underlying the random-trace methodology are 
not a problem, and that the results are highly predictive. (We believe that this 
conclusion is difficult to support with what amount to two data points, especially 
since their validation was primarily relevant to variations on a single optimized 
design, not the wide variety of basic allocators they experimented with using 
synthetic traces.) 

In a related paper, Bozman  [Boz84] described a general "software lookaside 
buffer" technique for caching search results in data structures. One of his three 
applications (and empirical evaluations) was for deferred coalescing with best 
fit and address-ordered first fit allocators. In that application, the buffer is a 
FIFO queue storing the size and address of individual blocks that have been 
freed recently. It is searched linearly at allocation time. 

For his evaluation, Bozman used the conventional synthetic trace method- 
ology, using a real size distribution from a VM-SP system and exponentially 
distributed lifetimes; he reported considerable reductions in search lengths, in 
terms of combined FIFO buffer and general allocator searches. (It should be 
noted that both general allocators used were based on linear lists, and hence not 
very scalable to large heaps; since the FIFO buffer records individual free blocks, 
it too would not scale well. With better implementations of the general allocator, 
this would be less attractive. It also appears that the use of a randomized trace 
is likely to have a significant effect on the results (Section 3.11). 

Coffman,  Kadota~ and  Shepp [CKS85] have conjectured that address- 
ordered first fit approaches optimal as the size of memory increases. They make 
very strong assumptions of randomness and independence, including assuming 
that lifetimes are unrelated and exponentially distributed. 

In support of this conjecture, they present results of simulations using pseudo- 
random synthetic traces, which are consistent with their conjecture. They claim 
that "we can draw strong engineering conclusions from the above experimental 
result." 

Naturally, we are somewhat skeptical of this statement, because of the known 
non-randomness and non-independence observed in most real systems. Coffman, 
Kadota, and Shepp suggest that their result indicates that large archival storage 
systems should use first fit rather than more complex schemes, but we believe 
that this result is inapplicable there. (We suspect that there are significant reg- 
ularities in file usage that are extremely unlikely to occur with random traces 
using smooth distributions, although the use of compression may smooth size 
distributions somewhat.) 

We also note that for secondary and tertiary storage more generally, contigu- 
ous storage is not strictly required; freedom from this restriction allows schemes 
that are much more flexible and less vulnerable to fragmentation. (Many systems 
divide all files into blocks of one or two fixed sizes, and only preserve logicalconti- 
guity (e.g., [ROgl, VC90, SKW92, CG91, AS95]). If access times are important, 
other considerations are likely to be much more significant, such as locality. (For 
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rotat ing media and especially for tapes, placement has more impor tant  effects 
on speed than on space usage.) 

O l d e h o e f t  a n d  A l l a n  [OA85] experimented with variants of deferred coa- 
lescing, using a working-set or FIFO policy to dynamically determine which sizes 
would be kept on quick lists for for deferred coalescing. The system maintained 
a cache of free lists for recently-freed sizes. (Note that  where Bozman had main- 
tained a cache of individual free blocks, Oldehoeft and Allan maintained a cache 
of free lists for recently-freed sizes.) For the FIFO policy, this cache contains 
a fixed number  of free lists. For the Working Set policy, a variable number of 
free lists are maintained, depending on how many sizes have been freed within a 
certain t ime window. In either policy, when a free list is evicted from the cache, 
the blocks on that  list are returned to the general pool and coalesced if possible. 
Note that  the number  and size of uneoalesced free blocks is potentially quite 
variable in this scheme, but probably less so than in schemes with fixed-length 
quick lists. 

One real trace was used, and two synthetic traces generated from real dis- 
tributions. The real trace was from a Pascal heap (program type not stated) and 
tile real distributions were Margolin's CP-67 data  and Leverett and Hibbard's 
da ta  for small Algol programs. 

Oldehoeft and Allan reported results for FIFO and Working Set with compa- 
rable average cache sizes. ']?he FIFO policy may defer the coalescing of blocks for 
a very variable time, depending on how many different sizes of object are freed. 
The Working Set policy to coalesce all blocks of sizes that haven' t  been freed 
within its t ime window. Neither policy bounds the volume of memory contained 
in the quick lists, although it would appear that  Working Set is less likely to 
have excessive amounts  of idle memory on quick lists. 

The  Working Set policy yielded higher hit rates--i .e. ,  more allocations were 
satisfied from the size-specific lists, avoiding use of the general allocator. 

They  also experimented with a totally synthetic workload using uniform ran- 
dom size and lifetime distributions. For that  workload, Working Set and FIFO 
performed about  equally, and poorly, as would be expected. 

Effects on actual memory usage were not reported, so the effect of their 
deferred coalescing on overall memory usage is unknown. 

K o r n  a n d  Vo [KV85] evaluated a variety of UNIX memory allocators, both 
production implementations distributed with several UNIX systems, and new 
implementations and variants. Despite remarking on the high fragmentation ob- 
served for a certain usage pattern combined with a next fit allocator (the simple 
loop described in Section 3.5), they used the traditional synthetic trace meth- 
odology. (Vo's recent work uses real traces, as described later.) Only uniform 
size and lifetime distributions were used. They were interested in both time and 
space costs, and in scalability to large heaps. 

Five of their allocators were variants of next fit. 116 The others included simple 

118 Next fit is called "first fit" in their paper, as is common. 
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segregated storage (with powers of two size classes) 117 address-ordered first fit 
(using a self-adjusting "splay" tree [ST85]), segregated fits (using Fibonacci- 
spaced size classes), better fit (using Stephenson's Cartesian tree scheme), and 
two best fit algorithms (one using a balanced binary tree, and the other a splay 
tree). 

It may be significant that  Korn and Vo modified most of their allocators to 
include a "wilderness preservation heuristic," which treats the last block of the 
heap memory area specially; this is the point (called the "break") where the 
heap segment may be extended, using UNIX sbrk () system call, to obtain more 
virtual memory pages from the operating system. (See Section 3.5.) 

To summarize their results, we will give approximate numbers obtained by 
visual inspection of their Figure 3. (These numbers should be considered very 
approximate, because the space wastage varied somewhat with mean object size 
and lifetimes.) 

Space waste (expressed as an increase over the amount  of live data, and in in- 
creasing order), was as follows. Best fit variants worked best, with space wastage 
of roughly 6 to 11 percent (in order of increasing waste, best fit (splay), best fit 
(balanced), better fit Cartesian). Segregated fits followed at about 16 percent. 
Address-ordered next fit wasted about 20 percent, and address-ordered first fit 
wasted about 24 percent. Standard next fit and a variant using adaptive search 
followed, both at about 26 percent. Two other variants of next fit followed at 
a considerable distance; one used a restricted search (42 percent) and the other 
treated small blocks specially (45 percent). Simple segregated storage (powers of 
two sizes) was worst at about 47 percent. (These numbers should be interpreted 
with some caution, however; besides the general problem of using synthetic work- 
loads, there is variation among the allocators in per-block overheads.) 

In terms of time costs, two implementations scaled very poorly, being fast for 
small mean lifetimes (and hence heap sizes), but very slow for large ones. The 
implementations of these algorithms both used linear lists of all blocks, allocated 
or free. These algorithms were a standard next fit and an address-ordered next 
fit. 

Among the other algorithms, there were four clusters at different time per- 
formance levels. (We will name the algorithms within a cluster in approximately 
increasing cost order.) The first cluster contained only simple segregated stor- 
age, which was by far the fastest. The second cluster contained next fit with 
restricted search, next fit with special treatment of small blocks, segregated fits, 
and next fit with adaptive search. (This last appeared to scale the worst of this 
cluster, while segregated fits scaled best.) The third cluster contained best fit 
(splay), better fit (Cartesian), and address-ordered first fit (splay). 

Ga l  a n d  M e z z a l a m a  [GM85] presented a very simple deferred coalescing 
scheme, where only one size class is treated specially, and the standard C library 

117 This is allocator (implemented by Chris Kingsley and widely distributed with the 
BSD 4.2 UNIX system) is called a buddy system in their paper, but it is not; it does 
no coalescing at all. 
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allocator routines are used for backing storage. (The algori thms used in this 
l ibrary are not stated,  and are not standardized.) 

Their  target  application domain was concurrent simulations, where many  
variat ions of a design are tested in a single run. As the run progresses, faults 
are detected and faul ty  designs are deleted. 11s An interesting characteristic of 
this kind of system is tha t  m em ory  usage follows a backward (decreasing) r amp  
function after the initialization phase- -as ide  from short- term variat ions due to 
short-l ived objects, the general shape of the memory-use  function is monotonic-  
ally decreasing. 

To test  their allocator, they used a synthetic workload where memory  usage 
rises sharply at the beginning and oscillates around a linearly descending ramp.  
The  use of this synthetic trace technique is more somewhat  more reasonable for 
this specialized allocator than for the general allocation problem; since there 's  no 
external f ragmenta t ion,  there 's  no difference between a real trace and a synthetic 
one in tha t  regard. 

They reported tha t  this quick list technique was quite fast, relative to the 
(unspecified) general allocator. 

From our point of view, we find the experimental  results less interesting 
than  the explanation of the overall pat tern  of memory  usage in this class of 
application, and what  the attractiveness of this approach indicates about  the 
s tate  of heap management  in the real world (refer to Section 1.1). 

P a g e  a n d  H a g i n s  [PH86] provided the first published double buddy system, 
and experimental ly  compared it to binary and weighted buddy systems. Using 
the s tandard simulation techniques, and only uniformly distr ibuted sizes and 
lifetimes, they show tha t  double buddies suffer from somewhat  less f ragmentat ion 
than binary and weighted buddies. They also present an analysis that  explains 
this result. 119 

B r e n t  [Bre89] presented a scalable algori thm for the address-ordered first 
fit policy, using a "heap," da ta  s t ructure-- i .e . ,  a partially-ordered tree, not to 
be confused with the sense of "heap" as a pool for dynamic storage a l loca t ion- -  
embedded in an array. To keep the size of this heap array small, a two-level 
scheme is used. Memory is divided into equal-sized chunks, and the heap recorded 
the size of the largest free block in each chunk. Within a chunk, conventional 
linear searching is used. While this scheme appears to scale well, it has the 

11s This is actually intended to test a test system; faulty designs are intentionally in- 
cluded in the set, and should be weeded out by the test system. If not, the test 
system must be improved. 

119 While we believe that double buddies are indeed effective, we disagree somewhat 
with their methodology and their analysis. Uniform random distributions do not 
exhibit the skewed and non-uniform size distributions often seen in real programs, 
or pronounced phase behavior. All of these factors may affect the performance of the 
double buddy system; a skew towards a particular size favors double buddies, where 
splitting always results in same-sized free blocks. Phase behavior may enhance this 
effect, but on the other hand may cause problems due to uneven usage of the two 
component (binary) buddy systems, causing external fragmentation. 
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drawback that  the constant factors are apparently rather high. Other scalable 
indexing schemes may provide higher performance for address-ordered first fit. 

Although the villagers had forgotten the ritual and lost the original black 
box, they still remembered to use stones... 
"It isn't fair, it isn't right," Mrs. Hutchison screamed and then they were 
upon her. 
--Shirley Jackson, "The Lottery" 

C o f f m a n  a n d  L e i g h t o n ,  in a paper titled "A Provably Efficient Algorithm 
for Dynamic Storage Allocation" [CL89] describe an algorithm combining some 
characteristics of best fit and address-ordered first fit, 12~ and prove that  its 
memory usage is asymptotically optimal as system size increases toward infinity. 

To enable this proof, they make the usual assumptions of randomness and in- 
dependence, including randomly ordered and exponentially distributed lifetimes. 
(See Section 2.2.) They also make the further assumption that  the distribution 
of object sizes is known a priori, which is generally not the case in real systems. 

Coffman and Leighton say that  probabilistic results are less common than 
worst-case results, "but far more important ,"  that  their result has "strong conse- 
quences for practical storage allocation systems," and that  algorithms designed 
to "create sufficiently large holes when none exist will not be necessary except 
in very special circumstances." 

It should be no surprise that  we feel compelled to take exception with such 
strongly-stated claims. In our view, the patterned time-varying nature of real 
request streams is the major problem in storage allocation, and in particular 
the time-varying shifts in the requested sizes. Assuming that  request distribu- 
tions are known and stable makes the problem mathematical ly tractable, but  
considerably less relevant. 

Coffman and Leighton offer an asymptotic improvement in memory usage, 
but  this amounts  to no more than a small constant factor in practice, since real 
algorithms used in real systems apparently seldom waste more than a factor of 
two in space, and usually much less. 1~1 

While we believe that  this result is of limited relevance to real systems, it does 
seem likely that  for extremely large systems with many complex and independent 
tasks, there may  be significant smoothing effects that  tend in this direction. In 
tha t  case, there may  be very many  effectively random holes, and thus a likely 
good fit for any particular request. 

120 This algorithm bears a resemblance to one devised by Krogdahl to ensure good 
worst-case performance [Kro73]. 

lzl We also note that their algorithm requires logz n time--where n is the number of 
free blocks--which tends toward infinity as n tends toward infinity. In practical 
terms, it becomes rather slow as systems become very large. However, more scalable 
(sublogarithmic) algorithms could presumably exploit the same statistical tendencies 
of very large systems, if real workloads resembled stochastic processes. 
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Unfortunately,  we suspect that  the result given is not directly relevant to any 
existing system, and for any sufficiently large and complex systems, other consid- 
erations are likely to be more impor tan t .  For the foreseeable future, t ime-varying 
behavior  is the essential policy consideration. If  systems eventually become ver 
large (and heterogeneous), locality concerns are likely to be crucial. (Consider 
the effects on locality in a large system when objects are placed in effectively 
randomly-generated holes; the scattering of related da ta  seems likely to be a 
problem.) 

H a n s o n  [Han90] presents a technique for allocating objects and deallocating 
them e n  m a s s e .  This is often more efficient and convenient than  traversing da ta  
structures being deallocated, and freeing each object individually. A special kind 
of heap can be created on demand.  In the GNU C compiler system, these are 
called "obstacks," short for "object stacks," and we will adopt  that  te rm here. 
Objects  known to die at the end of a phase can be allocated on an obstack, 
and all freed at once when the phase is over. More generally, nested phases 
are supported,  so that  objects can 1;e deallocated in batches whose extents are 
nested. Freeing an object s imply frees that  object and all objects allocated after 
it. (This is actually a very old idea, dating at least to Collins' "zone" system. 122 
The  fact tha t  this idea has been independently developed by a variety of system 
implementors  attests to the obvious and exploitable phase behavior evident in 
m a n y  programs.)  

The  obstack scheme has two advantages. First, it is often easier for the pro- 
g rammer  to manage  batches of objects than to code freeing routines tha t  free 
each object individually. Second, the allocator implementat ion can be optimized 
for this usage style, reducing space and t ime costs for freeing objects. In Han- 
son's system, storage for a special ly-managed heap is allocated as a linked list 
of large chunks, and objects can be allocated contiguously within a chunk; no 
header is required on each small object. The usual t ime cost for allocation is 
just  the incrementing of a pointer into a chunk, plus a check to see if the chunk 
is full. The t ime cost for freeing in a large specially-managed heap is roughly 
proport ional  to the number  of chunks freed, with fairly small constant factors, 
rather  than the number  of small objects freed. 

Obstack allocation must  be used very carefully, because it intertwines the 
management  of da ta  structures with the control structure of a program. It  is 
easy to make mistakes where objects are allocated on the obstack, but the da ta  
objects they manage  are allocated on the general heap. (E.g., a queue object 
m a y  be allocated on an obstack, but allocate its queue nodes on the general 
heap.) When the controlling objects are freed, the controlled objects are not; 
this is especially likely to happen in large systems, where intercalling libraries 
do not obey the same storage management  conventions. 12a 

122 Similar techniques have been used in Lisp systems (notably the Lisp Machine sys- 
tems), and are known by a variety of names. 

12a The opposite kind of mistake is also easy to make, if the controlling objects' routines 
are coded on the assumption that the objects it controls will be freed automati- 
cally when it is freed, but the controlling object is actually allocated on the general 
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4.2 R e c e n t  S t u d i e s  U s i n g  R e a l  T r a c e s  

"Some places have already quit lotteries," Mrs. Adams said. 
"Nothing but  trouble in that," Old Man Warner said stoutly. 
--Shirley Jackson, "The Lottery" 

Z o rn ,  G r u n w a l d ,  e t  al. Zorn and Grunwald and their collaborators have per- 
formed a variety of experimental evaluations of allocators and garbage collectors 
with respect to space, time, and locality costs. This is the first major  series of 
experiments using valid methodology, i.e., using real traces of program behavior 
for a variety of programs. 

Our presentation here is sketchy and incomplete, for several reasons. Zorn and 
Grunwald are largely interested in time costs, while we are (here) more interested 
in placement policies' effect on fragmentation. They have often used complicated 
hybrid allocator algorithms, making their results difficult to interpret in terms 
of our basic policy consideration, and in general, they do not carefully separate 
out the effects of particular implementation details (such as per-object overheads 
and minimum block sizes) from "true" fragmentation. (Nonetheless, their work 
is far more useful than most prior experimental  work.) Some of Zorn and Grun- 
wald's papers - -and  much of their da ta  and their test p rograms--are  available 
via anonymous Internet F T P  (from cs .  c o l o r a d o ,  edu) for further analysis and 
experimentation. 

In [ZG92], Z o r n  a n d  G r u n w a l d  present various allocation-related statistics 
on six allocation-intensive C programs, i.e., programs for which the speed of the 
allocator is important .  (Not all of these use large amounts  of memory, however.) 
They found that  for each of these programs, the two most popular sizes accounted 
for at least half  (and as much as 93%) of all allocations. In each, the top ten 
sizes accounted for at least 85% of all allocations. 

Z o r n  a n d  G r u n w a l d  [ZG94] a t tempted to find fairly conventional models 
of memory allocation that  would allow the generation of synthetic traces useful 
for evaluating allocators. They used several models of varying degrees of sophis- 
tication, some of which modeled phase behavior and one of which modeled fine- 
grained patterns stochastically (using a first-order Markov model). To obtain the 

heap rather than an obstack. In that case, a storage leak results. These kinds of 
errors (and many others) can usually be avoided if garbage collection [Wil95] is used 
to free objects automatically. Baker reports that the heavy use of an obstack-like 
scheme used in MIT Lisp machines was a continuing source of bugs (Baker, personal 
communication 1995). David Moon reports that a similar facility in the Symbolics 
system often resulted in obscure bugs, and its use was discouraged after an efficient 
generational garbage collector [Moo84] was developed (Moon, personal communica- 
tion 1995); generational techniques heuristically exploit the lifetime distributions of 
typical programs [LH83, Wi195]. For systems without garbage collection, however, 
the resulting problems may be no worse than those introduced by other explicit 
deallocation strategies when used carefully and in well-documented ways. 
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relevant statistics, they gathered real traces and analyzed them to quantify var- 
ious properties, then constructed various drivers using pseudo-random numbers 
to generate request streams accordingly. 

In general, the more refined a t tempts  at modeling real behavior failed. (Our 
impression is that  they did not necessarily expect to succeed--their  earlier em- 
pirical work shows a strong disposition toward the use of real workloads.) They 
found that  their most accurate predictor was a simple "mean value" model, 
which uses only the mean size and lifetime, and generates a request stream with 
uniformly distributed sizes and lifetimes. (Both vary from zero to twice the mean, 
uniformly.) Unfortunately, even their best model is not very accurate, exhibiting 
errors of around 20%. For a small set of allocators, this was sufficient to predict 
the rank ordering (in terms of fragmentation) in most cases, but with ordering 
errors when the allocators were within a few percent of each other. 

From this Zorn and Grunwald conclude that the only reliable method cur- 
rently available for studying allocators is trace-driven simulation with real traces. 
While this result has received too little attention, we believe that  this was a wa- 
tershed experiment,  invalidating most of the prior experimental  work in memory 
allocation. 

Ironically, Zorn and Grunwald's results show that  some of the most simplis- 
tic models - -embodying  clearly false assumptions of uniform size and lifetime 
distr ibutions--generMly produce more accurate results than more "realistic" 
models. It appears that  some earlier results using unsound methods have ob- 
tained the right results by sheer luck- - the  "better" algorithms do in fact tend 
to work bet ter  for real programs behavior as well. (Randomization introduces 
biases tha t  tend to cancel each other out for most policies tested in earlier work.) 
The errors produced are still large, however, often comparable to the total frag- 
menta t ion  for real programs, once various overheads are accounted for. 

(Our own later experiments [WJNB95], described later, show that  the ran- 
dom trace methodology can introduce serious and systematic errors for some 
allocators which are popular in practice but  almost entirely absent in the ex- 
perimental  literature. This is ironic as well--earlier experimenters happened to 
choose a combination of policies and experimental methodology that  gave some 
of the right answers. It is clear from our review of the literature that  there 
was-and still i s - -no  good model that  predicts such a happy coincidence.) 

Z o r n ,  G r u n w a l d ,  a n d  H e n d e r s o n  [GZH93] measured the locality effects 
of several allocators: next fit, the G + +  segregated fits allocator by Doug Lea, 
simple segregated storage using powers of two size classes (the Berkeley 4.2 BSD 
allocator by Chris Kingsley), and two simplified quick fit schemes (i.e., "Quick 
Fit" in the sense of [WW88], i.e., without coalescing for small objects). 

One of simplified these quick fit allocators (written by Mike Haertel) uses first 
fit as the general allocator, and allocates small objects in powers-of-two sized 
blocks. (We are not sure which variant of first fit is used.) As an optimization, it 
stores information about the memory use within page-sized (4KB) chunks and 
can reclaim space for entirely empty pages, so that they can be reused for objects 
of other sizes. It can also use the pagewise information in an a t tempt  to improve 
the locality of free list searches. 
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The other simplified quick fit allocator is uses the G + +  segregated fits system 
as its general allocator, and uses quick lists for each size, rounded to the nearest 
word, up to 8 words (32 bytes). 

Using Larus' QP tracing tool [BL92], Zorn et al. traced five C programs 
combined with their five allocators, and ran the traces through virtual memory 
and cache simulators. 

They found that  next fit had by far the worst locality, and attr ibute this to 
the roving pointer mechanism--as free list searches cycle through the free list, 
they may touch widely separated blocks only once per cycle. We suspect that 
there is more to it than this, however, and that  the poor locality is also due 
to the effects of the free list policy; it may intersperse objects belonging to one 
phase among objects belonging to others as it roves through memory. 

Because of the number of variables (use of quick lists, size ranges of quick lists, 
type of general allocator, etc.), we find the other results of this study difficult 
to summarize. It appears that  the use of coarse size ranges degrades locality, 
as does excessive per-object overhead due to boundary tags. (The version of 
Lea's allocator they used had one-word footers as well as one-word headers; we 
have since removed the footers.) FIFO-managed segregated lists promote rapid 
reuse of memory, improving locality at the small granularities relevant to cache 
memories. Effects on larger-scale locality are less clear. 

B a r r e t t  a n d  Z o r n  [BZ93] present a very interesting scheme for avoiding 
fragmentation by heuristically segregating short-lived objects from other ob- 
jects. Their "lifetime prediction" allocator uses ofttine profile information from 
"training" runs on sample da ta  to predict which call sites will allocate short- 
lived objects. During normal (non-training) runs, the allocator examines the 
procedure call stack to distinguish between different patterns of procedure calls 
that  result in allocations. Based on profile information, it predicts whether the 
lifetimes of objects created by that  call pattern can be reliably predicted to be 
short. (This is essentially a refinement of a similar scheme used by Demers et al. 
for lifetime prediction in a garbage collector; that  scheme [DWH+90] uses only 
the size and stack pointer, however, not the call chain.) 

For five test applications, Barrett and Zorn found that  examining the stack 
to a depth of four calls generally worked quite well, enabling discrimination 
between qualitatively different patterns that  result in allocations from the same 
allocator call site. 

Their predictor was able to correctly predict that  18% to 99% of all allocated 
bytes would be short-lived. (For other allocations, no prediction is made; the dis- 
tinction is between "known short-lived" and "don't  know.") While we are not 
sure whether this is the best way of exploiting regularities in real workloads, 124 
it certainly shows that  exploitable regularities exist, and that  program behavior 
is not random in the manner assumed (implicitly or explicitly) by earlier re- 

124 As noted in SecLionsec:RealPgmBehavior, we suspect that death time discrimination 
is easier than lifetime prediction. 
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searchers. (Barrett  and Zorn found that  using only the requested size was less 
predictive, but  still provided useful information.) 

Z o r n  a n d  G r u n w a l d  [GZ93] have investigated the tailoring of allocators 
to particular programs, primarily to improve speed without undue space cost. 
One impor tan t  technique is the use of inlining (incorporating the usual-case 
allocator code at the point of call, rather than requiring an out-of-line call to 
a subroutine). The judicious use of inlining, quick lists for the impor tant  size 
classes, and a general coalescing backing allocator appears to be able to provide 
excellent speed with reasonable memory costs. 

Another useful empirical result is that  when programs are run on different 
data  sets, they typically allocate the same sizes in roughly similar propor t ions- -  
the most impor tant  size classes in one run are likely to be the most impor tant  
size classes in another, allowing of[line tailoring of the algorithm using profile 
data. 

Vo. In a forthcoming article, Vo reports on the design of a new allocator frame- 
work and empirical results comparing several allocators using real traces [Vo95]. 
(Because this is work in progress, we will not report the empirical results in 
detail.) 

Vo's v m a l l o c ( )  allocator is conceptually similar to Ross' zone system, al- 
lowing different "regions" of memory to be managed by different policies. 1~5 
(Regions are subsets of the overall heap memory, and are not contiguous in gen- 
eral; to a first approximation, they are sets of pages.) A specific allocator can 
be chosen at link time by setting appropriate UNIX environment variables. This 
supports experimentation with different allocators to tune memory management  
to specific applications, or to different parts of the same application, which may 
allocate in zones that  are managed differently. Various debugging facilities are 
also provided. 

The default allocator provided by Vo's system is a deferred coalescing scheme 
using best fit for the general allocator. (The size ordering of blocks is maintained 
using a splay tree.) In comparisons with several other allocators, this allocator is 
shown to be consistently among the fastest and among the most space efficient, 
for several varied test applications. 

W i l s o n ,  J o h n s t o n e ,  Nee ly ,  a n d  Boles .  In a forthcoming report [WJNB95], 
we will present results of a variety of memory allocation experiments using real 
traces from eight varied C and C+-t- programs, and more than twenty variants of 
six general allocator types (first fit, best fit, next fit, buddy systems, and simple 
segregated storage) [WJNB95]. We will briefly describe some of the major  results 
of that  study here. 

125 See also Delacour's [De192] and Attardi's [AF94] and Delacour's sophisticated sys- 
tems for low-level storage management in (mostly) garbage-collected systems using 
mixed languages and implementation strategies. 
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To test the usual experimental  assumptions, we used both  real and synthetic 
traces, and tried to make the synthetic traces as realistic as possible in terms 
of size and lifetime distributions. We then compared results of simulations using 
real traces with those from randomly-ordered traces. (To generate the random 
traces, we simply "shuffled" the real traces, preserving the size and lifetime dis- 
tributions much more accurately than most synthetic trace generation schemes 
do.) We found that  there was a significant correlation between the results from 
real traces and those from shuffled traces, but there were major  and systematic 
errors as well. In an initial test of eight varied allocators, the correlations ac- 
counted for only about a third of the observed variation in performance. This 
shows that  the random ordering of synthetic traces discards the majority of the 
information relevant to estimating real fragmentation. Results from most of pre- 
1992 experiments are therefore highly questionable. 

Using real traces, we measured fragmentation for our eight programs using 
our large set of allocators. We will report results for the twelve we consider most 
interesting here; for more complete and detailed information, see the forthcoming 
report [WJNB95]. These allocators are best fit (using FIFO-ordered free lists126), 
first fit (using LIFO-ordered, FIFO-ordered and address-ordered free lists), next 
fit (also using LIFO, FIFO, and address order), Lea's segregated fits allocator, 
binary and double buddy systems, simple segregated storage using powers--of- 
two size classes, and simple segregated storage using twice as many size classes 
(powers of two, and three times powers of two, as in the weighted buddy system). 

We at tempted to control as many implementation-specific costs as possible. 
In all cases, objects were aligned on double-word (eight-byte) boundaries, and 
the minimum block size was four words. Fragmentation costs will be reported as 
a percentage increase, relative to the baseline of the number  of actual bytes of 
memory devoted to program objects at the point of maximum memory usage. 
All allocators had one-word headers, except for the simple segregated storage 
allocators, which had no headers)  2r (As explained earlier, we believe that  in 
most systems, these will be the usual header sizes for well-implemented allocators 
of these types.) 

We will summarize fragmentat ion costs for twelve allocators, in increasing 
order of space cost. We note that  some of these numbers may  change slightly 
before [WJNB95] appears, due to minor changes in our experiments. The nu- 
bers for next fit are also somewhat suspect--we are currently trying to deter- 

126 No significant differences were found between results for variations of best fit using 
different free list orders. This is not too surprising, given that the best fit policy 
severely restricts the choice of free blocks. 

127 Rather than varying the actual implementations' header and footer schemes, we sim- 
ulated different header sizes by compensating at allocation time and in our measure- 
ments. The sequential fits, segregated fits, and simple segregated storage allocators 
actually use two-word headers or one word headers and one word footers, but we 
reduced the request sizes by one word at allocation time to "recover" one of those 
words by counting it as available to hold a word of an object. 
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mine whether  they are affected by a failure to respect Korn and Vo's wilderness 
preservation heuristic328 

It  should also be noted tha t  our experimental  methodology could introduce 
errors on the order of a percent or two. Worse, we found tha t  the variance 
for some of these allocators was quite high, especially for some of the poorer  
algori thms.  (We are also concerned that  any sample of eight programs cannot  
be considered representative of all real programs,  though we have done our best 
[WJNB95].) The  rank ordering here should thus be considered very approximate ,  
especially within clusters. 

To our great surprise, we found tha t  best fit, address-ordered first fit, and 
FIFO-ordered first fit all performed extremely wel l - -and  nearly identically well. 
All three of these allocators had only about  22% fragmentat ion,  including losses 
due to header costs, rounding up for doubleword alignment,  and rounding small  
block sizes up to four words. 

They  were followed by a cluster containing address-ordered next fit, segrega- 
ted fits, and FIFO-ordered next fit at 28%, 31% and 32%. Then came a cluster 
consisting of LIFO-ordered first fit, double buddy, and LIFO-ordered next fit, 
and at 54%, 56%, and 59%. These were followed by a cluster consisting of sim- 
ple segregated storage using closely-spaced size classes (73%) and binary buddy 
(74%). Simple segregated storage using powers-of-two sizes came last, at 85%. 

For first fit and next fit, we note that  the LIFO free list order performed far 
worse than  the FIFO free list order or the address order. For many  programmers  
(including us), LIFO ordering seems most  natural;  all other things being equal, 
it would also appear  to be advantageous in terms of locality. Its f ragmenta t ion 
effects are severe, however, typically increasing f ragmentat ion by a factor of two 
or three relative to either address-order or FIFO-order.  We are not sure why this 
is; the main  characteristic the latter two seem to have in common is deferred 
reuse. It  m a y  be tha t  a deferred reuse s trategy is more impor tan t  than the details 
of the actual  policy. If  so, that  suggests that  a wide variety of policies may  have 
excellent m e m o r y  usage. This is encouraging, because it suggests that  some of 
those policies may  be amenable to very efficient and scalable implementat ions.  

Double buddy worked as it was designed t o - - i f  we assume that  it reduced in- 
ternal f ragmenta t ion  by the expected (approximate)  14%, it seems tha t  the dual 
buddy scheme did not introduce significant external f ragmenta t ion- - re la t ive  to 
binary budd ies - -as  Fibonacci and weighted schemes are believed to do. Still, its 
performance was far worse than tha t  of the best allocators. 

In simulations of two of the best allocators (address-ordered first fit and best 
fit), e l iminating all header overhead reduced their memory  waste to about  14%. 
We suspect tha t  using one-word alignment and a smaller min imum object size 
could reduce this by several percent more. This suggests the "real" f ragmenta t ion 
produced by these pol icies--as  opposed to waste caused by the implementa t ion 
mechanisms we u s e d - - m a y  be less than  10%. (This is comparable  to the loss we 
expect just  f rom the double word al ignment and min imum block sizes.) 

12s Most of the allocators appear fairly insensitive to this issue, and the others (our first 
fit and best fit) were designed to respect it by putting the end block at the far end 
of the free list from the search pointer. 
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While the rankings of best fit and address-ordered first fit are similar to 
results obtained by random-trace methods, we found them quite surprising, due 
to the evident methodological problems of random-trace studies. We know of no 
good model to explain them. 129 

While the three excellent allocators fared well with both real and random- 
ized traces, other allocators fared differently in the two sets of simulations. The 
segregated storage schemes did unrealistically well, relative to other allocators, 
when traces were randomized. 

The results for randomized traces show clearly that  size and lifetime dis- 
tributions are not sufficient to predict allocator performance for real workloads. 
The ordering information interacts with the allocator's policies in ways that  are 
often more important  than the distributions alone. Some of these results were 
not unexpected, given our understanding on the methodology. For example, the 
unrealistically good performance of simple segregated fits schemes relative to the 
others was expected, because of the smoothing effect of random walks--synthet ic  
traces tend not to introduce large amounts  of external fragmentation, which is 
the Achilles' heel of non-splitting, non-coalescing policies. 

Like Zorn and Grunwald, we will make the test programs we used available 
for others to use for replication of our results and for other experiments. 13~ 

5 S u m m a r y  a n d  C o n c l u s i o n s  

"[People refused to believe that  the earth went around the sun] because 
it looked like the sun went around the earth." 
"What  would it have looked like if it had looked like the earth went 
around the sun?" 
--attributed to Ludwig Wittgenstein 

There is a very large space of possible allocator policies, and a large space of 
mechanisms that  can support  them. Only small parts of these spaces have been 
explored to date, and the empirical and analytical techniques used have usually 
produced results of dubious validity. 

There has been a widespread failure to recognize anomalous data  as under- 
mining the dominant  paradigm, and to push basic causal reasoning th rough- - to  
recognize what data  could be relevant, and what other theories might be consis- 
tent with the observed facts. We find this curious, and suspect it has two main 
c a u s e s .  

One cause is simply the immatur i ty  of the field, and expectations that  com- 
puter science issues would be easily formalized, after many striking early suc- 
cesses. (Ullman [Ul195] eloquently describes this phenomenon.) 

129 We have several just-so stories that could explain them, of course, but we haven't 
yet convinced ourselves that any of them are true. 

130 Our anonymous FTP repository is on f t p . c s . u t e x a s . e d u  in the directory 
pub/garbage. This repository also contains the BibTeX bibliography file used for 
this paper and [Wi195], several papers on persistence and memory hierarchies, and 
numerous papers on garbage collection by ourselves and others. 
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Another is doubtless the same kind of paradigm entrenchment  that  occurs 
in other, more mature  sciences [Kuh70]. Once the received view has been used 
as a theoretical underpinning of enough seemingly successful experiments,  and 
reiterated in textbooks without  the caveats buried in the original research papers,  
it is very hard for people to see the alternatives. 

The history of memory  allocation research may  serve as a cautionary tale 
for empirical  computer  science. Har tmanis  has observed that  computer  science 
seems less prone to paradigm shifts than  most  fields [Har95]. We agree in par t  
with this sentiment,  but  the successes of computer  science can lead to a false 
sense of confidence. Compute r  scientists often have less to worry about  in te rms 
of the validity of "known" results, relative to other scientists, but  in fact they 
often worry less about it, which can be a problem, too. 

5.1 M o d e l s  a n d  T h e o r i e s  

There has been a considerable amount  of theoretical work done in the area of 
memory  a l locat ion-- i f  we use "theory" in the parlance of computer  science, to 
mean  a part icular  subdiscipline using part icular  kinds of logical and m a t h e m a t -  
ical analyses. There has been very little theoretical work done, however, if we 
use the vernacular and central sense of "theory," i.e., what  everyday working 
scientists do. 

We simply have no theory of program behavior, much less a theory of how 
allocators exploit that  behavior. (Batson made similar comments  in 1976, in a 
slightly different context [Bat76], but after nearly two decades the situation is 
much the same.) 

Aside f rom several useful studies of worst-case performance,  most  of the 
analytical  work to date seems to be based on several assumptions that  turn out 
to be incorrect, and the results cannot  be expected to apply directly to the real 
problems of memor y  allocation. 

Like much work in mathemat ics ,  however, theoretical results may  yet prove 
to be enlightening. To make sense of these results and apply them properly will 
require considerable thought,  and the development of a theory in the vernacular 
sense. 

For example,  the striking similarities in performance between best fit and 
address-ordered first fit for randomized workloads should be explained. How is 
it tha t  such different policies are so comparable,  for an essentially unpredictable 
sequence of requests? More important ly,  how does this relate to real request se- 
quences? The  known dependencies of these algorithms on lifetime distributions 
should also be explained more clearly. Randomizat ion of input order may  elimi- 
nate certain impor tan t  variables, and allow others to be explored more or less in 
isolation. On the other hand, interactions with real programs may  be so system- 
atically different that  these phenomena have nothing impor tan t  in c o m m o n - - f o r  
example,  dependence on size distributions may  be an effect that  has little impor-  
tance in the face of systematic  interactions between placement policy and phase 
behavior.  
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Understanding real program behavior still remains the most important  first 
step in formulating a theory of memory management.  Without  doing that,  we 
cannot hope to develop the science of memory management;  we can only fumble 
around doing ad hoc engineering, in the too-often-used pejorative sense of the 
word. At this point, the needs of good science and of good engineering in this 
area are the same--a  deeper qualitative understanding. We must try to discern 
what is relevant and characterize it; this is necessary before formal techniques 
can be applied usefully. 

5.2 Strategies and Policies 

Most policies used by current allocators are derived fairly straightforwardly from 
ideas that  date from the 1960's, at least. Best fit and address-ordered first fit 
policies seem to work well in practice, but after several decades the reasons why 
are not much clearer than they were then. It is not clear which regularities in 
real request streams they exploit. (It is not even very clear how they exploit 
regularities in synthetic request streams, where the regularities are minimal and 
presumably much easier to characterize.) Because our current understanding of 
these issues is so weak, we will indulge in some speculation. 

Given that  there is no reason to think that  these early policies were so well 
thought out that  nothing could compete with them, it is worthwhile to wonder 
whether there is a large space of possible policies that  work at least as well as 
these two. Recent results for FIFO-ordered sequential fits may suggest that  close 
fits and address ordering are not crucial for good performance. 

It may well be that  the better allocators perform well because it 's very easy 
to perform well. Program behavior may be so redundant (in certain relevant 
ways) that  the important  regularities in request streams are trivial to exploit. 
The known good policies may only be correlated to some more fundamental  
s trategy--or  combination of strategies--yet to be discovered. 

Given the real and striking regularities in request streams due to common 
programming techniques, it seems likely that  better algorithms could be designed 
if we only had a good model of program behavior, and a good understanding of 
how that  interacts with allocation policies. Clustered deaths due to phase be- 
havior, for example, suggest that  contiguous allocation of consecutively-Mlocated 
blocks may tend to keep fragmentation low. (It probably has beneficial effects 
on locality as well.) 

Segregation of different kinds of objects may  avoid fragmentation due to 
differing death times of objects used for different purposes. (Again, this may in- 
crease locality as well--by keeping related objects clustered after more ephemeral 
objects have been deallocated.) 

On the other hand, it is possible that  the regularities exploited by good 
existing allocators are so strong and simple that  we cannot improve memory 
usage by much-- i t ' s  possible that  all of our best current algorithms exploit them 
to the fullest, however accidentally. The other patterns in program behavior may  
be so subtle, or interact in such complex ways, that  no strategy can do much 
better. Or it may turn out that  once the regularities are understood, the task 
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of exploiting them online is just  too expensive. (That  doesn't  seem likely to us, 
though some intermediate situation seems plausible.) 

If all else fails, relying best fit and first fit usually won't  be a disaster, as 
long as the mechanisms used are scalable. (If one of them doesn't  work well for 
your program, it 's likely that  the other wil l--or  that  some other simple policy 
will suffice.) 

On the other hand, it is not clear that  our best policies are robust enough 
to count on- -so  far, only a few experiments have been performed to asses the 
interactions between real program behavior and allocator policies. It is entirely 
possible that  there is a non-negligible percentage of programs for which our 
"best" algorithms will fail miserably. 

5.3 M e c h a n i s m s  

Many current allocator policies are part ly artifacts of primitive implementation 
techniques-- they are mostly based on obvious ways of managing linear lists. 
Modern data  structure techniques allow us to build much more sophisticated in- 
dexing schemes, either to improve performance or support  better-designed poli- 
cies. 

Segregated fits and (other) indexing schemes can be used to implement poli- 
cies known to work well in practice, and many others. More sophisticated index- 
ing schemes will probably allow us to exploit whatever exploitable regularities 
we are clever enough to characterize, in a scalable way. 

Deferred coalescing allows optimization of common patterns of short-term 
memory use, so that  scalable mechanisms don' t  incur high overheads in practice. 
The techniques for deferred coalescing must be studied carefully, however, to 
ensure that  this mechanism doesn't  degrade memory usage unacceptably by 
changing placement policies. 

5.4 E x p e r i m e n t s  

New experimental  methods must be developed for the testing of new theories. 
Trace-driven simulations of real program/al locator  pairs will be quite impor- 
tant,  of course-- they are an indispensable reality check. These trace-driven sim- 
ulations should include locality studies as well as conventional space and time 
measurements.  Sound work of both sorts has barely begun; there is a lot to do. 

If we are to proceed scientifically, however, just running experiments with 
a grab-bag of new allocators would may be doing things backwards. Program 
behavior should be studied in (relative) isolation, to identifying the fundamental  
regularities that  are relevant to to various allocators and memory hierarchies. 
After that ,  it should be easier to design strategies and policies intelligently. 

5.5 D a t a  

Clearly, in order to formulate useful theories of memory management,  more data  
are required. The current set of programs used for experimentation is not large 
enough or varied enough to be representative. 
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Some kinds of programs that are not represented are: 

- Sc ien t i f i c  c o m p u t i n g  programs (especially those using sophisticated sparse 
matrix representations), 

- l ong - runn ing  s y s t e m  p r o g r a m s  such as operating system kernels, name 
servers, file servers, and graphics display servers, 

- business  data analys is  programs such as spreadsheets, report generators, and 
so on, 

- graphical  p r o g r a m s  such as desktop publishing systems, CAD interaction 
servers and interactive 3-D systems (e.g., virtual reality), 

- in terac t i ve  p r o g r a m m i n g  e n v i r o n m e n t s  with source code management sys- 
tems and interactive debugging facilities, 

- heavi ly  ob jec t -or i en ted  p r o g r a m s  using sophisticated kits and frameworks 
composed in a variety of ways, 

- a u t o m a t i c a l l y - g e n e r a t e d p r o g r a m s  of a variety of types, created using special- 
ized code-generation systems or compilers for very-high-level languages. 

This partial list is just a beginning--there are many kinds of programs, writ- 
ten in a variety of styles, and test application suites should include as many of 
them as possible. 

There are some difficulties in obtaining and using such programs that can't 
be overlooked. The first is that the most easily obtainable programs are often 
not the most representative--freely available code is often of a few types, such as 
script language interpreters, which do not represent the bulk of actual computer 
use, particularly memory use. 

Those programs that are available are often difficult to analyze, for various 
reksons. Many used hand-optimized memory allocators, which must be removed 
to reveal the "true" memory usage--and this "true" memory usage itself may 
be skewed by the awkward programming styles used to avoid general heap allo- 
cation. 

5.6 Chal lenges  and  Oppor tun i t i e s  

Computer Science and Engineering is a field that attracts a different kind 
of thinker... Such people are especially good at dealing with situations 
where different rules apply in different cases; they are individuals who 
can rapidly change levels of abstraction, simultaneously seeing things "in 
the large" and "in the small." 
- - D o n a l d  K n u t h ,  quoted in [Har95] 

Memory management is a fundamental area of computer science, spanning 
several very different levels of abstraction--from the programmer's strategies for 
dealing with data, language-level features for expressing those concepts, language 
implementations for managing actual storage, and the varied hardware memories 
that real machines contain. Memory management is where the rubber meets the 
road--if we do the wrong thing at any level, the results will not be good. And if 
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we don' t  make the levels work well together, we are in serious trouble. In many 
areas of computer  science, problems can be decomposed into levels of abstraction, 
and different problems addressed at each level, in nearly complete isolation. 
Memory management  requires this kind of thinking, but  that  is not enough-- i t  
also requires the ability to reason about  phenomena that  span multiple levels. 
This is not easy. 

Unfortunately,  the compartmental izat ion of computing disciplines has dis- 
couraged the development of a coherent memory management community. Mem- 
ory management  tends to be an orphan, sometimes harbored by the program- 
ruing language community, sometimes by the operating systems communi ty - -  
and usually ignored by the architecture community. 

It seems obvious that  memory management  policies can have a profound 
impact on locality of reference, and therefore the overall performance of modern 
computers,  but  in the architecture community locality of reference is generally 
treated as a mysterious, incomprehensible substance. (Or maybe  two or three 
substances, all fairly mysterious.) A program is pret ty much a black box, however 
abraded and splintered, and locality comes out of the box if you're lucky. It is 
not generally recognized that  different memory management policies can have 
an effect on memory hierarchies that  is sometimes as significant as differences 
in programs'  intrinsic behavior. Recent work in garbage collection shows this to 
be true ([WLM92, Wi195, GA95]), but  few architects are aware of it, or aware 
that  similar phenomena must occur (to at least some degree) in conventionally- 
managed memories as well [GZH93]. 

The challenge is to develop a theory that can span all of these levels. Such 
a theory will not come all at once, and we think it is unlikely to be primarily 
mathematical ,  at least not for a long time, because of the complex and ill-defined 
interactions between different phenomena at different levels of abstraction. 

Computer  science has historically been biased toward the paradigms of math- 
ematics and physics--and often a rather naive view of the scientific process in 
those f ields--rather  than the "softer" natural  sciences. We recommend a more 
naturalistic approach, which we believe is more appropriate for complex multi- 
level systems that  are only partly hierarchically decomposable. 

The fact that  fact that  we study mostly deterministic processes in formally- 
describable machines is sometimes irrelevant and misleading. The degrees of 
complexity and uncertainty involved in building real systems require that  we 
examine real data,  theorize carefully, and keep our eyes open. 

Computer  science is often a very "hard" science, which develops along the 
lines of the great developments in the physical sciences and mathematics the 
seventeenth, eighteenth and nineteenth centuries. It owes a great deal to the 
examples set by Newton and Descartes. But the nineteenth century also saw a 
very great theory that  was tremendously important  without being formalized at 
a l l - -a  theory that  to this day can only be usefully formalized in special, restricted 
cases, but  which is arguably the single most important  scientific theory ever. 
Perhaps we should look to Darwin as an examplar, too. 
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