
D y n a m i c Storage Allocat ion:
A Survey and Critical Rev iew *

P a u l R. Wi lson , Mark S. Johns tone , Michael Neely, and David Boles**

Department of Computer Sciences
University of Texas at Austin

Austin, Texas, 78751, USA
(Wilson] markj I neely@cs, ut exas. edu)

A b s t r a c t . Dynamic memory allocation has been a fundamental part of
most computer systems since roughly 1960, and memory allocation is
widely considered to be either a solved problem or an insoluble one. In
this survey, we describe a variety of memory allocator designs and point
out issues relevant to their design and evaluation. We then chronologi-
cally survey most of the literature on allocators between 1961 and 1995.
(Scores of papers are discussed, in varying detail, and over 150 references
are given.)
We argue that allocator designs have been unduly restricted by an em-
phasis on mechanism, rather than policy, while the latter is more impor-
tant; higher-level strategic issues are still more important, but have not
been given much attention.
Most theoretical analyses and empirical allocator evaluations to date
have relied on very strong assumptions of randomness and independence,
but real program behavior exhibits important regularities that must be
exploited if allocators are to perform well in practice.

1 I n t r o d u c t i o n a n d C o n t e n t s

In this survey, we will discuss the design and eva lua t ion of convent iona l d y n a m i c
m e m o r y allocators. By "conventional," we mean al locators used for general pur-
pose "heap" storage, where the a p rogram can request a block of m e m o r y to
store a p rog ram object , and free tha t block at any t ime. A heap, in this sense, is
a pool of m e m o r y avai lable for the a l locat ion and deal locat ion of arb i t rary-s ized
blocks of m e m o r y in a rb i t r a ry o r d e r ? An al located block is typica l ly used to
store a p rog ram "object," which is some kind of s t ruc tured d a t a i t em such as a

* This work was supported by the National Science Foundation under grant CCR-
9410026, and by a gift from Novel], Inc.

** Author 's current address: Convex Computer Corporation, Dallas, Texas, USA.
(dboles@zeppelin.convex.com)

3 This sense of "heap" is not to be confused with a quite different sense of "heap,"
meaning a partially ordered tree structure.

Pascal record, a C struct, or a C + + object, but not necessarily an object in the
sense of object-oriented programming. 4

Throughout this paper, we will assume tha t while a block is in use by a
program, its contents (a da ta object) cannot be relocated to compact memory
(as is done, for example, in copying garbage collectors [Wi195]). This is the
usual si tuation in most implementat ions of conventional p rogramming systems
(such as C, Pascal, Ada, etc.), where the m emory manager cannot find and
update pointers to program objects when they are moved. 5 The allocator does
not examine the da ta stored in a block, or modify or act on it in any way.
The da ta areas within blocks that are used to hold objects are contiguous and
nonoverlapping ranges of (real or virtual) memory. We generally assume tha t
only entire blocks are allocated or freed, and tha t the allocator is entirely unaware
of the type of or values of da ta stored in a b lock- - i t only knows the size requested.

Scope of this survey. In most of this survey, we will concentrate on issues of over-
all memory usage, rather than t ime costs. We believe tha t detailed measures of
t ime costs are usually a red herring, because they obscure issues of s t rategy
and policy; we believe that most good strategies can yield good policies tha t
are amenable to efficient implementat ion. (We believe that i t 's easier to make a
very fast allocator than a very memory-efficient one, using fairly s traightforward
techniques (Section 3.12). Beyond a certain point, however, the effectiveness of
speed optimizations will depend on many of the same subtle issues tha t deter-
mine memory usage.)

We will also discuss locality of reference only briefly. Locality of reference is
increasingly impor tan t , as the differences between CPU speed and main memory
(or disk) speeds has grown dramatically, with no sign of stopping. Locality is
very poorly understood, however; aside f rom making a few impor tan t general
comments , we leave most issues of locality to future research.

Except where locality issues are explicitly noted, we assume tha t the cost of
a unit of memory is fixed and uniform. We do not address possible interactions
with unusual memory hierarchy schemes such as compressed caching, which m a y
complicate locality issues and interact in other impor tan t ways with allocator
design [WLM91, Wi191, Dou93].

4 While this is the typical situation, it is not the only one. The "objects" stored by
the allocator need not correspond directly to language-level objects. An example
of this is a growable array, represented by a fixed size part that holds a pointer
to a variable-sized part. The routine that grows an object might allocate a new,
larger variable-sized part, copy the contents of the old variable-sized part into it,
and deallocate the old part. We assume that the allocator knows nothing of this,
and would view each of these parts as separate and independent objects, even if
normal programmers would see a "single" object.

5 It is also true of many garbage-collected systems. In some, insufficient information
is available from the compiler and/or programmer to allow safe relocation; this is
especially likely in systems where code written in different languages is combined in
an application [BW88]. In others, real-time and/or concurrent systems, it difficult to
for the garbage collector to relocate data without incurring undue overhead and/or
disruptiveness [Wil95].

We will not discuss specialized allocators for particular applications where
the da ta representations and allocator designs are intertwined. 6

Allocators for these kinds of systems share many properties with the "conven-
tional" allocators we discuss, but introduce many complicat ing design choices.
In part icular, they often allow logically contiguous items to be stored non-
contiguously, e.g., in pieces of one or a few fixed sizes, and m a y allow sharing of
parts or (other) forms of da ta compression. We assume tha t if any fragmenting
or compression of higher-level "objects" happens, it is done above the level of
abstract ion of the allocator interface, and the allocator is entirely unaware of
the relationships between the "objects" (e.g., f ragments of higher-level objects)
tha t it manages.

Similarly, parallel allocators are not discussed, due to the complexi ty of the
subject.

Structure of the Paper. This survey is intended to serve two purposes: as a gen-
eral reference for techniques in m em ory allocators, and as a review of the litera-
ture in the field, including methodological considerations. Much of the l i terature
review has been separated into a chronological review, in Section 4. This section
m a y be skipped or sk immed if methodology and history are not of interest to the
reader, especially on a first reading. However, some potential ly significant points
are covered only there, or only made sufficiently clear and concrete there, so the
serious s tudent of dynamic storage allocation should find it worthwhile. (It m a y
even be of interest to those interested in the history and philosophy of computer
science, as documenta t ion of the development of a scientific paradigm, r)

The remainder of the current section gives our motivat ions and goals for the
paper, and then frames the central problem of memory allocation--fragmenta-
t ion-and the general techniques for dealing with it.

Section 2 discusses deeper issues in fragmentat ion, and methodological issues
(some of which may be skipped) in studying it.

Section 3 presents a fairly tradit ional t axonomy of known memory allocators,
including several not usually covered. It also explains why such mechanism-based
taxonomies are very limited, and may obscure more impor tan t policy issues.
Some of those policy issues are sketched.

Section 4 reviews the l i terature on memory allocation. A major point of this
section is tha t the main s t ream of allocator research over the last several decades
has focused on oversimplified (and unrealistic) models of p rogram behavior, and

6 Examples inlude specialized allocators for chained-block message-buffers (e.g.,
[Wo165]), "cdr-coded" list-processing systems [BC79], specialized storage for over-
lapping strings with shared structure, and allocators used to manage disk storage in
file systems.

7 We use "paradigm" in roughly the sense of Kuhn [Kuh70], as a "pattern or model"
for research. The paradigms we discuss are not as broad in scope as the ones usually
discussed by Kuhn, but on our reading, his ideas are intended to apply at a variety
of scales. We are not necessarily in agreement with all of Kuhn's ideas, or with some
of the extreme and anti-scientific purposes they have been put to by others.

tha t little is actual ly known about how to design allocators, or wha t per formance
to expect.

Section 5 concludes by summar iz ing the m a j o r points of the paper, and sug-
gesting avenues for future research.

Table of Con ten t s

1 I n t r o d u c t i o n a n d C o n t e n t s . 1
Table of Conten ts . 4

1.1 Mot ivat ion . 6
1.2 W h a t an Al locator Must Do . 8
1.3 Strategies, P lacement Policies, and Spli t t ing and Coalescing . . . 9

Strategy, policy, and mechan i sm 10
Spli t t ing and coalescing . 12

2 A C l o s e r L o o k a t F r a g m e n t a t i o n , a n d H o w t o S t u d y I t 12
2.1 In ternal and Externa l F ragmenta t ion 13
2.2 The Tradi t ional Methodology: Probabil is t ic Analyses, and Simu-

lat ion Using Synthet ic Traces . 13
R a n d o m simulat ions . 15
Probabil is t ic analyses . 17
A note on exponent ia l ly-dis t r ibuted r a n d o m lifetimes 18
A note on Markov models . 19

2.3 W h a t F ragmen ta t ion Really Is, and W h y the Tradi t ional Ap-
proach is Unsound . 21
F ragmenta t ion is caused by isolated deaths 22
F ragmenta t ion is caused by t ime-vary ing behavior 22
Impl ica t ions for exper imenta l me thodo logy 23

2.4 Some Real P r o g r a m Behaviors 24
Ramps , peaks, and plateaus . 24
F ragmenta t ion at peaks is i m p o r t a n t 26
Exploi t ing ordering and size dependencies 27
Impl ica t ions for s t ra tegy . 27
Impl ica t ions for research . 28
Profiles of some real p rograms . 28
S u m m a r y . 32

2.5 Deferred Coalescing and Deferred Reuse 33
Deferred coalescing . 33
Deferred reuse . 35

2.6 A Sound Methodology: Simulat ion Using Real Traces 35
Tracing and s imula t ion . 35
Local i ty studies . 36

3 A T a x o n o m y o f A l l o c a t o r s . 37
3.1 Al locator Policy Issues . 37

3.2 Some I m p o r t a n t Low-Level Mechanisms 38
Header fields and a l i gnmen t . 38
B o u n d a r y tags . 39
Link fields wi th in blocks . 40
Lookup tables . 41
SpeciM t r e a t m e n t of smal l objects 41
Special t r e a t m e n t of the end block of the heap 41

3.3 Basic Mechanisms . 42
3.4 Sequent ia l F i ts . 43
3.5 Discussion of Sequent ia l F i ts and General Policy Issues 45
3.6 Segregated Free Lists . 51
3.7 Buddy Sys tems . 55
3.8 Indexed Fi ts . 58

Discussion of indexed fits . 60
3.9 B i t m a p p e d Fi ts . 60

3.10 Discussion of Basic Mechan i sms 62
3.11 Quick Lists and Deferred Coalescing 62

Schedul ing of coalescing . 64
W h a t to coalesce . 65
Discussion . 66

3.12 A Note on T i m e Costs . 66

4 A C h r o n o l o g i c a l R e v i e w o f T h e L i t e r a t u r e 67
4.1 The first three decades: 1960 to 1990 68

1960 to 1969 . 68

1970 to 1979 . 73
1980 to 1990 . 85

4.2 Recent Studies Using Real Traces 96

Zorn, Grunwa ld , et al . 96
Vo . 99
Wilson, Johns tone , Neely, and Boles 99

5 S u m m a r y a n d C o n e l u s l o n s . 102
5.1 Models and Theories . 103
5.2 Strategies and Policies . 104

5.3 Mechan i sms . 105
5.4 Expe r imen t s . 105
5.5 D a t a . 105

5.6 Chal lenges and Oppor tun i t i e s . 106

1.1 M o t i v a t i o n

This paper is mot iva ted by our perception tha t there is considerable confusion
about the nature of m em ory allocators, and about the problem of memory allo-
cation in general. Worse, this confusion is often unrecognized, and allocators are
widely thought to be fairly well understood. In fact, we know little more about
allocators than was known twenty years ago, which is not as much as might be
expected. The li terature on the subject is rather inconsistent and scattered, and
considerable work appears to be done using approaches tha t are quite limited.
We will try to sketch a unifying conceptual f ramework for understanding what
is and is not known, and suggest promising approaches for new research.

This problem with the allocator l i terature has considerable practical impor-
tance. Aside from the human effort involved in al locator studies per se, there
are effects in the real world, both on computer system costs, and on the effort
required to create real software.

We think it is likely that the widespread use of poor allocators incurs a loss
of main and cache m em ory (and CPU cycles) upwards of of a billion (109) U.S.
dollars wor ldwide- -a significant fraction of the world's memory and processor
output may be squandered, at huge cost. s

Perhaps even worse is the effect on programming style due to the widespread
use of allocators that are simply bad- -e i the r because bet ter allocators are known
but not widely known or understood, or because allocation research has failed
to address the proper issues. Many programmers avoid heap allocation in m a n y
situations, because of perceived space or t ime costs. 9

I t seems significant to us that many articles in non-refereed publ ica t ions- -
and a number in refereed publications outside the major journals of operat ing
systems and p rogramming languages- -are mot ivated by extreme concerns about
the speed or memory costs of general heap allocation. (One such paper [GM85] is
discussed in Section 4.1.) Often, ad hoc solutions are used for applications tha t
should not be problematic at all, because at least some well-designed general
allocators should do quite well for the workload in question.

We suspect that in some cases, the perceptions are wrong, and tha t the costs
of modern heap allocation are simply overestimated. In m a n y cases, however,
it appears that poorly-designed or poorly- implemented allocators have lead to
a widespread and quite understandable belief tha t general heap allocation is

s This is an unreliable estimate based on admittedly casual last-minute computations,
approximately as follows: there are on the order of 100 million PC's in the world. If we
assume that they have an average of 10 megabytes of memory at $30 per megabyte,
there is 30 billion dollars worth of RAM at stake. (With the expected popularity
of Windows 95, this seems like it will soon become a fairly conservative estimate, if
it isn't already.) If just one fifth (6 billion dollars worth) is used for heap-allocated
data, and one fifth of that is unnecessarily wasted, the cost is over a billion dollars.

9 It is our impression that UNIX programmers' usage of heap allocation went up
significantly when Chris Kingsley's allocator was distributed with BSD 4.2 UNIX--
simply because it was much faster than the allocators they'd been accustomed to.
Unfortunately, that allocator is somewhat wasteful of space.

necessarily expensive. Too many poor allocators have been supplied with widely-
distributed operating systems and compilers, and too few practitioners are aware
of the alternatives.

This appears to be changing, to some degree. Many operating systems now
supply fairly good allocators, and there is an increasing trend toward marketing
libraries that include general allocators which are at least claimed to be good,
as a replacement for default allocators. It seems likely that there is simply a
lag between the improvement in allocator technology and its widespread adop-
tion, and another lag before programming style adapts. The combined lag is
quite long, however, and we have seen several magazine articles in the last year
on how to avoid using a general allocator. Postings praising ad hoc allocation
schemes are very common in the Usenet newsgroups oriented toward real-world
programming.

The slow adoption of better technology and the lag in changes in perceptions
may not be the only problems, however. We have our doubts about how well
allocators are really known to work, based on a fairly thorough review of the
literature. We wonder whether some part of the perception is due to occasional
programs that interact pathologically with common allocator designs, in ways
that have never been observed by researchers.

This does not seem unlikely, because most experiments have used non-repre-
sentative workloads, which are extremely unlikely to generate the same problem-
atic request patterns as real programs. Sound studies using realistic workloads
are too rare. The total number of real, nontrivial programs that have been used
for good experiments is very small, apparently less than 20. A significant number
of real programs could exhibit problematic behavior patterns that are simply not
represented in studies to date.

Long-running processes such as operating systems, interactive programming
environments, and networked servers may pose special problems that have not
been addressed. Most experiments to date have studied programs that execute
for a few minutes (at most) on common workstations. Little is known about
what happens when programs run for hours, days, weeks or months. It may well
be that some seemingly good allocators do not work well in the long run, with
their memory efficiency slowly degrading until they perform quite badly. We
don't know--and we're fairly sure that nobody knows. Given that long-running
processes are often the most important ones, and are increasingly important
with the spread of client/server computing, this is a potentially large problem.

The worst case performance of any general allocator amounts to complete
failure due to memory exhaustion or virtual memory thrashing (Section 1.2).
This means that any real allocator may have lurking "bugs" and fail unexpect-
edly for seemingly reasonable inputs.

Such problems may be hidden, because most programmers who encounter se-
vere problems may simply code around them using ad hoc storage management
techniques--or, as is still painfully common, by statically allocating "enough"
memory for variable-sized structures. These ad-hoc approaches to storage man-
agement lead to "brittle" software with hidden limitations (e.g., due to the use

of fixed-size arrays). The impact on software clarity, flexibility, maintainability,
and reliability is quite important , but difficult to estimate. These hidden costs
should not be underestimated, however, because they can lead to major penal-
ties in productivity and to significant human costs in sheer frustration, anxiety,
and general suffering.

A much larger and broader set of test applications and experiments is needed
before we have any assurance that any allocator works rel iably--in a crucial
performance sense--much less works well. Given this caveat, however, it appears
that some allocators are clearly better than others in most cases, and this paper
will a t tempt to explain the differences.

1.2 W h a t a n A l l o c a t o r M u s t D o

An allocator must keep track of which parts of memory are in use, and which
parts are free. The goal of allocator design is usually to minimize wasted space
without undue t ime cost, or vice versa. The ideal allocator would spend negligible
t ime managing memory, and waste negligible space.

A conventional allocator cannot control the number or size of live blocks--
they are entirely up to the program requesting and releasing the space managed
by the allocator. A conventional allocator also cannot compact memory, moving
blocks around to make them contiguous and free contiguous memory. It must
respond immediately to a request for space, and once it has decided which block
of memory to allocate, it cannot change that decis ion-- that block of memory
must be regarded as inviolable until the application l~ program chooses to free it.
It can only deal with memory that is free, and only choose where in free memory
to allocate the next requested block. (Allocators record the locations and sizes
of free blocks of memory in some kind of hidden data structure, which may be
a linear list, a totally or partially ordered tree, a bi tmap, or some hybrid data
structure.)

An allocator is therefore an online algorithm, which must respond to requests
in strict sequence, immediately, and its decisions are irrevocable.

The problem the allocator must address is tha t the application program may
free blocks in any order, creating "holes" amid live objects. If these holes are too
numerous and small, they cannot be used to satisfy future requests for larger
blocks. This problem is known as fragmentation, and it is a potentially disastrous
one. For the general case that we have out l ined--where the application program
may allocate arbitrary-sized objects at arbitrary times and free them at any later
t ime- - the re is no reliable algorithm for ensuring efficient memory usage, and
none is possible. It has been proven that for any possible allocation algorithm,
there will always be the possibility that some application program will allocate
and deallocate blocks in some fashion that defeats the allocator's strategy, and
forces it into severe fragmentat ion [Rob71, GGU72, Rob74, Rob77]. Not only are

10 We use the term "application" rather generally; the "application" for which an al-
locator manages storage may be a system program such as a file server, or even an
operating system kernel.

there no provably good allocation algorithms, there are proofs tha t any allocator
will be "bad" for some possible applications.

The lower bound on worst case f ragmenta t ion is generally proport ional to
the amount of live da ta 11 multiplied by the logari thm of the ratio between the
largest and smallest block sizes, i.e., M log S n, where M is the amount of live
da ta and n is the ratio between the smallest and largest object sizes [RobT]].

(In discussing worst-case m em ory costs, we generally assume tha t all block
sizes are evenly divisible by the smallest block size, and n is sometimes simply
called "the largest block size," i.e., in units of the smallest.)

Of course, for some algorithms, the worst case is much worse, often propor-
tional to the simple product of M and n.

So, for example, if the min imum and m a x i m u m objects sizes are one word
and a million words, then f ragmenta t ion in the worst case may cost an excellent
allocator a factor of ten or twenty in space. A less robust allocator may lose a
factor of a million, in its worst case, wasting so much space that failure is almost
certain.

Given the apparent insolubility of this problem, it may seem surprising that
dynamic m e m o r y allocation is used in most systems, and the comput ing world
does not grind to a halt due to lack of memory. The reason, of course, is that
there are allocators that are fairly good in practice, in combinat ion with most
actual programs. Some allocation algori thms have been shown in practice to work
acceptably well with real programs, and have been widely adopted. If a particular
p rogram interacts badly with a part icular allocator, a different allocator may be
used instead. (The bad cases for one allocator may be very different from the
bad cases for other allocators of different design.)

The design of memory allocators is currently something of a black art. Little
is known about the interactions between programs and allocators, and which
programs are likely to bring out the worst in which allocators. However, one
thing is c l ea r - -mos t programs are "well behaved" in some sense. Most programs
combined with most common allocators do not squander huge amounts of mem-
ory, even if they m a y waste a quarter of it, or a half, or occasionally even more.

T h a t is, there are regularities in program behavior that allocators exploit, a
point tha t is often insufficiently appreciated even by professionals who design and
implement allocators. These regularities are exploited by allocators to prevent
excessive fragmentat ion, and make it possible for allocators to work in practice.

These regularities are surprisingly poorly understood, despite 35 years of
al locator research, and scores of papers by dozens of researchers.

1.3 S t r a t e g i e s , P l a c e m e n t Po l i c i e s , a n d S p l i t t i n g a n d C o a l e s c i n g

The main technique used by allocators to keep fragmentat ion under control is
placement choice. Two subsidiary techniques are used to help implement tha t

11 We use "live" here in a different sense from that used in garbage collection or in
compiler flow analysis. Blocks are "live" from the point of view of the allocator if it
doesn't know that it can safely reuse the storage--i.e., if the block was allocated but
not yet freed.

10

choice: sp l i t t ing blocks to satisfy smaller requests, and coalesc ing of free blocks
to yield larger blocks.

Placement choice is s imply the choosing of where in free memory to put
a requested block. Despite potential ly fatal restrictions on an al locator 's online
choices, the allocator also has a huge freedom of ac t ion- - i t can place a requested
block anywhere it can find a sufficiently large range of free memory, and anywhere
within that range. (It m a y also be able to s imply request more memory from the
operat ing system.) An allocator algori thm therefore should be regarded as the
mechanism that implements a p l a c e m e n t pol icy, which is mot iva ted by a s t ra t egy
for minimizing fragmentat ion.

S t r a t e g y , po l i cy , a n d m e c h a n i s m . The s t ra t egy takes into account regu-
larities in program behavior, and determines a range of acceptable po l i c i e s as
to where to allocate requested blocks. The chosen policy is implemented by a
m e c h a n i s m , which is a set of algorithms and the da ta structures they use. This
three-level distinction is quite impor tant .

In the context of general memory allocation,

- a s t ra tegy a t tempts to exploit regularities in the request s tream,
- a p o l i c y i s an implementable decision procedure for placing blocks in memory,

and
- a m e c h a n i s m is a set of algorithms and da ta structures tha t implement the

policy, often over-simply called "an algorithm." 12

An ideal s t rategy is "put blocks where they won' t cause f ragmenta t ion later";
unfortunately tha t ' s impossible to guarantee, so real strategies a t t empt to heuris-
tically approximate that ideal, based on assumed regularities of application pro-
g rams ' behavior. For example, one s t rategy is "avoid letting small long-lived

12 This set of distinctions is doubtless indirectly influenced by work in very different
areas, notably Marr's work in natural and artificial visual systems [Mar82] and Mc-
Clamrock's work in the philosophy of science and cognition [McC91, McC95]. The
distinctions are important for understanding a wide variety of complex systems,
however. Similar distinctions are made in many fields, including empirical computer
science, though often without making them quite clear.

In "systems" work, mechanism and policy are often distinguished, but strategy and
policy are usually not distinguished explicitly. This makes sense in some contexts,
where the policy can safely be assumed to implement a well-understood strategy, or
where the choice of strategy is left up to someone else (e.g., designers of higher-level
code not under discussion).

In empirical evaluations of very poorly understood strategies, however, the dis-
tinction between strategy and policy is often crucial. (For example, errors in the
implementation of a strategy are often misinterpreted as evidence that the expected
regularities don't actually exist, when in fact they do, and a slightly different strategy
would work much better.)

Mistakes are possible at each level; equally important, mistakes are possible be-
tween levels, in the at tempt to "cash out" (implement) the higher-level strategy as
a policy, or a policy as a mechanism.

]1

objects prevent you f rom reclaiming a larger contiguous free area." This is par t
of the s t ra tegy underlying the common "best fit" family of policies. Another par t
of the s t ra tegy is "if you have to split a block and potential ly waste what ' s left
over, minimize the size of the wasted part ."

The corresponding (best fit) policy is more concre te- - i t says "always use the
smallest block tha t is at least large enough to satisfy the request."

The placement policy determines exactly where in memory requested blocks
will be allocated. For the best fit policies, the general rule is "allocate objects
in the smallest free block tha t ' s at least big enough to hold them." T h a t ' s not
a complete policy, however, because there may be several equally good fits; the
complete policy must specify which of those should be chosen, for example, the
one whose address is lowest.

The chosen policy is implemented by a specific mechanism, chosen to imple-
ment tha t policy efficiently in terms of t ime and space overheads. For best fit,
a linear list or ordered tree structure might be used to record the addresses and
sizes of free blocks, and a tree search or list search would be used to find the one
dictated by the policy.

These levels of the allocator design process interact. A strategy may not yield
an obvious complete policy, and the seemingly slight differences between similar
policies m a y actually implement interestingly different strategies. (This results
f rom our poor understanding of the interactions between application behavior
and allocator strategies.) The chosen policy may not be obviously implementable
at reasonable cost in space, time, or p rogrammer effort; in that case some ap-
proximat ion may be used instead.

The s t rategy and policy are often very poorly-defined, as well, and the policy
and mechanism are arrived at by a combinat ion of educated guessing, trial and
error, and (often dubious) experimental validation. 13

13 In case the important distinctions between strategy, policy, and mechanism are not
clear, a metaphorical example may help. Consider a software company that has a
strategy for improving productivity: rewarding the most productive programmers. It
may institute a policy of rewarding programmers who produce the largest numbers
of lines of program code. To implement this policy, it may use the mechanisms of
instructing the managers to count lines of code, and providing scripts that count
lines of code according to some particular algorithm.

This example illustrates the possible failures at each level, and in the mapping
from one level to another. The strategy may simply be wrong, if programmers aren't
particularly motivated by money. The policy may not implement the intended strat-
egy, if lines of code are an inappropriate metric of productivity, or if the policy has
unintended "strategic" effects, e.g., due to programmer resentment.

The mechanism may also fail to implement the specified policy, if the rules for
line-counting aren't enforced by managers, or if the supplied scripts don't correctly
implement the intended counting function.

This distinction between strategy and policy is oversimplified, because there may
be multiple levels of strategy that shade off into increasingly concrete policies. At
different levels of abstraction, something might be viewed as a strategy or policy.

The key point is that there are at least three qualitatively different kinds of levels

]2

S p l i t t i n g a n d coa le sc ing Two general techniques for supporting a range
of (implementations of) placement policies are splitting and coalescing of free
blocks. (These mechanisms are impor tant subidiary parts of the larger mecha-
nism that is the allocator implementation.)

The allocator may split large blocks into smaller blocks arbitrarily, and use
any sufficiently-large subblock to satisfy the request. The remainders from this
splitting can be recorded as smaller free blocks in their own right and used to
satisfy future requests.

The allocator may also coalesce (merge) adjacent free blocks to yield larger
free blocks. After a block is freed, the allocator may check to see whether the
neighboring blocks are free as well, and merge them into a single, larger block.
This is often desirable, because one large block is more likely to be useful than
two small ones-- large or small requests can be satisfied from large blocks.

Completely general splitting and coalescing can be supported at fairly modest
cost in space and /o r time, using simple mechanisms that we'll describe later. This
Mlows the allocator designer the maximum freedom in choosing a strategy, policy,
and mechanism for the allocator, because the allocator can have a complete and
accurate record of which ranges of memory are available at all times.

The cost may not be negligible, however, especially if splitting and coalescing
work too well--in that case, freed blocks will usually be coalesced with neighbors
to form large blocks of free memory, and later allocations will have to split smaller
chunks off of those blocks to obtained the desired sizes. It often turns out that
most of this effort is wasted, because the sizes requested later are largely the
same as the sizes freed earlier, and the old small blocks could have been reused
without coalescing and splitting. Because of this, many modern allocators use
deferred coalescing--they avoid coalescing and splitting most of the time, but
use intermittently, to combat fragmentation.

2 A C l o s e r L o o k a t F r a g m e n t a t i o n , a n d H o w t o S t u d y I t

In this section, we will discuss the traditional conception of fragmentation, and
the usual techniques used for studying it. We will then explain why the usual

of abstraction involved [McC91]; at the upper levels, there are is the general design
goal of exploiting expected regularities, and a set of strategies for doing so; there
may be subsidiary strategies, for example to resolve conflicts between strategies in
the best possible way.

At at a somewhat lower level there is a general policy of where to place objects,
and below that is a more detailed policy that exactly determines placement:

Below that there is an actual mechanism that is intended to implement the policy
(and presumably effect the strategy), using whatever algorithms and data structures
are deemed appropriate. Mechanisms are often layered, as well, in the usual manner of
structured programming [Dij69]. Problems at (and between) these levels are the best
understood--an algorithm may not implement its specification, or may be improperly
specified. (Analogous problems occur at the upper levels occur as well--if expected
regularities don't actually occur, or if they do occur but the strategy does't actually
exploit them, and so on.)

13

understanding is not strong enough to support scientific design and evaluation
of allocators. We then propose a new (though nearly obvious) conception of
fragmentat ion and its causes, and describe more suitable techniques used to
s tudy it. (Most of the experiments using sound techniques have been performed
in the last few years, but a few notable exceptions were done much earlier, e.g.,
[MPS71] and [LH82], discussed in Section 4.)

2.1 Internal and External Fragmentat ion

Traditionally, fragmentat ion is classed as external or internal [Ran69], and is
combat ted by splitting and coalescing free blocks.

External fragmentation arises when free blocks of memory are available for
allocation, but can' t be used to hold objects of the sizes actually requested by a
program. In sophisticated allocators, that 's usually because the free blocks are
too small, and the program requests larger objects. In some simple allocators,
external fragmentat ion can occur because the allocator is unwilling or unable to
split large blocks into smaller ones.

Internal fragmentation arises when a large-enough free block is allocated to
hold an object, but there is a poor fit because the block is larger than needed. In
some allocators, the remainder is simply wasted, causing internal fragmentation.
(It 's called internal because the wasted memory is inside an allocated block,
rather than being recorded as a free block in its own right.)

To combat internal fragmentation, most allocators will split blocks into mul-
tiple parts, allocating part of a block, and then regarding the remainder as a
smaller free block in its own right. Many allocators will also coalesce adjacent
free blocks (i.e., neighboring fi'ee blocks in address order), combining them into
larger blocks that can be used to satisfy requests for larger objects.

In some allocators, internal fragmentat ion arises due to implementation con-
straints within the al locator--for speed or simplicity reasons, the allocator de-
sign restricts the ways memory may be subdivided. In other allocators, internal
f ragmentat ion may be accepted as part of a strategy to prevent external frag-
m e n t a t i o n - t h e allocator may be unwilling to fragment a block, because if it
does, it may not be able to coalesce it again later and use it to hold another
large object.

2.2 T h e T r a d i t i o n a l M e t h o d o l o g y : P r o b a b i l i s t i c A n a l y s e s , and
S i m u l a t i o n U s i n g S y n t h e t i c T r a c e s

(Note: readers who are uninterested in experimental methodology may wish to
skip this section, at least on a first reading. Readers uninterested in the history
of allocator research may skip the footnotes. The following section (2.3) is quite
important , however, and should not be skipped.)

Allocators are sometimes evaluated using probabilistic analyses. By reasoning
about the likelihood of certain events, and the consequences of those events for
future events, it may be possible to predict what will happen on average. For the

14

general problem of dynamic storage allocation, however, the mathematics are too
difficult to do this for most algorithms and most workloads. An alternative is to
do simulations, and find out "empirically" what really happens when workloads
interact with allocator policies. This is more common, because the interactions
are so poorly understood that mathematical techniques are difficult to apply.

Unfortunately, in both cases, to make probabilistic techniques feasible, im-
portant characteristics of the workload must be known--i .e. , the probabilities of
relevant characteristics of "input" events to the allocation routine. The relevant
characteristics are not understood, and so the probabilities are simply unknown.

This is one of the major points of this paper. The paradigm of statistical
mechanics has been used in theories of memory allocation, but we believe that it
is the wrong paradigm, at least as it is usually applied. Strong assumptions are
made that frequencies of individual events (e.g., allocations and deallocations)
are the base statistics from which probabilistic models should be developed, and
we think that this is false.

The great success of statistical mechanics in other areas is due to the fact
that such assumptions make sense there. Gas laws are pre t ty good idealizations,
because aggregate effects of a very large number of individual events (e.g., col-
lisions between molecules) do concisely express the most impor tant regularities.

This paradigm is inappropriate for memory allocation, for two reasons. The
first is simply that the number of objects involved is usually too small for asymp-
totic analyses to be relevant, but this is not the most impor tant reason.

The main weakness of the statistical mechanics approach is that there are
impor tant sys t emat i c interactions that occur in memory allocation, due to phase
behavior of programs. No mat ter how large the system is, basing probabilistic
analyses on individual events is likely to yield the wrong answers, if there are
systematic effects involved which are not captured by the theory. Assuming that
the analyses are appropriate for "sufficiently large" systems does not help he re - -
the systematic errors will simply attain greater statistical significance.

Consider the case of evolutionary biology. If a overly simple statistical ap-
proach about individual animals' interactions is used, the theory will not capture
predator /prey and host /symbiote relationships, sexual selection, or other perva-
sive evolutionary effects as niche filling3 4 Developing a highly predictive evolu-
t ionary theory is extremely difficult--and some would say impossible--because
too many low-level details matter , 15 and there may intrinsic unpredictabilities
in the systems described3 6

We are not saying that the development of a good theory of memory alloca-
tion is as hard as developing a predictive evolutionary theory- - fa r from it. The

14 Some of these effects may emerge from lower-level modeling, but for simulations to
reliably predict them, many important lower-level issues must be modeled correctly,
and sufficient data are usually not available, or sufficiently understood.

15 For example, the different evolutionary strategies implied by the varying replication
techniques and mutation rates of RNA-based vs. DNA-based viruses.

16 For example, a single mutation that results in an adaptive characteristic in one
individual may have a major impact on the subsequent evolution of a species and its
entire ecosystem.

15

problem of memory allocation seems far simpler, and we are optimistic that a
useful predictive theory can be developed.

Our point is simply that the paradigm of simple statistical mechanics must
be evaluated relative to other alternatives, which we find more plausible in this
domain. There are major interactions between workloads and allocator policies,
which are usually ignored. No mat ter how large the system, and no mat ter
how asymptot ic the analyses, ignoring these effects seems likely to yield major
errors--e.g. , analyses will simply yield the wrong asymptotes.

A useful probabilistic theory of memory allocation may be possible, but if
so, it will be based on a quite different set of statistics from those used so f a r - -
statistics which capture effects of systematicities, rather than assuming such
systematicities can be ignored. As in biology, the theory must be tested against
reality, and refined to capture systematicities that had previously gone unno-
ticed.

R a n d o m s i m u l a t i o n s . The traditional technique for evaluating allocators is
to construct several traces (recorded sequences of allocation and deallocation
requests) thought to resemble "typical" workloads, and use those traces to drive
a variety of actual allocators. Since an allocator normally responds only to the
request sequence, this can produce very accurate simulations of what the alloca-
tor would do if the workload were rea l - - tha t is, if a real program that generated
that request sequence.

Typically, however, the request sequences are not real traces of the behavior
of actual programs. They are "synthetic" traces that are generated automatically
by a small subprogram; the subprogram is designed to resemble real programs
in certain statistical ways. In particular, object size distributions are thought to
be important , because they affect the fragmentation of memory into blocks of
varying sizes. Object lifetime distributions are also often thought to be impor tant
(but not always), because they affect whether blocks of memory are occupied or
free.

Given a set of object size and lifetime distributions, the small "driver" sub-
program generates a sequence of requests that obeys those distributions. This
driver is simply a loop that repeatedly generates requests, using a pseudo-random
number generator; at any point in the simulation, the next data object is chosen
by "randomly" picking a size and lifetime, with a bias that (probabilistically)
preserves the desired distributions. The driver also maintains a table of objects
that have been allocated but not yet freed, ordered by their scheduled death
(deallocation) time. (That is, the step at which they were allocated, plus their
randomly-chosen lifetime.) At each step of the simulation, the driver deallocates
any objects whose death times indicate that they have expired. One convenient
measure of simulated "time" is the volume of objects allocated so far--i .e. , the
sum of the sizes of objects that have been allocated up to that step of the
simulation. 17

17 In many early simulations, the simulator modeled real time, rather than just dis-
crete steps of allocation and dealloeation. Allocation times were chosen based on

16

An important feature of these simulations is that they tend to reach a "steady
state." After running for a certain amount of time, the volume of live (simulated)
objects reaches a level that is determined by the size and lifetime distributions,
and after that objects are allocated and deallocated in approximately equal
numbers. The memory usage tends to vary very little, wandering probabilistically
(in a random walk) around this "most likely" level. Measurements are typically
made by sampling memory usage at points after the steady state has presumably
been reached, or by averaging over a period of "steady-state" variation. These
measurements "at equilibrium" are assumed to be important .

There are three common variations of this simulation technique. One is to use
a simple mathematical function to determine the size and lifetime distributions,
such as uniform or (negative) exponentiM. Exponential distributions are often
used because it has been observed that programs are typically more likely to al-
locate small objects than large ones, is and are more likely to Mlocate short-lived
objects than long-lived ones. 19 (The size distributions are generally truncated at
some plausible minimum and maximum object size, and discretized, rounding
them to the nearest integer.)

The second variation is to pick distributions intuitively, i.e., out of a hat, but
in ways thought to resemble real program behavior. One motivation for this is
to model the fact that many programs allocate objects of some sizes and others
in small numbers or not at all; we refer to these distributions as "spiky. "2~

The third variation is to use statistics gathered from real programs, to make
the distributions more realistic. In almost all cases, size and lifetime distributions
are assumed to be independent-- the fact that different sizes of objects may have
different lifetime distributions is generally assumed to be unimportant .

In general, there has been something of a trend toward the use of more real-

randomly chosen "arrival" times, generated using an "interarrival distribution" and
their deaths scheduled in continuous time rather than discrete time based on the
number and/or sizes of objects allocated so far. We will generally ignore this dis-
tinction in this paper, because we ttfink other issues are more important. As will
become clear, in the methodology we favor, this distinction is not important because
the actual sequences of actions are sufficient to guarantee exact simulation, and the
actual sequence of events is recorded rather than being (approximately) emulated.

18 Historically, uniform size distributions were the most common in early experiments;
exponential distributions then became increasingly common, as new data became
available showing that real systems generally used many more small objects than
large ones. Other distributions have also been used, notably Poisson and hyper-
exponential. Still, relatively recent papers have used uniform size distributions, some-
times as the only distribution.

19 As with size distributions, there has been a shift over time toward non-uniform
lifetime distributions, often exponential. This shift occurred later, probably because
real data on size information was easier to obtain, and lifetime data appeared later.

~0 In general, this modeling has not been very precise. Sometimes the sizes chosen
out of a hat are allocated in uniform proportions, rather than in skewed proportions
reflecting the fact that (on average) programs allocate many more small objects than
large ones.

17

istic distributions, 21 but this trend is not dominant . Even now, researchers often
use simple and smooth mathemat ica l functions to generate traces for allocator
evaluation. 2~ The use of smooth distributions is questionable, because it bears
directly on issues of f r agmen ta t ion - - i f objects of only a few sizes are allocated,
the free (and uncoalescable) blocks are likely to be of those sizes, making it
possible to find a perfect fit. If the object sizes are smoothly distributed, the
requested sizes will a lmost always be slightly different, increasing the chances of
f ragmenta t ion.

P r o b a b i l i s t i c a n a l y s e s . Since Knu th ' s derivation of the "fifty percent rule"
[Knu73] (discussed later, in Section 4), there have been many a t t empts to reason
probabilist ically about the interactions between program behavior and allocator
policy, and assess the overall cost in terms of f ragmentat ion (usually) and /or
CPU time.

These analyses have generally made the same assumptions as random-trace
s imulat ion exper iments- -e .g . , r andom object allocation order, independence of
size and lifetimes, s teady-state behav io r - - and often stronger assumptions as well.

These simplifying assumptions have generally been made in order to make
the ma themat i c s tractable. In particular, assumptions of randomness and inde-
pendence make it possible to apply well-developed theory of stochastic processes
(Markov models, etc.) to derive analytical results about expected behavior. Un-
fortunately, these assumptions tend to be false for most real programs, so the
results are of l imited utility.

It should be noted that these are not merely convenient simplifying assump-
tions that allow solution of problems that closely resemble real problems. If that
were the case, one could expect tha t with refinement of the ana lyses- -or with
sufficient empirical validation tha t the assumptions don ' t mat te r in p rac t i ce - -
the results would come close to reality. There is no reason to expect such a
happy outcome. These assumptions dramat ical ly change the key features of the
problem; the abili ty to perform the analyses hinges on the very facts tha t make
them much less relevant to the general problem of memory allocation.

Assumpt ions of randomness and independence make the problem irregular,
in a superficial sense, but they make it very smooth (hence mathemat ica l ly

21 The trend toward more realistic distributions can be explained historically and prag-
matically. In the early clays of computing, the distributions of interest were usually
the distribution of segment sizes in an operating system's workload. Without ac-
cess to the inside of an operating system, this data was difficult to obtain. (Most
researchers would not have been allowed to modify the implementation of the operat-
ing system running on a very valuable and heavily-timeshared computer.) Later, the
emphasis of study shifted away from segment sizes in segmented operating systems,
and toward data object sizes in the virtual memories of individual processes running
in paged virtual memories.

22 We are unclear on why this should be, except that a particular theoretical and
experimental paradigm [KuhT0] had simply become thoroughly entrenched by the
early 1970's. (It 's also somewhat easier than dealing with real data.)

18

tractable) in a probabilistic sense. This smoothness has the advantage that it
makes it possible to derive analytical results, but it has the disadvantage that it
turns a real and deep scientific problem into a mathematical puzzle that is much
less significant for our purposes.

The problem of dynamic storage allocation is intractable, in the vernacular
sense of the word. As an essentially data-dependent problem, we do not have
a grip on it, because we simply do not understand the inputs. "Smoothing"
the problem to make it mathematical ly tractable "removes the handles" from
something that is fundamental ly irregular, making it unlikely that we will get any
real purchase or leverage on the impor tant issues. Removing the irregularities
removes some of the problems--and most of the opportunities as well.

A n o t e o n e x p o n e n t i a l l y - d i s t r i b u t e d r a n d o m l i f e t imes . Exponential life-
t ime distributions have become quite common in both empirical and analytic
studies of memory fragmentation over the last two decades. In the case of empir-
ical work (using random-trace simulations), this seems an admirable adjustment
to some observed characteristics of real program behavior. In the case of analytic
studies, it turns out to have some very convenient mathematical properties as
well. Unfortunately, it appears that the apparently exponential appearence of
real lifetime distributions is often an artifact of experimental methodology (as
will be explained in Sections 2.3 and 4.1) and that the emphasis on distributions
tends to distract researchers from the strongly patterned underlying processes
that actually generate them (as will be explained in Section 2.4).

We invite the reader to consider a randomly-ordered trace with an exponen-
tial lifetime distribution. In this case there is no correlation at all between an
object 's age and its expected time until dea th - - the "half-life" decay property of
the distribution and the randomness ensure that allocated objects die completely
at random with no way to estimate their death times from any of the informa-
tion available to the allocator. 23 (An exponential random function exhibits only
a half-life property, and no other pattern, much like radioactive decay.) In a
sense, exponential lifetimes are thus the reductio ad absuvdum of the synthetic
trace methodology--al l of the time-varying regularities have been systematically
eliminated from the input. If we view the allocator's job as an online problem of
detecting and exploiting regularities, we see that this puts the allocator in the
awkward position of trying to extract helpful hints from pure noise.

This does not necessarily mean that all allocators will perform identically
under randomized workloads, however, because there are regularities in size dis-
tributions, whether they are real distributions or simple mathematical ones, and
some allocators may simply shoot themselves in the foot.

Analyses and experiments with exponentially distributed random lifetimes
may say something revealing about what happens when an allocator's strategy
is completely orthogonal to the actual regularities. We have no real idea whether

23 We are indebted to Henry Baker, who has made quite similar observations with
respect to the use of exponential hfetime distributions to estimate the effectiveness
of generational garbage collection schemes [Bak93].

19

this is a s i tuat ion tha t occurs regularly in the space of possible combinations of
real workloads and reasonable strategies. (I t ' s clear that it is not the usual case,
however.) The terrain of tha t space is quite mysterious to us.

A n o t e o n M a r k o v m o d e l s . Many probabilistic studies of memory allocation
have used first-order Markov processes to approximate program and Mlocator
behavior, and have derived conclusions based on the well-understood properties
of Markov models.

In a first-order Markov model, the probabilities of state transitions are known
and fixed. In the case of f ragmenta t ion studies, this corresponds to assuming tha t
a p rogram allocates objects at random, with fixed probabilities of allocating
different sizes.

The space of possible states of memory is viewed as a graph, with a node for
each configuration. There is a start state, representing an empty memory, and
a transit ion probabil i ty for each possible allocation size. For a given placement
policy, there will be a known transition from a given state for any possible
allocation or deallocation request. The state reached by each possible allocation
is another configuration of memory.

For any given request distribution, there is a network of possible states reach-
able f rom the s tar t state, via successions of more or less probable transitions. In
general, for any memory above a very, very smM1 size, and for arbi trary distrib-
utions of sizes and lifetimes, this network is inconceivably large. As described so
far, it is therefore useless for any practical analyses.

To make the problem more tractable, certain assumptions are often made.
One of these is tha t lifetimes are exponential ly distributed as well as random, and
have the convenient half-life proper ty described above, i.e., they die completely
at r andom as well as being born at random.

This assumption can be used to ensure that both the states and the tran-
sitions between states have definite probabilities in the long run. Tha t is, if
one were to run a random-trace simulation for a long enough period of t ime,
all reachable states would be reached, and all of them would be reached many
t i m e s - - a n d the number of t imes they were reached would reflect the probabili-
ties of their being reached again in the future, if the simulation were continued
indefinitely. I f we put a counter on each of the states to keep track of the number
of t imes each s tate was reached, the rat io between these counts would eventually
stabilize, plus or minus small shor t - term variations. The relative weights of the
counters would "converge" to a stable solution.

Such a network of states is called an ergodic Markov model, and it has very
convenient ma themat ica l properties. In some cases, i t 's possible to avoid running
a simulation at all, and analytically derive what the network's probabiblit ies
would converge to.

Unfortunately, this is a very inappropriate model for real program and al-
locator behavior. An ergodic Markov model is a kind of (probabilistic) finite
au tomaton , and as such the pat terns it generates are very, very simple, though
randomized and hence unpredictable. They ' re almost unpatterned, in fact, and

hence very predictable in a certain probabilistic sense.

20

Such an au tomaton is extremely unlikely to generate m a n y pat terns that
seem likely to be impor tan t in real programs, such as the creation of the objects
in a linked list in one order, and their later destruction in exactly the same
order, or exactly the reverse order. 24 There are much more powerful kinds of
machines- -which have more complex state, like a real p rog ram- -wh ich are ca-
pable of generating more realistic patterns. Unfortunately, the only machines
tha t we are sure generate the "right kinds" of pat terns are actual real programs.

We do not understand what regularities exist in real programs well enough
to model them formally and perform probabilistic analyses tha t are directly
applicable to real program behavior. The models we have are grossly inaccurate
in respects tha t are quite relevant to problems of memory allocation.

There are problems for which Markov models are useful, and a smaller num-
ber of problems where assumptions of ergodicity are appropriate . These problems
involve processes that are literally random, or can be shown to be effectively ran-
dom in the necessary ways. The general heap allocation problem is not in either
category. (If this is not clear, the next section should make it much clearer.)

Ergodic Markov models are also sometimes used for problems where the basic
assumptions are known to be false in some cases - -bu t they should only be used in
this way if they can be validated, i.e., shown by extensive testing to produce the
right answers most of the t ime, despite the oversimplifications they ' re based on.
For some problems it "just turns out" that the differences between real systems
and the mathemat ica l models are not usually significant. For the general problem
of memory allocation, this turns out to be false as wel l - - recent results clearly
invalidate the use of simple Markov models [ZG94, WJNB95] 25

24 Technically, a Markov model will eventually generate such patterns, but the proba-
bility of generating a particular pattern within a finite period of time is vanishingly
small if the pattern is large and not very strongly reflected in the arc weights. That is,
many quite probable kinds of patterns are extremely improbable in a simple Markov
model.

25 It might seem that the problem here is the use of first-order Markov models, whose
states (nodes in the reachability graph) correspond directly to states of memory, and
that perhaps "higher-order" Markov models would work, where nodes in the graph
represent sequences of concrete state transitions. However, we do not believe these
higher-order models will work any better than first-order models do.

The important kinds of patterns produced by real programs are generally not
simple very-short-term sequences of a few events, but large-scale patterns involving
many events. To capture these, a Markov model would have to be of such high
order that analyses would be completely infeasible. It would essentially have to be
pre-programmed to generate specific literal sequences of events. This not only begs
the essential question of what real programs do, but seems certain not to concisely
capture the right regularities.

Markov models are simply not powerful enough--i.e., not abstract enough in the
right ways--to help with this problem. They should not be used for this purpose,
or any similarly poorly understood purpose, where complex patterns may be very
important. (At least, not without extensive validation.) The fact that the regularities
are complex and unknown is not a good reason to assume that they're effectively
random [ZG94, WJNB95] (Section 4.2).

21

2.3 W h a t Fragmentat ion Really Is, and Why the Traditional
Approach is U n s o u n d

A single death is a tragedy. A million deaths is a statistic.
- -Joseph Stalin

We suggested above tha t the shape of a size distribution (and its smoothness)
might be impor tan t in determining the f ragmentat ion caused by a workload.
However, even if the distributions are completely realistic, there is reason to
suspect tha t randomized synthetic traces are likely to be grossly unrealistic.

As we said earlier, the allocator should embody a s trategy designed to exploit
regularities in p rogram behavior - -o therwise it cannot be expected to do partic-
ularly well. The use of randomized allocation order eliminates some regularities
in workloads, and introduces others, and there is every reason to think tha t
the differences in regularities will affect the performance of different strategies
differently. To make this concrete, we must understand f ragmentat ion and its
Causes.

The technical distinction between internal and external f ragmenta t ion is use-
ful, but in a t t empt ing to design experiments measuring fragmentat ion, it is
worthwhile to stop for a momen t and consider what f ragmentat ion really is,
and how it arises.

Fragmenta t ion is the inability to reuse memory that is free. This can be due
to policy choices by the allocator, which may choose not to reuse memory that
in principle could be reused. More impor tan t ly for our purposes, the allocator
m a y not have a choice at the moment an allocation request must be serviced:
there m a y be free areas that are too small to service the request and whose
neighbors are not free, making it impossible to coalesce adjacent free areas into
a sufficiently large contiguous block. 26

Note tha t for this lat ter (and more fundamental) kind of f ragmentat ion, the
problem is a function both of the p rogram's request s t ream and the allocator 's
choices of where to allocate the requested objects. In satisfying a request, the
al locator usually has considerable leeway; it may place the requested object in
any sufficiently large free area. On the other hand, the allocator has no control
over the ordering of requests for different-sized pieces of memory, or when objects
are freed.

We have not made the notion of f ragmentat ion particularly clear or quan-
tifiable here, and this is no accident. An allocator 's inability to reuse memory
depends not only on the number and sizes of holes, but on the future behavior

26 Beck [Bec82] makes the only clear statement of this principle which we have found in
our exhausting review of the literature. As we will explain later (in our chronological
review, Section 4.1), Beck also made some important inferences from this principle,
but his theoretical model and his empirical methodology were weakened by working
within the dominant paradigm. His paper is seldom cited, and its important ideas
have generally gone unnoticed.

22

of the program, and the future responses of the allocator itself. (That is, it is a
complex mat ter of interactions between patterned workloads and strategies.)

For example, suppose there are 100 free blocks of size 10, and 200 free blocks
of size 20. Is memory highly fragmented? It depends. If future requests are all for
size 10, most allocators will do just fine, using the size 10 blocks, and splitting
the size 20 blocks as necessary. But if the future requests are for blocks of size
30, that 's a problem. Also, if the future requests are for 100 blocks of size 10
and 200 blocks of size 20, whether it's a problem may depend on the order in
which the requests arrive and the allocator's moment-by-moment decisions as to
where to place them. Best fit will do well for this example, but other allocators
do better for some other examples where best fit performs abysmally.

We leave the concept of fragmentation somewhat poorly defined, because in
the general case the actual phenomenon is poorly defined. 27

F r a g m e n t a t i o n is c a u s e d b y i s o l a t e d d e a t h s . A crucial issue is the creation
of free areas whose neighboring areas are not free. This is a function of two
things: which objects are placed in adjacent areas and when those objects die.
Notice that if the allocator places objects together in memory, and they die
"at the same time" (with no intervening allocations), no fragmentat ion results:
the objects are live at the same time, using contiguous memory, and when they
die they free contiguous memory. An allocator that can predict which objects
will die at approximately the same time can exploit that information to reduce
fragmentation, by placing those objects in contiguous memory.

F r a g m e n t a t i o n is c a u s e d b y t i m e - v a r y i n g b e h a v i o r . Fragmentation arises
from changes in the way a program uses memory- - fo r example, freeing small
blocks and requesting large ones. This much is obvious, but it is impor tant to
consider patterns in the changing behavior of a program, such as the freeing
of large numbers of objects and the allocation of large numbers of objects of
different types. Many programs allocate and free different kinds of objects in
different stereotyped ways. Some kinds of objects accumulate over time, but
other kinds may be used in bursty patterns. (This will be discussed in more
detail in Section 2.4.) The allocator's job is to exploit these patterns, if possible,
or at least not let the patterns undermine its strategy.

27 Our concept of fragmentation has been called "startlingly nonoperational," and we
must confess that it is, to some degree. We think that this is a strength, however,
because it is better to leave a concept somewhat vague than to define it prema-
turely and incorrectly. It is important to first identify the "natural kinds" in the
phenomena under study, and then figure out what their most important character-
istics are [Kri72]. (We are currently working on developing operational measures of
"fragmentation-related" program behavior.)

Later in the paper we will express experimental "fragmentation" results as per-
centages, but this should be viewed as an operational shorthand for the effects of
fragmentation on memory usage at whatever point or points in program execution
measurements were made; this should be clear in context.

23

I m p l i c a t i o n s f o r e x p e r i m e n t a l m e t h o d o l o g y . (Note: this section is con-
cerned only with experimental techniques; uninterested readers may skip to the
following section.)

The tradit ional methodology of using random program behavior implicitly
assumes that there is no ordering information in the request stream that could
be exploited by the allocator--i .e. , there's nothing in the sequencing of requests
which the allocator will use as a hint to suggest which objects should be allocated
adjacent to which other objects. Given a random request stream, the allocator
has little control--wherever objects are placed by the allocator, they die at
random, randomly creating holes among the live objects. If some allocators do
in fact tend to exploit real regularities in the request stream, the randomization
of the order of object creations (in simulations) ensures that the information
is discarded before the allocator can use it. Likewise, if an algorithm tends to
systematically make mistakes when faced with real patterns of allocations and
deallocations, randomization may hide that fact.

It should be clear that random object deaths may systematically create seri-
ous fragmentat ion in ways that are unlikely to be realistic. Randomization also
has a potentially large effect on large-scale aggregate behavior of large numbers
of objects. In real programs, the total volume of objects varies over time, and
often the relative volumes of objects of different sizes varies as well. This often
occurs due to phase behavior--some phases may use many more objects than
others, and the objects used by one phase may be of very different sizes than
those used by another phase.

Now consider a randomized synthetic t race- - the overall volume of objects is
determined by a random walk, so that the volume of objects rises gradually until
a steady state is reached. Likewise the volume of memory allocated to objects
of a given size is a similar random walk. If the number of objects of a given size
is large, the random walk will tend to be relatively smooth, with mostly gradual
and small changes in overall allocated volume. This implies that the proportions
of memory allocated to different-sized objects tends to be relatively stable.

This has major implications for external fragmentation. External fragmenta-
tion means that there are fl'ee blocks of memory of some sizes, but those are the
wrong sizes to satisfy current needs. This happens when objects of one size are
freed, and then objects of another size are a l located-- that is, when there is an
unfortunate change in the relative proportions of objects of one size and objects
of a larger size. (For allocators tha t never split blocks, this can happen with
requests for smaller sizes as well.) For synthetic random traces, this is less likely
to occur - - they don' t systematically free objects of one size and then allocate
objects of another. Instead, they tend to allocate and free objects of different
sizes in relatively stable proportions. This minimizes the need to coalesce ad-
jacent free areas to avoid fragmentation; on average, a free memory block of
a given size will be reused relatively soon. This may bias experimental results
by hiding an allocator's inability to deal well with external fragmentation, and
favor allocators that deal well with internal fragmentation at a cost in external
fragmentation.

24

Notice that while random deaths cause fragmentation, the aggregate behavior
of random walks may reduce the extent of the problem. For some allocators, this
balance of unrealistically bad and unrealistically good properties may average
out to something like realism, but for others it may not. Even i f - -by sheer
luck-- random traces turn out to yield realistic fragmentat ion "on average," over
many allocators, they are inadequate for comparing different allocators, which
is usually the primary goal of such studies.

2.4 S o m e R e a l P r o g r a m B e h a v i o r s

...and suddenly the memory returns.
--Marcel Proust, Swann's Way

Real programs do not generally behave r andomly- - they are designed to solve
actual problems, and the methods chosen to solve those problems have a strong
effect on their patterns of memory usage. To begin to understand the alloca-
tot 's task, it is necessary to have a general understanding of program behavior.
This understanding is almost absent in the literature on memory allocators,
apparently because many researchers consider the infinite variation of possible
program behaviors to be too daunting.

There are strong regularities in many real programs, however, because sim-
ilar techniques are applied (in different combinations) to solve many problems.
Several common patterns have been observed.

R a m p s , pe a ks , a n d p l a t e a u s . In terms of overall memory usage over time,
three patterns have been observed in a variety of programs in a variety of con-
texts. Not all programs exhibit all of these patterns, but most seem to exhibit one
or two of them, or all three, to some degree. Any generalizations based on these
patterns must therefore be qualitative and qualified. (This implies that to under-
stand the quantitat ive importance of these patterns, a small set of programs is
not sufficient.)

- Ramps. Many programs accumulate certain data structures monotonically
over time. This may be because they keep a log of events, or because the
problem-solving strategy requires building a large representation, after which
a solution can be found quickly.

- Peaks. Many programs use memory in bursty patterns, building up relatively
large data structures which are used for the duration of a particular phase,
and then discarding most or M1 of those data structures. Note that the
"surviving" data structures are likely to be of different types, because they
represent the results of a phase, as opposed to intermediate values which may
be represented differently. (A peak is like a ramp, but of shorter duration.)

- Plateaus. Many programs build up da ta structures quickly, and then use
those da ta structures for long periods (often nearly the whole running t ime
of the program).

25

These patterns are well-known, from anecdotal experience by many people
(e.g., [Ros67, Han90]), from research on garbage collection (e.g., [Whi80, WM89,
UJ88, Hay91, Hay93, BZ95, Wi195]), 2s and from a recent study of C and C + +
programs [WJNB95].

(Other patterns of overall memory usage also occur, but appear less com-
mon. As we describe in Section 4, backward ramp functions have been observed
[GM85]. Combined forward and backward ramp behavior has also been observed,
with one data structure shrinking as another grows [Abr67].)

Notice that in the case of ramps and ramp-shaped peaks, looking at the
statistical distributions of object lifetimes may be very misleading. A statistical
distribution suggests a random decay process of some sort, but it may actually
reflect sudden deaths of groups of objects that are born at different times. The
difference between these two models, in terms of fragmentation, is major. For a
statistical decay process, the allocator is faced with isolated deaths, which are
likely to cause fragmentation. For a phased process where many objects often
die at the same time, the allocator is presented with an opportunity to get back
a significant amount of memory all at once.

In real programs, these patterns may be composed in different ways at dif-
ferent scales of space and time. A ramp may be viewed as a kind of peak that
grows over the entire duration of program execution. (The distinction between a
ramp and a peak is not precise, but we tend to use "ramp" to refer to something
that grows slowly over the whole of a program, and drops off suddenly at the
end, and "peak" to refer to faster-growing volumes of objects that are discarded
before the end of execution. A peak may also be flat on top, making it a kind of
tall, skinny plateau.)

Whether the overall long-term pattern is often a ramp or plateau, it often
has smaller features (peaks or plateus) added to it. This crude model of program
behavior is thus recursive. (We note that it is not generally fracta129--features
at one scale may bear no resemblance to features at another scale. At tempting
to characterize the behavior of a program by a simple number such as fractal
dimension is not appropriate, because program behavior is not that simple, a~)

e8 It may be thought that garbage collected systems are sufficiently different from
those using conventional storage management that these results are not relevant. It
appears, however, that these patterns are common in both kinds of systems, because
similar problem-solving strategies are used by programmers in both kinds of systems.
(For any particular problem, different qualitative program behaviors may result, but
the general categories seem to be common in conventional programs as well. See
[WJNB95].)

29 We are using the term "fractal" rather loosely, as is common in this area. Typically,
"fractal" models of program behavior are not infinitely recursive, and are actually
graftals or other finite fractal-like recursive entities.

30 We believe that this applies to studies of locality of reference as well. Attempts to
characterize memory referencing behavior as fractal-like (e.g., [VMH+83, Thi89]) are
ill-conceived or severely limited--if only because memory allocation behavior is not
generally fractal, and memory-referencing behavior depends on memory allocation
policy. (We suspect that it's ill-conceived for understanding program behavior at

26

Ramps, peaks, and plateus have very different implications for f ragmentat ion.
An overall r amp or plateau profile has a very convenient property, in that

if short- term fragmentat ion can be avoided, long term fragmentat ion is not a
problem either. Since the da ta making up a plateau are stable, and those mak-
ing up a r amp accumulate monotonically, inabili ty to reuse freed memory is not
an issue--nothing is freed until the end of program execution. Short - term frag-
menta t ion can be a cumulat ive problem, however, leaving m a n y small holes in
the mass of long lived-objects.

Peaks and tall, skinny plateaus can pose a challenge in terms of fragmen-
tation, since many objects are allocated and freed, and many other objects are
likely to be allocated and freed later. I f an earlier phase leaves scattered survivors,
it may cause problems for later phases that must use the spaces in between.

More generally, phase behavior is the major cause of f r agmen ta t ion - - i f a
program's needs for blocks of part icular sizes change over t ime in an awkward
way. If m a n y small objects are freed at the end of a phase - -bu t scattered objects
su rv ive - -a later phase may run into trouble. On the other hand, if the survivors
happen to have been placed together, large contiguous areas will come free.

F r a g m e n t a t i o n a t p e a k s is i m p o r t a n t . Not all periods of program execution
are equal. The most impor tan t periods are usually those when the most memory
is used. Fragmentat ion is less impor tan t at t imes of lower overall memory usage
than it is when memory usage is "at its peak," either during a short-lived peak
or near the end of a r amp of gradually increasing memory usage. This means
that average f ragmentat ion is less impor tan t than peak f ragmenta t ion- -sca t te red
holes in the heap most of the time may not be a problem if those holes are well-
filled when it counts.

This has implications for the interpretat ion of analyses and simulations based
on steady-state behavior (i.e., equilibrium conditions). Real programs may ex-
hibit some steady-state behavior, but there are usually ramps and /or peaks as
well. It appears tha t most programs never reach a truly steady state, and if they
reach a t empora ry steady state, it may not matter much. (It can matter , how-
ever, because earlier phases m a y result in a configuration of blocks that is more
or less problematic later on, at peak usage.)

Overall memory usage is not the whole story, of course. Locality of reference
mat ters as well. All other things being equal, however, a larger total "footprint"

the level of references to objects, as well as at the level of references to memory.) If
the fractal concept is used in a strong sense, we believe it is simply wrong. If it is
taken in a weak sense, we believe it conveys little useful information that couldn't
be better summarized by simple statistical curve-fitting; using a fractal conceptual
framework tends to obscure more issues than it clarifies. Average program behavior
may resemble a fractal, because similar features can occur at different scales in
different programs; however, an individual program's behavior is not fractal-like in
general, any more than it is a simple Markov process. Both kinds of models fail
to capture the "irregularly regular" and scale-dependent kinds of patterns that are
most important.

27

matters even for locality. In virtual memories, many programs never page at
all, or suffer dramatic performance degradations if they do. Keeping the overall
memory usage lower makes this less likely to happen. (In a time-shared machine,
a larger footprint is likely to mean that a different process has its pages evicted
when the peak is reached, rather than its own less-recently-used pages.)

E x p l o i t i n g o r d e r i n g a n d size d e p e n d e n c i e s . If the Mlocator can exploit
the phase information from the request stream, it may be able to place objects
that will die at about the same time in a contiguous area of memory. This may
suggest that the allocator should be adaptive, 31 but much simpler strategies also
seem likely to work [WJNB95]:

- Objects allocated at about the same time are likely to die together at the
end of a phase; if consecutively-allocated objects are allocated in contiguous
memory, they will free contiguous memory.

- Objects of different types may be likely to serve different purposes and die at
different times. Size is likely to be related to type and purpose, so avoiding
the intermingling of different sizes (and likely types) of objects may reduce
the scattering of long-lived objects among short-lived ones.

This suggests that objects allocated at about the same time should be al-
located adjacent to each other in memory, with the possible amendment that,
different-sized objects should be segregated [WJNB95]. 32

h n p l i c a t i o n s for s t r a t e g y . The phased behavior of many programs provides
an opportuni ty for the allocator to reduce fragmentation. As we said above, if
successive objects are allocated contiguously and freed at about the same time,
free memory will again be contiguous. We suspect that this happens with many
existing allocators--even though they were not designed with this principle in
mind, as far as we can tell. It may well be that this accidental "strategy" is the
major way that good allocators keep fragmentation low.

31 Barrett and Zorn have recently built an allocator using profile information to heuris-
tically separate long-lived objects from short-lived ones [BZ93]. (Section 4.2.)

32 We have not found any other mention of these heuristics in the literature, although
somewhat similar ideas underlie the "zone" allocator of Ross [Ros67] and Hanson's
"obstack" system (both discussed later). Beck [Bec82], Delners et al., and and Barrett
and Zorn [BZ93] have developed systems that predict the lifetimes of objects for
similar purposes, but we note that it is not necessary to predict w~Lich groups of
objects will die when. It is only necessary to predict which groups of objects will die
at similar times, and which will die at dissimilar times, without worrying about which
group will die first. We refer to tlfis as "death time discrimination." This simpler
discrimination seems easier to achieve than lifetime prediction, and possibly more
robust. Intuitively, it also seems more directly related to the causes of fragmentation.

28

I m p l i c a t i o n s fo r r e s e a r c h . A major goal of allocator research should be to
determine which patterns are common, and which can be exploited (or at least
guarded against). Strategies that work well for one program may work poorly for
another, but it may be possible to combine strategies in a single robust policy
that works well for almost all programs. If that fails, it may be possible to have
a small set of allocators with different properties, at least one of which works
well for the vast major i ty of real problems.

We caution against blindly experimenting with different combinations of pro-
grams and complex, optimized allocators, however. It is more impor tant to de-
termine what regularities exist in real program behavior, and only then decide
which strategies are most appropriate, and which good strategies can be com-
bined successfully. This is not to say that experiments with many variations on
many designs aren' t useful--we're in the midst of such experiments ourselves--
but that the goal should be to identify fundamental interactions rather than just
"hacking" on things until they work well for a few test applications.

P r o f i l e s o f s o m e r ea l p r o g r a m s . To make our discussion of memory usage
patterns more concrete, we will present profiles of memory use for some real
programs. Each figure plots the overall amount of live data for a run of the
program, and also the amounts of data allocated to objects of the five most
popular sizes. ("Populari ty" here means most volume allocated, i.e., sum of sizes,
rather than object counts.) These are profiles of program behavior, independent
of any particular allocator.

GCC. Figure 1 shows memory usage for GCC, the GNU C compiler, compiling
the largest file of its own source code (combine. c). (A high optimization switch
was used, encouraging the compiler to perform extensive inlining, analyses, and
optimization.) We used a trace processor to remove "obstack" allocation from
the trace, creating a trace with the equivalent allocations and frees of individual
objects; obstacks are heavily used in this program. 33 The use of obstacks may
affect programming style and memory usage patterns; however, we suspect that
the memory usage patterns would be similar without obstacks, and that obstacks
are simply used to exploit them. 34

This is a heavily phased program, with several strong and similar peaks.
These are two-horned peaks, where one (large) size is allocated and deallocated,
and much smaller size is allocated, out of phase. (This is an unusual feature, in
our limited experience.) Notice that this program exhibits very different usage
profiles for different sized objects. The use of one size is nearly steady, another
is strongly peaked, and another is peaked, but different.

s3 See the discussion of [Han90] (Section 4.1) for a description of obstacks.
34 We've seen similarly strong peaks in a profile of a compiler of our own, which relies

on garbage collection rather than obstacks.

2 9

2500

2000

1500

1000

500

0

0 18

ccl -02 -pipe -c comNne.c, mornory in use by object sizes (Top 5)

al l enacts - -
178600 byte obiocls

I 16 byte o b i e c t s
/ la2~s4 b~e o bjec~

H J . 2o b~,, ~

i

i

I

] I a

2 4 6 8 10 12 14 16
Allocation Time in Megabytes

Fig. 1. Profile of m em ory usage in the GNU C compiler.

G,vbner- Figure 2 shows memory usage for the Grobner program a5 which de-
composes complex expressions into linear combinations of polynomials (Grgbner
bases), a6 As we understand it, this is done by a process of expression rewriting,
ra ther like term rewriting or rewrite-based theorem proving techniques.

Overall memory usage tends upward in a general r amp shape, but with minor
shor t - term variations, especially small plateaus, while the profiles for usage of
different-sized objects are roughly similar, their ramps s tar t at different points
during execution and have different slopes and irregularities---the proportions of
different-sized objects vary somewhat .

tlypercube. Figure 3 shows memory usage for a hypercube message-passing sim-
ulator, writ ten by Don Lindsay while at CMU. I t exhibits a large and simple
plateau.

a5 This program (and the hypercube simulator described below) were also used by
Detlefs in [Det92] for evaluation of a garbage collector. Based on several kinds of
profiles, we now think that Detlefs' choice of test programs may have led to an over-
estimation of the costs of his garbage collector for C++. Neither of these programs
is very friendly to a simple GC, especially one without compiler or OS support.

as The function of this program is rather aaalogous to that of a Fourier transform, but
the basis functions are polynomials rather than sines and cosines, and the mechanism
used is quite different.

3 0

._c

o~r

160

140

120

"100

80

60

40

20

0
0 4

Grobner, memory in use by object sizes (Top 5)
i i f ! ~ i i

a# obiects - -
12 byte objects
24 byte objec~L---- f

/ .,.__..~_~=.. ~
L ; - " " ~ ~ " : ~ : : : : ' : : : ::: -::-=-:'~'= ~"*

0.5 1 1.5 2 2,5 3 3.5
Allocation Time in Megabytes

Fig. 2. Profile of memory usage in the Grobner program.

This program allocates a single very large object near the beginning of execu-
tion, which lives for almost the entire run; it represents the nodes in a hypercube
and their interconnections. A very large number of other objects are created, but
they are small and very short-lived; they represent messages sent between nodes
randomly. This program quickly reaches a steady state, but the steady state is
quite different from the one reached by most randomized allocator s imulat ions--
a very few sizes are represented, and lifetimes are both extremely skewed and
strongly correlated with sizes.

Perl. Figure 4 shows memory usage for a script (program) written in the Perl
scripting language. This program processes a file of string data. (We're not sure
exactly what it is doing with the strings, to be honest; we do not really under-
stand this program.) This program reaches a steady state, with heavily skewed
usage of different sizes in relatively fixed proportions. (Since Perl is a fairly gen-
eral and featureful programming language, its memory usage may vary tremen-
dously depending on the program being executed.)

LRUsim. Figure 5 shows memory usage for a locality profiler written by Doug
van Wieren. This program processes a memory reference trace, keeping track
of how recently each block of memory has been touched and a accumulating a
histogram of hits to blocks at different recencies (LRU queue positions). At the

D

.g
(n

2500

2000

1500

1000

500

31

lindsay, memory in use by object sizes (Top 5)
i i i i ' i �9

all objects
1687552 byte objects

393256 byte objects
52 byte obiects

. 1024J;~vts objects
28 byte objects

. I

i

1 2 3 4 5 6 7
Allocation Time in Megabytes

Fig . 3. Profile of memory usage in Lindsay's hypercube simulator.

end of a run, a PostScript grayscale plot of the t ime-varying locality character-
istics is generated. The recency queue is represented as a large modified AVL
tree, which dominates memory usage- -only a single object size really mat te rs
much. At the parameter setting used for this run, no blocks are ever discarded,
and the tree grows monotonically; essentially no heap-allocated objects are ever
freed, so memory usage is a simple ramp. At other settings, only a bounded
number of i tems are kept in the LRU tree, so that memory usage ramps up to a
very stable plateau. This program exhibits a kind of dynamic stability, either by
steady accumulat ion (as shown) or by exactly replacing the least-recently-used
objects within a plateau (when used with a fixed queue length).

This is a small and simple program, but a very real one, in the sense tha t we
have used it to tie up m a n y megabytes of memory for about a trillion instruction
cycles. 37

Espresso. Figure 6 shows memory usage for a run of Espresso, an optimizer for
p rog rammable logic array designs.

37 We suspect that in computing generally, a large fraction of CPU time and memory
usage is devoted to programs with more complex behavior, but another significant
fraction is dominated by highly regular behavior of simple useful programs, or by
long, regular phases of more complex programs.

32

perl: words small data, memory in use by object sizes (Top 5)
70

60 ~ =-:- [
:]2 byte objects I

50

40 :D
.c_

" 30

20

10

i
, , . . , ,

5 10 15 20 25 30 35
Allocation Time in Megabytes

Fig. 4. Profile of memory usage in Perl running a string-processing script.

Espresso appears to go through several qualitatively different kinds of phases,
using different sizes of objects in quite different ways.

Discussion of Program Profiles. In real programs, memory usage is usually
quite different from the memory usage of randomized traces. Ramps, peaks,
and plateaus are common, as is heavily skewed usage of a few sizes. Memory
usage is neither Markov nor interestingly fractal-like in most cases. Many pro-
grams exhibit large-scale and small-scale patterns which may be of any of the
common feature types, and different at different scales. Usage of different sizes
may be strongly correlated, or it may not be, or may be related in more subtle
t ime-varying ways. Given the wide variation within this small sample, it is clear
that more programs should be profiled to determine which other patterns occur
in a significant number of programs, and how often various patterns are likely
to occur.

S u m m a r y . In summary, this section makes six related points:

- Program behavior is usually time-varying, not steady.
- Peak memory usage is important ; fragmentation at peaks is more impor tant

than at intervening points.

1400

1200

1000

800

m 600

400

200

33

LRUsim, memory in use by object sizes (Top 5)
I i ' ' i l I I

atl o b j e c t s ~ -
36 byte obje~" - - -

8200 byte o ~ c t s
4104 b ~ b j e c t s

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Allocation Time in Megabytes

Fig. 5. Profile of memory usage in van Wieren's locality profiler.

- Fragmentat ion is caused by time-varying behavior, especially peaks using
different sizes of objects.

- Known program behavior invalidates previous experimental and analytical
results,

- Nonrandom behavior of programs can be exploited, and
- Different programs may display characteristically different nonrandom be-

havior.

2.5 D e f e r r e d C o a l e s c i n g a n d D e f e r r e d R e u s e

D e f e r r e d coa le sc ing . Many allocators a t tempt to avoid coalescing blocks of
memory that may be repeatedly reused for short-lived objects of the same size.
This deferred coalescing can be added to any allocator, and usually avoids coa-
lescing blocks that will soon be split again to satisfy requests for small objects.
Blocks of a given size may be stored on a simple free list, and reused without
coalescing, splitting, or formatt ing (e.g., putt ing in headers and/or footers). If
the application requests the same size block soon after one is freed, the request
can be satisfied by simply popping the pre-formatted block off of a free list in
very small constant time.

While deferred coalescing is traditionally thought of as a speed optimization,

34

.c_

300

250

20O

150

100

0
0

espresso, largest_data, memory in use by object sizes (Top 5)

' ' ' a,"l
o~ecis

38496 byte objects
�9 28 byte objects
i 55072 byte objects
,I 24464 byte objects

36704 byte objects

N ~ | J , N i~ "~'i a I ' �9 , , ~ (' =

20 40 60 80 100
Allocation Time in Megabytes

120

Fig. 6. Profile of memory usage in the Espresso PLA Optimizer.

it is important to note that fragmentation considerations come into play, in three
ways. 3s

- The lower fragmentation is, the more impor tant deferred coalescing will be in
terms of speed-- i f adjacent objects generally die at about the same time, ag-
gressive coalescing and splitting will be particularly expensive, because large
areas will be coalesced together by repeatedly combining adjacent blocks,
only to be split again into a large number of smaller blocks. If fragmentat ion
is low, deferred coalescing may be especially beneficial.

- Deferred coalescing may have significant effects on fragmentation, by chang-
ing the allocator's decisions as to which blocks of memory to use to hold
which objects. For example, blocks cannot be used to satisfy requests for
larger objects while they remain uncoalesced. Those larger objects may there-
fore be allocated in different places than they would have been if small blocks
were coalesced immediately; that is, deferred coalescing can affect placement
policy.

3s To our knowledge, none of these effects has been noted previously in the literature,
although it's likely we've seen at least the first but forgotten where. In any event,
these effects have received little attention, and don't seem to have been studied
directly.

35

- Deferred coalescing may decrease locality of reference for the same reason,
because recently-freed small blocks will usually not be reused to hold larger
objects. This may force the program to touch more different areas of memory
than if small blocks were coalesced immediately and quickly used again.
On the other hand, deferred coalescing is very likely to increase locality
of reference if used with an allocator that otherwise would not reuse most
memory immed ia t e ly - - the deferred coalescing mechanism will ensure that
mos t freed blocks are reused soon.

D e f e r r e d r e u s e . Another related not ion--which is equally poorly under-
s tood- - i s deferred reuse. 39 Deferred reuse is a property of some allocators that
recently-freed blocks tend not to be the soonest reused. For many allocators, free
memory is managed in a most ly stack-like way. For others, it is more queue-like,
with older free blocks tending to be reused in preference to newly-freed blocks.

Deferred reuse may have effects on locMity, because the al locator 's choices
affect which parts of memory are used by the p r o g r a m - - t h e program will tend
to use m e m o r y briefly, and then use other memory before reusing tha t memory.

Deferred reuse m a y also have effects on fragmentat ion, because newly-allo-
cated objects will be placed in holes left by old objects that have died. This
m a y make f ragmenta t ion worse, by mixing objects created by different phases
(which m a y die at different times) in the same area of memory. On the other
hand, it m a y be very beneficial because it may gradually pack the "older" areas
of m emory with long-lived objects, or because it gives the neighbors of a freed
block more t ime to die before the freed block is reused. Tha t may allow slightly
longer-lived objects to avoid causing much fragmentat ion, because they will die
relatively soon, and be coalesced with their neighbors whose reuse was deferred.

2.6 A S o u n d M e t h o d o l o g y : S i m u l a t i o n U s i n g R e a l T r a c e s

The tradi t ional view has been that programs ' f ragmentat ion-causing behavior
is determined only by their object size and lifetime distributions. Recent exper-
imental results show tha t this is false ([ZG94, WJNB95], Section 4.2), because
orderings of requests have a large effect on f ragmenta t iom Until a much deeper
understanding of program behavior is available, and until allocator strategies
and policies are as well understood as allocator mechanisms, the only reliable
method for allocator simulation is to use real traces--i .e. , the actual record of
allocation and deailocation requests from reM programs.

T r a c i n g a n d s i m u l a t i o n . Allocation traces are not particularly difficult to
obtain (but see the caveats about p rogram selection in Section 5.5). A slightly
modified allocator can be used, which writes information about each allocation
and deallocation request to a file--i.e., whether the request is an allocation or

39 Because it is not generally discussed in any systematic way in the literature, we
coined this term for this paper.

36

deallocation, the address of the block, and (for allocations) the requested block
size. This allocator can be linked with a program of interest and used when
running the program. These traces tend to be long, but they can be stored in
compressed form, on inexpensive serial media (e.g., magnetic tape), and later
processed serially during simulation. (Allocation traces are generally very com-
pressible, due to the strong regularities in program behavior. 4~ Large amounts
of disk space and /or main memory are not required, although they are certainly
convenient.

To use the trace for a simulation, a driver routine reads request records out of
the file, and submits them to the allocator being tested by calling the allocator
in the usual way. The driver maintains a table of objects that are currently
allocated, which maps the object identifier from the trace file to the address
where it is allocated during simulation; this allows it to request the deallocation
of the block when it encounters the deallocation record in the trace.

This simulated program doesn't actually do anything with the allocated
blocks, as a real program would, but it imitates the real program's request se-
quences exactly, which is sufficient for measuring the memory usage. Modern
profiling tools [BL92, CK93] can also be used with the simulation program to
determine how many instruction cycles are spent in the allocator itself.

An alternative strategy is to actually link the program with a variety of al-
locators, and actually re-run the program for each "simulation". This has the
advantage that the traces needn't be stored. It has the disadvantages that it
requires being able to re-run the program at will (which may depend on having
similar systems, input data sets being available and in the right directories, envi-
ronment variables, etc.) and doesn' t allow convenient sharing of traces between
different experimenters for replication of experiments. It also has the obvious
disadvantage that instructions spent executing the actual program are wasted,
but on fast machines this may be preferable to the cost of trace I /O, for many
programs.

L o c a l i t y s t u d i e s . While locality is mostly beyond the scope of this paper, it is
worth making a few comments about locality studies. Several tools are available

40 Conventional text-string-oriented compression algorithms [Nel91] (e.g, UNIX
compress or GNU gzip) work quite well, although we suspect that sophisticated
schemes could do significantly better by taking advantage of the numerical prop-
erties of object identifiers or addresses; such schemes have been proposed for use
in compressed paging and addressing [WLM91, FP91]. (Text-oriented compression
generally makes Markov-like modeling assumptions, i.e., that literal sequences are
likely to occur. This is clearly true to a large degree for allocation and reference
traces, but other regularities could probably be exploited as well [WB95].)

Dain Samples [Sam89] used a simple and effective approach for compressing mem-
ory-reference traces; his "Mache" trace compactor used a simple preprocessor to
massage the trace into a different format, making the the relevant regularities eas-
ier for standard string-oriented compression algorithms to recognize and exploit. A
similarly simple system may work well for allocation traces.

37

to make it relatively easy to gather memory-reference traces, and severM cache
and vir tual memory simulators are available for processing these traces.

Larus ' Q P T tool (a successor to the earlier AE system [BL92]) modifies an
executable p rogram to make it self-tracing. The Shade tool from SunLabs [CK93]
is essentially a CPU emulator , which runs a program in emulat ion and records
various kinds of events in an extremely flexible way. For good performance, it
uses dynamic compilat ion techniques to increase speed relative to a s traightford
interpret ive simulator .

Either of these systems can save a reference trace to a file, but the file is
generally very large for long-running programs. Another al ternative is to perform
incremental simulation, as the trace is recorded--event records are saved to a
fairly small buffer, and batches of event records are passed to a cache s imulator
which consumes them on the fly.

Efficient cache simulators are available for processing reference traces, in-
cluding Mark Hill 's Tycho and Dinero systems [HS89].41

3 A Taxonomy of Allocators

Allocators are typically categorized by the mechanisms they use for recording
which areas of memory are free, and for merging adjacent free blocks into larger
free blocks (coalescing). Equally impor tan t are the policy and strategy impliea-
t ions-- i .e . , whether the allocator properly exploits the regularities in real request
s treams.

In this section, we survey the policy issues and mechanisms in memory alloca-
tion; since deferred coalescing can be added to any allocator, it will be discussed
after the basic general allocator mechanisms have been covered, in Section 3.11.

3.1 A l l o c a t o r P o l i c y I s s u e s

We believe tha t there are several impor tan t policy issues that must be made
clear, and tha t real al locators ' performance must be interpreted with regard to
them:

- Patterns of Memory Reuse. Are recently-freed blocks reused in preference to
older free areas? Are free blocks in an area of memory preferentially reused

41 Before attempting locality studies, however, allocation researchers should become
familiar with the rather subtle issues in cache design, in particular the effects and
interactions of assoeiativity, fetch and prefetch policies, write buffers, victim buffers,
and subblock placement.

Such details have been shown to be important in assessing the impact of locality
of allocation on performance; a program with apparently "poor" locality for a simple
cache design may do quite well in a memory hierarchy well-suited to its behavior. The
literature on garbage collection is considerably more sophisticated in terms of locality
studies than the literature on memory allocation, and should not be overlooked. (See,
e.g., [BaeT3, KLS92, Wilg0, WLM92, DTMg3, Rei94, GA95, Wi195].) Many of the
same issues must arise in conventionally-managed heaps as well.

38

for objects of the same size (and perhaps type) as the live objects nearby?
Are free blocks in some areas reused in preference to free blocks in other
areas (e.g., preferentially reusing free blocks toward one end of the heap
area)?

- Spl i t t ing and Coalescing. Are large free blocks split into smaller blocks to sat-
isfy requests for smaller objects? Are adjacent free blocks merged into larger
areas at all? Are all adjacent free areas coalesced, or are there restrictions
on when coalescing can be done because it simplifies the implementation? Is
coalescing always done when it's possible, or is it deferred to avoid needless
merging and splitting over short periods of t ime?

- Fi ts . When a block of a particular size is reused, are blocks of about the
same size used preferentially, or blocks of very different sizes? Or perhaps
blocks whose sizes are related in some other useful way to the requested size?

- Spl i t t ing thresholds. When a too-large block is used to satisfy a request, is
it split and the remainder made available for reuse? Or is the remainder
left unallocated, causing in terna l f r a g m e n t a t i o n , either for implementation
simplicity or as part of a policy intended to trade internal fragmentat ion for
reduced external fragmentation?

All of these issues may affect overall fragmentation, and should be viewed
as policies, even if the reason for a particular choice is to make the mechanism
(implementation) simpler or faster. They may also have effects on locality; for
example, reusing recently-freed blocks may increase temporal locality of reference
by reusing memory that is still cached in high-speed memory, in preference to
memory that has gone untouched for a longer while. (Locality is beyond the
scope of this paper, but it is an important consideration. We believe that the
best policies for reducing fragmentation are good for locality as well, by and
large, but we will not make that argument in detail here. 42)

3.2 S o m e I m p o r t a n t L o w - L e v e l M e c h a n i s m s

Several techniques are used in different combinations with a variety of alloca-
tors, and can help make sophisticated policies surprisingly easy to implement
efficiently. We will describe some very low-level mechanisms that are pieces of
several "basic" (higher-level) mechanisms, which in turn implement a policy.

(The casual reader may wish to skim this section.)

H e a d e r f ie lds a n d a l i g n m e n t . Most allocators use a hidden "header" field
within each block to store useful information. Most commonly, the size of the
block is recorded in the header. This simplifies freeing, in many algorithms,
because most s tandard allocator interfaces (e.g., the standard C f r e e () routine)

42 Briefly, we believe that the allocator should heuristically attempt to cluster objects
that are likely to be used at about the same times and in similar ways. This should
improve locality [Bae73, WLM91]; it should also increase the chances that adjacent
objects will die at about the same time, reducing fragmentation.

39

do not require a p rogram to pass the size of the freed block to the deallocation
routine at deallocation time.

Typically, the allocation function (e.g., C's m a l l o c () memory allocation rou-
tine) passes only the requested size, and the allocator returns a pointer to the
block allocated; the free routine is only passed that address, and it is up to the
allocator to infer the size if necessary. (This may not be true in some systems
with stronger type systems, where the sizes of objects are usually known at s tat-
ically. In tha t case, the compiler may generate code that supplies the object size
to the freeing routine automatically.)

Other information may be stored in the header as well, such as information
about whether the block is in use, its relationship to its neighbors, and so on.
Having information about the block stored with the block makes many common
operat ions fast.

Header fields are usually one machine word; on most modern machines, tha t
is four 8-bit bytes, or 32 bits. (For convenience, we will assume tha t the word
size is 32 bits, unless indicated otherwise.) In most situations, there is enough
room in one machine word to store a size field plus two or three one-bit "flags"
(boolean fields). This is because most systems allocate all heap-allocated ob-
jects on whole-word or double-word address boundaries, but most hardware is
byte-addressable. 43 (This constraint is usually imposed by compilers, because
hardware issues make unaligned da ta s lower--or even i l legal- - to operate on.)

This a l ignment means that partial words cannot be a l located--requests for
non-integral numbers of words are rounded up to the nearest word. The rounding
to word (or doubleword) boundaries ensures that the low two (or three) bits of
a block address are always zero.

Header fields are convenient, but they consume space--e.g. , a word per block.
It is common for block sizes in many modern systems to average on the order
of 10 words, give or take a factor of two or so, so a single word per header may
increase memory usage by about 10% [BJW70, Ung86, ZG92, DDZ93, WJNB95].

B o u n d a r y t a g s . Many allocators that support general coalescing are imple-
mented using boundary tags (due to Knuth [Knu73]) to support the coalescing
of free areas. Each block of memory has a both header and a "footer" field,
both of which record the size of the block and whether it is in use. (A footer,
as the name suggests, is a hidden field withiu the block, at the opposite end
f rom the header.) When a block is freed, the footer of the preceding block of
memory is examined to see if it is free; likewise, the header of the following block
is examined. Adjacent free areas are merged to form larger free blocks.

Header and footer overhead are likely to be s ignif icant--with an average
object size of about ten words, for example, a one-word header incurs a 10%
overhead and a one-word footer incurs another 10%.

43 For doubleword aligned systems, it is still possible to use a one-word header while
maintaining alignment. Blocks are allocated "off by one" from the doubleword boun-
dary, so that the part of the block that actually stores an object is properly aligned.

40

Luckily there is a simple opt imizat ion tha t can avoid the footer overhead. 44
Notice that when an block is in use (holding a live object), the size field in
the footer is not actually needed--al l tha t is needed is the flag bit saying tha t
the storage is unavailable for coalescing. The size field is only needed when the
block is free, so tha t its header can be located for coalescing. The size field can
therefore be taken out of the last word of the block of m e m o r y - - w h e n the block
is allocated, it can be used to hold par t of the object; when the object is freed,
the size field can be copied f rom the header into the footer, because tha t space
is no longer needed to hold par t of the object.

The single bit needed to indicate whether a block is in use can be stolen f rom
the header word of the following block without unduly l imiting the range of the
size field. 45

L i n k f ie lds w i t h i n b l o c k s . For allocators using free lists or indexing trees
to keep track of free blocks, the list or tree nodes are generally embedded in
the free blocks themselves. Since only free blocks are recorded, and since their
space would otherwise be wasted, it is usually considered reasonable to use the
space within the "empty" blocks to hold pointers linking them together. Space
for indexing structures is therefore "free" (almost).

Many systems use doubly-linked linear lists, with a "previous" and "next"
pointer taken out of the free area. This supports fast coalescing; when objects
are merged together, at least one of them must be removed from the linked list so
tha t the resulting block will appear only once in the list. Having pointers to both
the predecessor and successor of a block makes it possible to quickly remove the
block from the list, by adjusting those objects ' "next" and "previous" pointers
to skip the removed object.

Some other allocators use trees, with space for the "left child" and "right
child" (and possibly "parent") pointers taken out of the free area.

The hidden cost of put t ing link fields within blocks is that the block must
be big enough to hold them, along with the header field and footer field, if any.
This imposes a minimum block size on the allocator implementat ion, and any
smaller request must be rounded up to tha t size. A common situation is having a
header with a size field and boundary tags, plus two pointers in each block. This
means that the smallest block size must be at least three words. (For doubleword
alignment, it must be four.)

Assuming only the header field is needed on allocated blocks, the effective
object size is three words for one-, two-, or three-word objects. I f m a n y objects

44 This optimization is described in [StaB0], but it appears not to have been noticed
and exploited by most implementors of actual systems, or by researchers in recent
years.

45 Consider a 32-bit byte-addressed system where blocks may be up to 4GB. As long as
blocks are word-aligned, the least significant bits of a block address are always zero,
so those two "low bits" can be used to hold the two flags. In a doubleword-aligned
system, three "low bits" are available.

4]

are only one or two words long- -and two is fairly common--s ignif icant space
m a y be wasted.

L o o k u p t a b l e s . Some allocators treat blocks within ranges of sizes s imi la r ly - -
rather than indexing free blocks by their exact size, they lump together blocks
of roughly the same size. The size range may also be impor tan t to the coalescing
mechanism. Powers of two are often used, because it is easy to use bit selection
techniques on a binary representation of the size to figure out which power-of-two
range it falls into. Powers of two are coarse, however, and can have drawbacks,
which we'll discuss later.

Other functions (such as Fibonacci series) may be more useful, but they are
more expensive to compute at run time. A simple and effective solution is to use
a lookup table, which is s imply an array, indexed by the size, whose values are
the numbers of the ranges. To look up which range a size falls into, you simply
index into the array and fetch the value stored there. This technique is simple
and very fast.

I f the values used to index into the table are potential ly large, however, the
lookup table itself m a y be too big. This is often avoided by using lookup tables
only for values below some threshold (see below).

S p e c i a l t r e a t m e n t o f s m a l l o b j e c t s . In most systems, many more small
objects are allocated than large ones. It is therefore often worthwhile to t reat
small objects specially, in one sense or another. This can usually be done by
having the allocator check to see if the size is small, and if so, use an optimized
technique for small values; for large values, it may use a slower technique.

One application of this principle is to use a fast allocation technique for
small objects, and a space-efficient technique for large ones. Another is to use
fast lookup table techniques for small values, and slower computat ions for large
ones, so that the lookup tables don ' t take up much space. In this case, consider
the fact tha t it is very difficult for a program to use a large number of large
objects in a short period of t ime---it generally must do something with the space
it allocates, e.g., initialize the fields of the allocated objects, and presumably do
something more with at least some of their values. For some modera te object
size and above, the possible frequency of allocations is so low tha t a little extra
overhead is not significant. (Counterexamples are possible, of course, but we
believe they are rare.) The basic idea here is to ensure that the t ime spent
allocating a block is small relative to the computat ions on the da ta it holds.

S p e c i a l t r e a t m e n t o f t h e e n d b l o c k o f t h e h e a p . The allocator allocates
memory to programs on request, but the allocator itself must get memory from
somewhere. The mos t common si tutat ion in modern systems is tha t the heap
occupies a range of virtual addresses and grows "upward" through the address
space. To request more (virtual) memory, a system call such as the UNIX b r k ()46

46 brk () is often called indirectly, via the library routine sbrk() .

42

call is used to request that storage be mapped to that region of address space, so
that it can be used to hold data. 47 Typically, the allocator keeps a "high-water
mark" that divides memory into the part that is backed by storage and the part
that is not.

(In systems with a fixed memory, such as some non-virtual memory systems,
many allocators maintain a similar high-water mark for their own purposes, to
keep track of which part of memory is in use and which part is a large contiguous
free space.)

We will generally assume that a paged virtual memory is in use. In that
case, the system call that obtains more memory obtains some integral number
of pages, (e.g., 4KB, 8KB, 12KB, or 16KB on a machine with 4KB pages.) If
a larger block is requested, a larger request (for as many pages as necessary) is
made.

Typically the allocator requests memory from the operating system when it
cannot otherwise satisfy a memory request, but it actually only needs a small
amount of memory to satisfy the request (e.g., 10 words). This raises the question
of what is done with the rest of the memory returned by the operating system.

While this seems like a trivial bookkeeping matter , it appears that the treat-
ment of this "end block" of memory may have significant policy consequences
under some circumstances. (We will return to this issue in Section 3.5.)

3.3 Bas ic M e c h a n i s m s

We will now present a relatively conventional taxonomy of allocators, based
mostly on mechanisms, but along the way we will point out policy issues, and
alternative mechanisms that can implement similar policies. (We would prefer
a strategy-based taxonomy, but strategy issues are so poorly understood that
they would provide little structure. Our taxonomy is therefore roughly similar
to some previous ones (particularly Standish's [Sta80]), but more complete.)

The basic allocator mechanisms we discuss are:

- Sequent ia l Fi ts , including first fit, next fit, best fit, and worst fit,
- Segregated Free Lis ts , including simple segregated storage and segregated

fits,
- B u d d y Sys t ems , including conventional binary, weighted, and Fibonacci bud-

dies, and double buddies,
- Indexed Fits , which use structured indexes to implement a desired fit policy,

and
- B i t m a p p e d Fi ts , which are a particular kind of indexed fits.

The section on sequential fits, below, is particularly im p o r t an t - -m an y basic
policy issues arise there, and the policy discussion is applicable to many different
mechanisms.

47 Other arrangements are possible. For example, the heap could be backed by a (grow-
able) memory-mapped file, or several files mapped to non-contiguous ranges of ad-
dress space.

43

After describing these basic allocators, we will discuss deferred coalescing
techniques applicable to all of them.

3.4 Sequential Fits

Several classic allocator algorithms are based on having a single linear list of all
free blocks of memory. (The list is often doubly-linked and/or circularly-linked.)
Typically, sequential fits algorithms use Knuth 's boundary tag technique, and a
doubly-linked list to make coalescing simple and fast.

In considering sequential fits, it is probably most important to keep strategy
and policy issues in mind. The classic linear-list implementations may not scale
well to large heaps, in terms of time costs; as the number of free blocks grows, the
t ime to search the list may become unacceptable. 4s More efficient and scalable
techniques are available, using totally or partially ordered trees, or segregated
fits (see Section 3.6).49

Best fit. A best fit sequential fits allocator searches the free list to find the
smallest free block large enough to satisfy a request. The basic strategy here is
to minimize the amount of wasted space by ensuring that fragments are as small
as possible. This strategy might backfire in practice, if the fits are too good, but
not perfect-- in that case, most of each block will be used, and the remainder
will be quite small and perhaps unusable. ~~

In the general case, a best fit search is exhaustive, although it may stop
when a perfect fit is found. This exhaustive search means that a sequential
best fit search does not scale well to large heaps with many free blocks. (Better
implementations of the best fit policy therefore generally use indexed fits or
segregated fits mechanisms, described later.)

Best fit generally exhibits quite good memory usage (in studies using both
synthetic and real traces). Various scalable implementations have been built
using balanced binary trees, self-adjusting trees, and segregated fits (discussed
later).

The worst-case performance of best fit is poor, with its memory usage pro-
portional to the product of the amount of allocated data and the ratio between
the largest and smallest object size (i.e., Mn) [GGU72, Rob77]. This appears
not to happen in practice, or at least not commonly.

48 This is not necessarilv true, of course, because the average search time may be much
lower than the worst case. For robustly good performance, however, it appears that
simple linear lists shotfld generally be avoided for large heaps.

49 The confusion of mechanism with strategy and policy has sometimes hampered ex-
perimental evaluations; even after obviously scalable implementations had been dis-
cussed in the literature, later researchers often excluded sequential fit policies from
consideration due to their apparent time costs.

50 This potential accumulation of small fragments (often called "splinters" or "saw-
dust") was noted by Knuth [Knu73], but it seems not to be a serious problem for
best fit, with either real or synthetic worldoads.

44

First fit. First fit simply searches the list from the beginning, and uses the
first free block large enough to satisfy the request. If the block is larger than
necessary, it is split and the remainder is put on the free list.

A problem with sequential first fit is that the larger blocks near the beginning
of the list tend to be split first, and the remaining fragments result in having a
lot of small blocks near the beginning of the list. These "splinters" can increase
search times because many small free blocks accumulate, and the search must
go past them each t ime a larger block is requested. Classic (linear) first fit
therefore may scale poorly to systems in which many objects are allocated and
many different-sized free blocks accumulate.

As with best fit, however, more scalable implementations of first fit are pos-
sible, using more sophisticated data structures. This is somewhat more difficult
for first fit, however, because a first fit search must find the first block that is
also large enough to hold the object being allocated. (These techniques will be
discussed under the heading of Indexed Fits, in Section 3.8.)

This brings up an important policy question: what ordering is used so that
the "first" fit can be found? When a block is freed, at what position is it inserted
into the ordered set of free blocks? The most obvious ordering is probably to
simply push the block onto the front of the free list. Recently-freed blocks would
therefore be "first," and tend to be reused quickly, in LIFO (last-in-first-out)
order. In that case, freeing is very fast but allocation requires a sequentiM search.
Another possibility is to insert blocks in the list in address order, requiring list
searches when blocks are freed, as well as when they are allocated.

An advantage of address-ordered first fit is that the address ordering encodes
the adjacency of free blocks; this information can be used to support fast coa-
lescing. No boundary tags or double linking (backpointers) are necessary. This
can decrease the minimum object size relative to other schemes. 51

In experiments with both real and synthetic traces, it appears tha t address-
ordered first fit may cause significantly less fragmentation than LIFO-ordered
first fit (e.g., [WelT6, WJNB95]); the address-ordered variant is the most studied,
and apparently the most used.

Another Mternative is to simply push freed blocks onto the rearof a (doubly-
linked) list, opposite the end where searches begin. This results in a FIFO
(first-in-first-out) queue-like pat tern of memory use. This variant has not been
considered in most studies, but recent results suggest that it can work quite
wel l - -bet ter than the LIFO ordering, and perhaps as well as address ordering
[WJNB95].

51 Another possible implementation of address-ordered first fit is to use a linked list
of all blocks, allocated or free, and use a size field in the header of each block as a
"relative" pointer (offset) to the beginning of the next block. This avoids the need to
store a separate link field, making the minimum object size quite small. (We've never
seen this technique described, but would be surprised if it hasn't been used before,
perhaps in some of the allocators described in [KV85].) If used straightforwardly,
such a system is likely to scale very poorly, because live blocks must be traversed
during search, but this technique might be useful in combination with some other
indexing structure.

45

A first fit policy may tend over t ime toward behaving rather like best fit,
because blocks near the front of the list are split preferentially, this may result in
a roughly size-sorted list. 52 Whether this happens for real workloads is unknown.

Next fit. A common "optimization" of first fit is to use a roving pointer for allo-
cation [Knu73]. The pointer records the position where the last search was sat-
isfied, and the next search begins from there. Successive searches cycle through
the free list, so that searches do not always begin in the same place and result in
an accumulation of splinters. The usual rationale for this is to decrease average
search times when using a linear list, but this implementation technique has
major effects on the policy (and effective strategy) for memory reuse.

Since the roving pointer cycles through memory regularly, objects from dif-
ferent phases of program execution may become interspersed in memory. This
may affect fragmentat ion if objects from different phases have different expected
lifetimes. (It may also seriously affect locality. The roving pointer itself may have
bad locality characteristics, since it examines each free block before touching the
same block again. Worse, it may affect the locality of the program it allocates
for, by scattering objects used by certain phases and intermingling them with
objects used by other phases.)

In several experiments using both real traces [WJNB95] and synthetic traces
(e.g., [Bay77, Wei76, Pag84, KV85]), next fit has been shown to cause more frag-
mentat ion than best fit or address-ordered first fit, and the LIFO-order variant
may be significantly worse than address order [WJNB95].

As with the other sequential fits algorithms, scalable implementations of next
fit are possible using various kinds of trees rather than linear lists.

3.5 D i s c u s s i o n o f S e q u e n t i a l F i t s a n d G e n e r a l P o l i c y Issues .

The sequential fits algorithms have many possible variations, which raise policy
issues relevant to most other kinds of allocators as well.

List order and policy. The classic first fit or next fit mechanisms may actually
implement very different policies, depending on exactly how the free list is main-
tained. These policy issues are relevant to many other allocation mechanisms as
well, but we will discuss them in the context of sequential fits for concreteness.

LIFO-ordered variants of first fit and next fit push freed blocks onto the
front of the list, where they will be the next considered for reuse. (In the case
of next fit, this immediate reuse only happens if the next allocation request can
be satisfied by that block; otherwise the roving pointer will rove past it.)

If a FIFO-ordered free list is used, freed blocks may tend not to be reused
for a long time. If an address-ordered free list is used, blocks toward one end
of memory will tend to be used preferentially. Seemingly minor changes to a

22 This has also been observed by Ivor Page [Pag82] in randomized simulations, and
similar (but possibly weaker) observations were made by Knuth and Shore and others
in the late 1960's and 1970's. (Section 4.)

46

few of lines of code may change the placement policy dramatically, and in effect
implement a whole new strategy with respect to the regularities of the request
stream.

Address-ordered free lists may have an advantage in tha t they tend to pack
one end of memory with live objects, and gradually move upward through the
address space. In terms of clustering related objects, the effects of this s t rategy
are potentially complex. If adjacent objects tend to die together, large contiguous
areas of memory will come free, and later be carved up for consecutively-allocated
objects. If deaths are scattered, however, scattered holes will be filled with related
objects, perhaps decreasing the chances of contiguous areas coming free at about
the same time. (Locality considerations are similarly complex.)

Even for best fit, the general s trategy does not determine an exact policy.
I f there are mult iple equally-good best fits, how is the tie broken? We do not
know whether this choice actually occurs often in practice. It may be tha t large
blocks tend to come free due to clustered deaths. I f free blocks become scattered,
however, it choosing among them may be part icularly significant.

Splitting. A common variation is to impose a splitting threshold, so tha t blocks
will not be split if they are already small. Blocks generally can ' t be split if
the resulting remainder is smaller than the min imum block size (big enough to
hold the header (and possibly a footer) plus the free list link(s)). In addition,
the allocator m a y choose not to split a block if the remainder is "too small,"
either in absolute terms [Knu73] or relative to the size of the block being split
[WJNB95].

This policy is intended to avoid allocating in the remainder a small object
that may outlive the large object, and prevent the reclamation of a larger free
area. Splitting thresholds do not appear to be helpful in practice, unless (per-
haps) they are very small.

Splitting raises other policy questions; when a block is split, where is the
remainder left in the free list? For address-ordered variants, there is no choice,
but for others, there are several possibil i t ies--leave it at the point in the list
where the split block was found (this seems to be common) , or put it on one
end or the other of the free list, or anywhere in between. 53 And when the block
is split, is the first part used, or the last, or even the middle? 54

Other policies. Sequential fits techniques m a y also be used to intentionally im-
plement unusual policies.

58 Our guess is that putting it at the head of the list would be advantageous, all
other things being equal, to increase the chances that it would be used soon. This
might tend to place related objects next to each other in memory, and decrease
fragmentaton if they die at about the same time. On the other hand, if the remainder
is too small and only reusable for a different size, this might make it likely to be
used for a different purpose, and perhaps it should not be reused soon.

54 Using the last part has the minor speed advantage that the first part can be left
linked where it is in the free list--if that is the desired policy--rather than unlinking
the first part and having to link the remainder back into the list.

47

One policy is worst fit, where the largest free block is always used, in the
hope tha t small f ragments will not accumulate. The idea of worst fit is to avoid
creating small, unusable f ragments by making the remainder as large as possible.
This extreme policy seems to work quite badly (in synthetic trace studies, at
l ea s t) - -p robab ly because of its tendency to ensure that there are no very large
blocks available. The general idea may have some merit , however, as part of a
combinat ion of strategies.

Another policy is so-cMled "optimal fit," where a l imited search of the list is
usually used to "sample" the list, and a further search finds a fit tha t is as good
or bet ter [Cam71]. 5~

Another policy is "half fit" [FP74], where the allocator preferentially splits
blocks twice the requested size, in hopes tha t the remainder will come in handy
if a similar request occurs soon.

Scalability. As mentioned before, use of a sequentially-searched list poses poten-
tially serious scalability p rob lems- -as heaps become large, the search times can
in the worst case be proport ional to the size of the heap. The use of balanced
binary trees, self-adjusting ("splay") trees, 56 or partially ordered trees can re-
duce the worst-case performance so that it is logarithmic in the number of free
blocks, rather than linear. 57

Scalability is also sensitive to the degree of fragmentat ion. If there are many
small fragments, the free list will be long and may take much longer to search.

Plausible pathologies. It may be worth noting that LIFO-ordered variants of first
fit and next fit can suffer from severe fragmentatioll in the face of certain simple
and plausible pat terns of allocation and deallocation. The simplest of these is
when a p rogram repeatedly does the following:

1. allocates a (short-lived) large object,
2. allocates a long-lived small object,, and
3. allocates another short-lived large object of the same size as the freed large

object.

In this case, each t ime a large block is freed, a small block is soon taken
out of it to satisfy the request for the small object. When the next large object
is allocated, the block used for the previously-deallocated large object is now

s5 This is not really optimal in any useful sense, of course. See also Page's critique in
[Pag82] (Section 4.1).

56 Splay trees are particularly interesting for this application, since they have an adap-
tive characteristic that may adjust well to the patterns in allocator requests, as well
as having amortized complexity within a constant factor of optimal [ST85].

5~ We suspect that earlier researchers often simply didn't worry about this because
memory sizes were quite small (and block sizes were often rather large). Since ttfis
point was not generally made explicit, however, the obvious applicability of scalable
data structures was simply left out of most discussions, and the confusion between
policy and mechanism became entrenched.

48

too small to hold it, and more memory must be requested from the operating
system. The small objects therefore end up effectively wasting the space for large
objects, and fragmentat ion is proportional to the ratio of their sizes. This may
not be a common occurrence, but it has been observed to happen in practice
more than once, with severe consequences. 5s

A more subtle possible problem with next fit is that clustered deallocations
of different-sized objects may result in a free list that has runs of similar-sized
blocks, i.e., batches of large blocks interspersed with batches of small blocks.
The occasional allocation of a large object may often force the free pointer past
many small blocks, so that subsequent allocations are more likely to carve small
blocks out of large blocks. (This is a generalization of the simple kind of looping
behavior that has been shown to be a problem for some programs.)

We do not yet know whether this particular kind of repetitive behavior ac-
counts for much of the fragmentation seen for next fit in several experiments.

Treatment of the end block. As mentioned before, the t reatment of the last block
in the heap- -a t the point where more memory is obtained from the operating
system, or from a preallocated pool - -can be quite important . This block is usu-
ally rather large, and a mistake in managing it can be expensive. Since such
blocks are allocated whenever heap memory grows, consistent mistakes could
be disastrous [KV85]--all of the memory obtained by the allocator could get
"messed up" soon after it comes under the Mlocator's control.

There is a philosophical question of whether the end block is "recently freed"
or not. On the one hand, the block just became available, so perhaps it should be
put on whichever end of the free list freed blocks are put on. On the other hand,
it 's not being freed--in a sense, the end block has been there all along, ignored
until needed. Perhaps it should go on the opposite end of the list because it 's
conceptually the oldest block-- the very large block that contains all as-yet-un-
used memory.

Such philosophical fine points aside, there is the practical question of how to
treat a virgin block of significant size, to minimize fragmentation. (This block is
sometimes called "wilderness" [Ste83] to signify that it is as yet unspoiled.)

Consider what happens if a first fit or next fit policy is being used. In that
case, the allocator will most likely carve many small objects out of it immediately,
greatly increasing the chances of being unable to recover the contiguous free
memory of the block. On the other hand, putt ing it on the opposite end of the
list will tend to leave it unused for at least a while, perhaps until it gets used
for a larger block or blocks. An alternative strategy is to keep the wilderness
block out of the main ordering da ta structure entirely, and only carve blocks
out of it when no other space can be found. (This "wilderness" block can also
be extended to include more memory by expanding the heap segment, so that

ss One example is in an early version of the large object manager for the Lucid Common
Lisp system (Jon L. White, personal communication, 1991); another is mentioned in
[KV85] (Section 4.1).

49

the entire area above the h igh-water mark is viewed as a single huge block. 59)
Korn and Vo call this a "wilderness preservat ion heuristic," and report tha t it is
helpful for some al locators [KV85] (No quant i ta t ive results are given, however.)

For policies like best fit and address-ordered first fit, it seems na tura l to
s imply pu t the end block in the indexing s t ructure like any other block. If the
end block is viewed as par t of the (very large) block of as-yet-unused memory ,
this means t h a t a best fit or address-ordered first fit policy will a lways use any
other available m e m o r y before carving into the wilderness. If it is not viewed
this way, the end block will usual ly be a little less than a page (or whatever
uni t is used to ob ta in m e m o r y f rom the opera t ing system); typically, it will not
be used to satisfy small requests unless there are no other similarly-large blocks
available.

We therefore s u s p e c t - - b u t do not k n o w - - t h a t it does not ma t t e r m u c h
whether the block is viewed as the beginning of a huge block, or as a modera te -
sized block in its own right, as long as the al locator tends to use smaller or
lower-addressed blocks in preference to larger or higher-addressed blocks. 6~

Summary of policy issues. While best fit and address-ordered first fit seem to
work well, it is not clear tha t other policies can ' t do quite as well; F IFO-orde red
first fit m a y be abou t as good, however.

The sensi t ivi ty of such results to slight differences in details suggests tha t we
do not have a good model of p rog ra m behavior and al locator p e r f o r m a n c e - - a t
this point , it is quite unclear which seemingly small details will have significant
policy consequences.

Few exper iments have been performed with novel policies and real p rog ram
behavior ; research has largely focused on the obvious variat ions of a lgor i thms
tha t da te f rom the early 1960's or before. 61

59 In many simple UNIX and roughly UNIX-like systems, the allocator should be de-
signed so that other routines can request pages from the operating system by extend-
ing the (single) "data segment" of the address space. In that case, the allocator must
be designed to work with a potentially non-contiguous set of pages, because there
may be intervening pages that belong to different routines. (For example, our Texas
persistent store allows the data segment to contain interleaved pages belonging to a
persistent heap and a transient heap [SKW92].)

Despite this possible interleaving of pages used by different modules, extending
the heap will typically just extend the "wilderness block," because it's more likely
that successive extensions of the data segment are due to requests by the allocator,
than that memory requests from different sources are interleaved.

60 It is interesting to note, however, that the direction of the address ordering matters
for first fit, if the end block is viewed as the beginning of a very large block of
all unused memory. If reverse-address-order is used, it becomes pathological. It will
simply march through all of "available" memory--i.e., all memory obtainable from
the operating system--without reusing any memory. Tiffs suggests to us that address-
ordered first fit (using the usual preference order) is somehow more "right" than its
opposite, at least in a context where the size of memory can be increased.

sl Exceptions include Fenton and Payne's "half fit" policy (Section 4.1), and Beck's

50

Speculation on strategy issues. We have observed that best fit and address-
ordered first fit perform quite similarly for both real and synthetic traces.

Page [Pag82] has also observed tha t (for random traces using uniform distrib-
utions), the short- term placement choices made by best fit and address-ordered
first fit are usually identical. Tha t is, if one of these policies is used up to a
certain point in a trace, switching to the other for the next allocation request
will not change the placement decision made for that request.

We speculate that this reflects a fundamenta l similarity between best fit and
address-ordered first fit, in terms of how they exploit regularities in the request
stream. These allocators seem to perform wel l - -and very similarly--for both real
and randomized workloads. In some sense, perhaps, each is an approximat ion of
the other.

But a more impor tan t question is this: what is the successful strategy that
both of these policies implement?

One possibility is something we might call the "open space preservation"
heuristic, i.e., try not to cut into relatively large unspoiled areas. 62 A t some level,
of course, this is obv ious - - i t ' s the same general idea that was behind best fit in
the first place, over three decades ago.

As we mentioned earlier, however, there are at least two ideas behind best
fit, at least in our view:

- Minimize the remainder~i .e . , if a block must be split, split the block tha t
will leave the smallest remainder. If the remainder goes unused, the smaller
it is, the better.

- Don't break up large free areas unnnecessarilg--preferentially split areas that
are already small, and hence less likely to be flexibly usable in the future.

In some cases, the first principle m a y be more impor tan t , while the second
m a y be more impor tan t in other cases. Minimizing the remainder may have a
tendency to result in small blocks that are unlikely to be used soon; the resul tmay
be similar to having a splitting threshold, and to respect the second principle. 63

These are very different strategies, at least on the surface. I t ' s possible tha t
these strategies can be combined in different ways - - and perhaps they are com-
bined in different ways by best fit and address-ordered first fit.

Shore [Sho75] designed and implemented a hybrid best fit/first fit policy tha t
outperformed either plain first fit or plain best fit for his randomized workloads.
(Discussed in Section 4.1.) The strategic implications of this hybrid policy have

"age match" policy (Section 4.1). Barrett and Zorn's "lifetime prediction" allocator
(Section 4.2) is the only recent work we know of (for conventional allocators) that
adopts a novel and explicit strategy to exploit interesting regularities in real request
streams.

82 Korn and Vo's "wilderness preservation heuristic" can be seen as a special case or
variant of the "open space preservation heuristic."

63 This could explain why explicit splitting thresholds don't seem to be very helpful--
policies like best fit may already implement a similar strategy indirectly, and adding
an explicit splitting threshold may be overkill.

51

not been explored, and it is unclear whether they apply to real workloads. Shore's
results should be interpreted with considerable caution, because real workloads
exhibit regularities (e.g., plateaus and ramps) that seem likely to interact with
these strategies in subtle ways. 64

Address-ordered first fit seems likely to have other strategic implications as
well. The use of address ordering seems likely to result in clustering of related
da ta under some circumstances, increasing the chances that contiguous areas
will come free, if the related objects die together. However, in cases where free
blocks are small, of varied sizes, and widely scattered, first fit may tend to
decluster related objects, as will best fit. Amending these policies may allow
bet ter clustering, which could be impor tant for long-run fragmentation.

It should now be quite unclear why best fit and address-ordered first fit work
well in practice, and whether they work for the same reasons under randomized
workloads as for real workloads.

For randomized workloads, which cause more scattered random deaths, there
may be very few placement choices, and little contiguous free memory. In that
case, the strategy of minimizing the remainder may be crucial. For real work-
loads, however, large contiguous areas may come free at the ends of phases, and
tend to be carved up into small blocks by later phases as live data accumulate.
This may often result in contiguous allocation of successively-allocated blocks,
which will again create large free blocks when they die together at the end of
the later phase. In that case, the effects of small "errors" due to unusually long-
lived objects may be important; they may lead to cumulative fragmentation for
long-running programs, or fragmentation may stabilize after a while. We simply
don ' t know.

There are many possible subtle interactions and strategic implications, all of
which are quite poorly understood for these seemingly simple and very popular
policies.

3.6 S e g r e g a t e d F r e e Lis t s

One of the simplest allocators uses an array of free lists, where each list holds
free blocks of a particular size [Com64]. When a block of memory is freed, it is
simply pushed onto the free list for that size. When a request is serviced, the
free list for the appropriate size is used to satisfy the request. There are several
impor tan t variations on this segregated free lists scheme.

It is impor tan t to note tha t blocks in such schemes are logically segregated
in terms of indexing, but usually not physically segregated in terms of storage.
Many segregated free list allocators support general splitting and coalescing,
and therefore must allow mixing of blocks of different sizes in the same area of
memory.

64 For example, address-ordered first fit has a tendency to pack one end of memory
with live data, and leave larger holes toward the other end. This seems particularly
relevant to programs that allocate large and very long-lived data structures near the
beginning of execution.

52

One common variation is to use size classes to lump similar sizes together
for indexing purposes, and use free blocks of a given size to satisfy a request for
that size, or for any size that is slightly smaller (but still larger than any smaller
size class). A common size-class scheme is to use size classes that are a power of
two apart (e.g., 4 words, 8 words, 16 words...) and round the requested size up
to the nearest size class, but closer size class spacings have also been used.

Simple segregated storage. In this variant , no splitting of free blocks is done to
satisfy requests for smaller sizes. When a request for a given size is serviced, and
the free list for the appropriate size class is empty, more storage is requested from
the underlying operating system (e.g., using UNIX s b r k () to extend the heap
segment); typically one or two virtual memory pages are requested at a time, and
split into same-sized blocks which are then strung together and put on the free
list. We call this simple segregated storage because the result is tha t pages (or
some other relatively large unit) contain blocks of only one size class. (This differs
from the tradit ional terminology in an impor tant way. "Segregated storage" is
commonly used to refer both to this kind of scheme and what we call segregated
fits [PSC71]. We believe this terminology has caused considerable confusion,
and will generally avoid it; we will refer to the larger class as "segregated free
list" schemes, or use the more specific terms "simple segregated storage" and
"segregated fits." 65 66)

An advantage of this simple scheme is that no headers are required on allo-
cated objects; the size information can be recorded for a page of objects, rather
than for each object individually. This may be impor tant if the average object
size is very smMl. Recent studies indicate that in modern programs, the aver-
age object size is often quite small by earlier standards (e.g., around 10 words
[WJNB95]), and that header and footer overheads alone can increase memory
usage by ten percent or twenty percent [ZG92, WJNB95]. This is comparable to
the "real" fragmentat ion for good allocators [WJNB95].

Simple segregated storage is quite fast in the usual case, especially when
objects of a given size are repeatedly freed and reMlocated over short periods
of time. The freed blocks simply wait until the next allocation of the same size,
and can be reallocated without splitting. Allocation and freeing are both fast
constant-t ime operations.

The disadvantage of this scheme is that it is subject to potentially severe
external f ragmenta t ion- -no a t tempt is made to split or coalesce blocks to satisfy
requests for other sizes. The worst case is a program that allocates many objects
of one size class and frees them, then does the same for many other size classes.
In that case, separate storage is required for the maximum volume of objects of
all sizes, because none of memory allocated to one size block can be reused for
the another.

ss Simple segregated storage is sometimes incorrectly called a buddy system; we do not
use that terminology because simple segregated storage does not use a buddy rule
for coalescing--no coalescing is done at all.

66 Standish [StaS0] refers to simple segregated storage as "partitioned storage."

53

There is some tradeoff between expected internal f ragmentat ion and external
f ragmentat ion; if the spacing between size classes is large, more different sizes
will fall into each size class, allowing space for some sizes to be reused for others.
(In practice, very coarse size classes generally lose more memory to internal
f ragmenta t ion than they save in external fragmentat ion.) In the worst case,
m e m o r y usage is proport ional to the product of the m a x i m u m amount of live
da ta (plus worst-case internal f ragmentat ion due to the rounding up of sizes)
and the number of size classes.

A crude but possibly effective form of coalescing for simple segregated storage
(used by Mike Haertel in a fast allocator [GZH93, Vo95], and in several garbage
collectors [Wil95]) is to main ta in a count of live objects for each page, and notice
when a page is entirely empty. If a page is empty, it can be made available for
allocating objects in a different size class, preserving the invariant that all objects
in a page are of a single size class. 67

Segregated fits. This variant uses an array of free lists, with each array holding
free blocks within a size class. When servicing a request for a part icular size,
the free list for the corresponding size class is searched for a block at least large
enough to hold it. The search is typically a sequential fits search, and many
significant variations are possible (see below). Typical ly first fit or next fit is used.
I t is often pointed out tha t the use of multiple free lists makes the implementat ion
faster than searching a single fl'ee list. Wha t is often not appreciated is that this
also affects the placement in a very impor tan t w a y - - t h e use of segregated lists
excludes blocks of very different sizes, meaning good fits are usually found---the
policy therefore embodies a good fit or even best fit strategy, despite the fact tha t
i t 's often described as a variat ion on first fit.

I f there is not a free block in the appropriate free list, segregated fits algo-
r i thms t ry to find a larger block and split it to satisfy the request. This usually
proceeds by looking in the list for the next larger size class; if it is empty, the
lists for larger and larger sizes are searched until a fit is found. If this search fails,
more m e m o r y is obtained from the operating system to satisfy the request. For
most systems using size classes, this is a logari thmic-t ime search in the worst
case. (For example for powers-of-two size classes, the total number of lists is
equM to the logar i thm of the m a x i m u m block size. For a somewhat more refined
series, it is still generally logarithmic, but with a larger constant factor.)

In te rms of policy, this search order means that smaller blocks are used in
preference to larger ones, as with best fit. In some cases, however, the details of
the size class system and the searching of size-class lists m a y cause deviations
f rom the best fit policy.

67 This invariant can be useful in some kinds of systems, especially systems that provide
persistence [SKW92] and/or garbage collection for languages such as C or C + +
[BW88, WDH89, WJ93], where pointers may point into the interior parts of objects,
and it is important to be able to find the object headers quickly. In garbage-collected
systems, it is common to segregated objects by type, or by implementation-level
characteristics, to facilitate optimizations of type checking and/or garbage collection
[Yua90, De192, DEB94].

54

Note that in a segregated fits scheme, coalescing m a y increase search times.
When blocks of a given size are freed, they may be coalesced and put on different
free lists (for the resulting larger sizes); when the program requests more objects
of tha t size, it may have to find the larger block and split it, ra ther than still
having the same small blocks on the appropriate free list. (Deferred coalescing
can reduce the extent of this problem, and the use of multiple free lists makes
segregated fits a particularly natural context for deferred coalescing.)

Segregated fits schemes fall into three general categories:

1. Exact Lists. In exact lists systems, where there is (conceptually) a separate
free list for each possible block size [Com64]. This can result in a very large
number of free lists, but the "array" of free lists can be represented sparsely.
Standish and T adm an ' s "Fast Fits" scheme 6s uses an array of free lists for
small size classes, plus a binary tree of free lists for larger sizes (but only the
ones that actually occur) [StaB0, Tad78]. ~9

2. Strict Size Classes with Rounding. When sizes are grouped into size classes
(e.g., powers of two), one approach is to mainta in an invariant tha t all blocks
on a size list are exactly of the same size. This can be done by rounding up
requested sizes to one of the sizes in the size class series, at some cost in
internal f ragmentat ion. In this case, it is also necessary to ensure that the
size class series is carefully designed so that split blocks always result in a
size tha t is also in the series; otherwise blocks will result tha t a ren ' t the right
size for any free list. (This issue will be discussed in more detail when we
come to buddy systems.)

3. Size Classes with Range Lists. The most common way of dealing with the
ranges of sizes that fall into size classes is to allow the lists to contain blocks
of slightly different sizes, and search the size lists sequentially, using the
classic best fit, first fit, or next fit technique [PSC71]. (The choice affects
the policy implemented, of course, though probably much less than in the
case of a single free list.) This could introduce a linear component to search
times, though this does not seem likely to be a common problem in practice,
at least if size classes are closely spaced. 7~ 71 If it is, then exact list schemes
are preferable.

6s Not to be confused with Stephenson's better-known indexed fits scheme of the same
name.

6~ As with most tree-based allocators, the nodes of the tree are embedded in the blocks
themselves. The tree is only used for larger sizes, and the large blocks are big enough
to hold left and right child pointers, as well as a doubly linked list pointers. One block
of each large size is part of the tree, and it acts as the head of the doubly-linked list
of same-sized blocks.

7o Lea's allocator uses very closely spaced size classes, dividing powers of two linearly
into four uniform ranges.

71 Typical size distributions appear to be both spiky and heavily skewed, so it seems
hkely that for small size ranges, only zero or one actual sizes (or popular sizes) will
fall into a given range. In that case, a segregated fits scheme may approximate a best
fit scheme very closely.

55

An efficient segregated fits scheme with general coalescing (using boundary
tags) was described and shown to perform well in 1971 [PSC71], but it did not
become well-known; Standish and Tadman's apparently better scheme was pub-
lished (but only in a textbook) in 1980, and similarly did not become particularly
well known, even to the present. Our impression is that these techniques have
received too little attention, while considerably more attention has been given to
techniques that are inferior in terms of scalability (sequential fits) or generality
(buddy systems).

Apparently, too few researchers realized the full significance of Knuth 's in-
vention of boundary tags for a wide variety of allocation schemes--boundary
tags can support fast and general splitting and coalescing, independently of the
basic indexing scheme used by the allocator. This frees the designer to use more
sophisticated higher-level mechanisms and policies to implement almost any de-
sired strategy. (It seems likely that the original version of boundary tags was
initially viewed as too costly in space, in a time when memory was a very scarce
resource, and the footer optimization [StaB0] simply never became well-known.)

3.7 B u d d y S y s t e m s

Buddy systems [Kno65, PN77] are a variant of segregated lists that supports
a limited but efficient kind of splitting and coalescing. In the simple buddy
schemes, the entire heap area is conceptually split into two large areas, and
those areas are further split into two smaller areas, and so on. This hierarchical
division of memory is used to constrain where objects are allocated, what their
allowable sizes are, and how they may be coalesced into larger free areas. For each
allowable size, a separate free list is maintained, in an array of fi'ee lists. Buddy
systems are therefore actually a special case of segregated fits, using size classes
with rounding, and a peculiar limited technique for splitting and coalescing.

Buddy systems therefore implement an approximation of a best fit policy, but
with potentially serious variations due to peculiarities in splitting and coalescing.

(In practical terms, buddy systems appear to be distinctly inferior to more
general schemes supporting arbitrary coalescing; without heroic efforts at opti-
mization and/or hybridization, their cost in internal fi'agmentation alone seems
to be higher than the total fragmentation costs of better schemes.)

A free block may only be merged with its buddy, which is its unique neighbor
at the same level in the binary hierarchical division. The resulting free block is
therefore always one of the free areas at the next higher level in the memory-
division hierarchy--at any level, the first block may only be merged with the
following block, which follows it in memory; conversely, the second block may
only be merged with the first, which precedes it in memory. This constraint on
coalescing ensures that the resulting merged free area will always be aligned on
one of the boundaries of the hierarchical splitting.

(This is perhaps best understood by example; the reader may wish to skip
ahead to the description of binary buddies, which are the simplest kind of buddy
systems.)

56

The purpose of the buddy allocation constraint is to ensure that when a
block is freed, its (unique) buddy can always be found by a simple address
computation, and its buddy will always be either a whole, entirely free block,
or an unavailable block. An unavailable block may be entirely allocated, or may
have been split and have some of its sub-parts allocated but not others. Either
way, the address computat ion will always be able to locate the beginning of the
buddy- - i t will never find the middle of an allocated object. The buddy will be
either a whole (allocated or free) block of a determinate size, or the beginning
of a block of that size that has been split in a determinate way. If (and only
if) it turns out to be the header of a free block, and the block is the whole
buddy, the buddies can be merged. If the buddy is entirely or part ly allocated,
the buddies cannot be merged--even if there is an adjacent free area within the
(split) buddy.

Buddy coalescing is relatively fast, but perhaps the biggest advantage in
some contexts is tha t it requires little space overhead per objec t - -only one bit
is required per buddy, to indicate whether the buddy is a contiguous free area.
This can be implemented with a single-bit header per object or free block. Un-
fortunately, for this to work, the size of the block being freed must be known--the
buddy mechanism itself does not record the sizes of the blocks. This is workable
in some statically-typed languages, where object sizes are known statically and
the compiler can supply the size argument to the freeing routine. In most current
languages and implementations, however, this is not the case, due to the pres-
ence of variable-sized objects and/or because of the way libraries are typically
linked. Even in some languages where the sizes of objects are known, the "single"
bit ends up up costing an entire word per object, because a single bit cannot
be "stolen" from the space for an allocated object--objects must be aligned on
word boundaries for architectural reasons, and there is no provision for stealing
a bit from the space allocated to an object. 7= Stealing a bit from each object
can be avoided, however, by keeping the bits in a separate table "off to the side"
[IGKT1], but this is fairly awkward, and such a bit table could probably be put
to better use with an entirely different basic allocation mechanism.

In practical terms, therefore, buddy systems usually require a header word
per object, to record the type and/or size. Other, less restrictive schemes can
get by with a word per object as well. Since buddy systems also incur internal
fragmentation, this apparently makes buddy systems unat tract ive relative to
more general coalescing schemes such as segregated fits. 7a

In experiments using both real and synthetic traces, buddy systems generally
exhibit significantly more fragmentat ion than segregated fits and indexed fits

72 In some implementations of some languages, this is less of a problem, because all
objects have headers that encode type information, and one bit can be reserved for
use by the allocator and ignored by the language implementation. This complicates
the language implementation, but may be worthwhile if a buddy system is used.

7a Of course, buddy systems could become more attractive if it were to turn out that
the buddy policyhas significant beneficial interactions with actual program behavior,
and unexpectedly reduced external fragmentation or increased locality. At present,
this does not appear to be the case.

57

schemes using boundary tags to support general coalescing. (Most of these results
come from synthetic trace studies, however; it appears that only two buddy
systems have ever been studied using real traces [WJNB95].)

Several significant variations on buddy systems have been devised:

Binary buddies. Binary buddies are the simplest and best-known kind of buddy
system [Kno65]. In this scheme, all buddy sizes are a power of two, and each size
is divided into two equal parts. This makes address computations simple, because
all buddies are aligned on a power-of-two boundary offset from the beginning of
the heap area, and each bit in the offset of a block represents one level in the
buddy system's hierarchical splitting of memory - - i f the bit is 0, it is the first of
a pair of buddies, and if the bit is 1, it is the second. These operations can be
implemented efficiently with bitwise logical operations.

On the other hand, systems based on closer size class spacings may be simi-
larly efficient if lookup tables are used to perform size class mappings quickly.

A major problem with binary buddies is that internal fragmentation is usually
relatively h igh- - the expected case is (very roughly) about 28% [Knu73, PN77],74
because any object size must be rounded up to the nearest power of two (minus
a word for the header, if the size field is stored).

Fibonacci buddies. This variant of the buddy scheme uses a more closely-spaced
set of size classes, based on a Fibonacci series, to reduce internal fragmentation
[Hir73]. Since each number in the Fibonacci series is the sum of the two previous
numbers, a block can always be split (unevenly) to yield two blocks whose sizes
are also in the series. This limits the number of free lists required.

A further refinement, called generalized Fibonacci buddies [Hir73, Bur76,
PN77] uses a Fibonacci-like number series that starts with a larger number
and generates a somewhat more closely-spaced set of sizes.

A possible disadvantage of Fibonacci buddies is that when a block is split to
satisfy a request for a particular size, the remaining block is of a different size,
which is less likely to be useful if the program allocates many objects of the same
size [Wis78].

Weighted buddies. Weighted buddy systems [SP74] use a different kind of size
class series than either binary or Fibonacci buddy systems. Some size classes can
be split only one way, while other size classes can be split in two ways. The size
classes include the powers of two, but in between each pair of successive sizes,
there is also a size that is three times a power of two. The series is thus 2, 3, 4,
6, 8, 12... (words). (Often, the series actually starts at 4 words.)

Sizes that are powers of two may only be split evenly in two, as in the binary
buddy system. This always yields another size in the series, namely the next
lower power of two.

Sizes that are three times a power of two can be split in two ways. They may
be split evenly in two, yielding a size that is another three-times-a-power-of-two

74 This figure varies somewhat depending on the expected range and skew of the size
distribution [PN77].

58

size. (E.g., a six may be split into two threes.) They may also be split unevenly
into two sizes tha t are one third and two thirds of the original size; these sizes
are always a power of two. (E.g., six may be split into two and four.).

Double buddies. Double buddy systems [Wis78, PH86, WJNB95] use a different
technique to allow a closer spacing of size classes. They use two different binary
buddy systems, with staggered sizes. For example, one buddy system may use
powers-of-two sizes (2, 4, 8, 16...) while another uses a powers-of-two spacing
starting at a different size, such as 3. (The resulting sizes are 3, 6, 12, 24 ...).
This is the same set of sizes used in weighted buddies, but the splitting rule is
quite different. Blocks may only be split in half, as in the binary buddy system,
so the resulting blocks are always in the same binary buddy series.

Request sizes are rounded up to the nearest size class in either series. This
reduces the internal fragmentation by about half, but means that space used for
blocks in one size series can only coalesced or split into sizes in that series. Tha t
is, splitting a size whose place in the combined series is odd always produces
another size whose place is odd; likewise, splitting an even-numbered size always
produces an even-numbered size. (E.g., a block of size 16 can be split into 8's
and 4's, and a block of size 24 can be split into 12's and 6's, but not 8's or 4's.)

This may cause external fragmentation if blocks in one size series are freed,
and blocks in the other are requested. As an optimization, free areas of a rela-
tively large size (e.g., a whole free page) may be made available to the other size
series and split according to that size series' rules. (This complicates the treat-
ment of large objects, which could be treated entirely differently, or by another
buddy system for large units of free storage such as pages.)

Naturally, more than two buddy systems could be combined, to decrease
internal fragmentation at a possible cost in external fragmentat ion due to limi-
tations on sharing free memory between the different buddy systems.

As with simple segregated storage, it is possible to keep per-page counts of live
objects, and notice when an entire page is empty. Empty pages can be transferred
from one buddy series to another. To our knowledge, such an optimization has
never been implemented for a double buddy scheme.

Buddy systems can easily be enhanced with deferred coalescing techniques,
as in "recombination delaying" buddy systems [Kau84]. Another optimization
is to tailor a buddy system's size class series to a particular program, picking a
series that produces little internal fragmentation for the object sizes the program
uses heavily.

3.8 I n d e x e d F i t s

As we saw in Section 3.4 simple linear list mechanisms can be used to implement
a wide variety of policies, with general coalescing.

An alternative is to use a more sophisticated indexing data structure, which
indexes blocks by exactly the characteristics of interest to the desired policy,
and supports efficient searching according to those characteristics. We call this

59

kind of mechanism indexed fits. (This is really an unsatisfying catch-all category,
showing the limitations of a mechanism-based taxonomy.)

The simplest example of an indexed fit scheme was mentioned earlier, in the
discussion of sequential fits: a best fit policy implemented using a balanced or
self-adjusting binary tree ordered by block size. (Best fit policies may be easier
to implement scalably than address-ordered first fit policies.)

Another example was mentioned in the section on segregated free lists (3.6);
Standish and Tadman 's exact lists scheme is the limiting case of a segregated fits
scheme, where the indexing is precise enough that no linear searching is needed
to find a fit. On the other hand, it is also a straighforward two-step optimization
of the simple balanced-tree best fit. (The first optimization is to keep a tree with
only one node per size that occurs, and hang the extra blocks of the same sizes
off of those nodes in linear lists. The second optimization is to keep the most
common size values in an array rather than the tree itself.) Our mechanism-
based taxonomy is clearly showing it seams here, because the use of hybrid data
structures blurs the distinctions between the basic classes of allocators.

The best-known example of an indexed fits scheme is probably Stephenson's
"Fast Fits" allocator [Ste83], which uses a Cartesian tree sorted on both size
and address. A Cartesian tree [VuiS0] encodes two-dimensionM information in a
binary tree, using two constraints on the tree shape. It is effectively sorted on a
primary key and a secondary key. The tree is a normal totally-ordered tree with
respect to the pr imary key. With respect to the secondary key, it is a "heap" data
structure, i.e., a partiMly ordered tree whose nodes each have a value greater
than their descendants. This dual constraint limits the ability to rebalance the
tree, because the shape of the tree is highly constrained by the dual indexing
keys.

In Stephenson's system, this indexing data structure is embedded in the free
blocks of memory themselves, i.e., the blocks become the tree nodes in much the
same way that free blocks become list nodes in a sequential fits fits scheme. Tile
addresses of blocks are used as the primary key, and the sizes of blocks are used
as the secondary key.

Stephenson uses this structure to implement either an address-ordered first
fit policy (called "leftmost fit") or a "better fit" policy, which is intended to
approximate best fit. (It is unclear how good an approximation this is.)

As with address-ordered linear lists, the address ordering of free blocks is
encoded directly in the tree structure, and the indexing structure can be used to
find adjacent free areas for coalescing, with no additional overhead for boundary
tags. In most situations, however, a size field is still required, so that blocks
being freed can be inserted into the tree in the appropriate place.

While Cartesian trees give logarithmic expected search times for random
inputs, they may become unbalanced in the face of patterned inputs, and in the
worst case provide only linear time searches. 75

7~ Data from [Zor93] suggest that actual performance is reasonable for real data, being
among the faster algorithms used in that study, and having good memory usage. On
the other hand, data from a different experiment [GZ93] show it being considerably

60

D i s c u s s i o n o f i n d e x e d fi ts . In terms of implementat ion, it appears tha t size-
based policies m a y be easier to implement efficiently than address-based policies;
a tree that total ly orders all actual block sizes will typically be fairly small, and
quick to search. I f a FIFO- or LIFO- ordering of same-sized blocks implements
an acceptable policy, then a linear list can be used and no searching among
same-sized blocks is required. 76 Size-based policies also easier to opt imize the
common case, namely small sizes.

A tree tha t total ly orders all block addresses m a y be very much larger, and
searches will take more time. On the other hand, adapt ive structures (e.g., splay
trees) may make these searches fast in the common case, though this depends on
subtleties of the request s t ream and the policy tha t are not currently understood.

Deferred coalescing may be able to reduce tree searches to the point where
the differences in speed are not critical, making the f ragmentat ion implications
of the policy more impor tan t than minor differences in speed.

Totally ordered trees m a y not be necessary to implement the best policy,
whatever that should turn out to be. Part ial orders may work just as well, and
lend themselves to very efficient and scalable implementat ions. At this point, the
main problem does not seem to be t ime costs, but understanding what policy
will yield the least f ragmentat ion and the best locality.

Many other indexed fits policies and mechanisms are possible, using a variety
of da ta structures to accelerate searches. One of these is a set of free lists seg-
regated by size, as discussed earlier, and another is a simple b i tmap, discussed
next.

3.9 B i t m a p p e d F i t s

A particularly interesting form of indexed fits is bitmapped fits, where a bitmap
is used to record which par ts of the heap area are in use, and which parts are
not. A b i tmap is a simple vector of one-bit flags, with one bit corresponding to
each word of the heap area. (We assume here tha t heap memory is allocated
in word-Migned units that are multiples of one word. In some systems, double-
word al ignment is required for architecturM reasons. In tha t case, the b i tmap
will include one bit for each double-word al ignment boundary.)

To our knowledge, b i tmapped allocation has never been used in a conven-
tional allocator, but it is quite conamon in other contexts, part icularly mark-
sweep garbage collectors (notably the conservative collectors of Boehm, et al.
f rom Xerox PAI~C [BW88, BDS91, DWH+90] 77) and file sys tems ' disk block

slower than a set of allocators designed primarily for speed. Very recent data [Vo95]
show it being somewhat slower than some other algorithms with similar memory
usage, on average.

76 If an algorithm relies on an awkward secondary key, e.g., best fit with address-ordered
tie breaking, then it may not make much difference what the ordering function is--
one total ordering of blocks is likely to cost about as much as another.

77 Actually, these systems use bitmaps ~o detect contiguous areas of free memory, but
then accumulate free lists of the detected free blocks. The advantage of this is that
a single scan through a region of the bitmap can find blocks of all sizes, and make
them available for fast allocation by putting them on free lists for those sizes.

61

managers. We suspect that the main reason it has not been used for conven-
tional memory allocation is that it is perceived as too slow.

We believe that b i tmap operations can be made fast enough to use in allo-
cators by the use of clever implementation techniques. For example, a b i tmap
can be quickly scanned a byte at a time using a 256-way lookup table to detect
whether there are any runs of a desired length. 7s

If object sizes are small, bi tmapped allocation may have a space advantage
over systems that use whole-word headers. A bit per word of heap memory only
incurs a 3% overhead, while for object sizes averaging 10 words, a header incurs
a 10% overhead. In the most obvious scheme, two bitmaps are required (one to
encode the boundaries of blocks, and another to encode whether blocks are in
use), but we believe there are ways around that. 79

Bitmapped allocators have two other advantages compared to conventional
schemes. One is that they support searching the free memory indexed by address
order, or localized searching, where the search may begin at a carefully-chosen
address. (Address-ordered searches may result in less fl 'agmentation than similar
policies using some other orderings.) Another advantage is that bitmaps are "off
to the side," i.e., not interleaved with the normal data storage area. This may be
exploitable to improve the locality of searching itself, as opposed to traversing
lists or trees embedded in the storage blocks themselves. (It may also reduce
checkpointing costs in systems that checkpoint heap memory, by improving the
locality of writes; freeing an object does not modify heap memory, only the
bitmap.) Bi tmapped techniques therefore deserve further consideration.

It may appear that bi tmapped allocators are slow, because search times are
linear, and to a first approximation this may be true. But notice that if a good
heuristic is available to decide which area of the bi tmap to search, searching is
linear in the size of the area searched, rather than the number of fl'ee blocks. The
cost of bi tmapped allocation may then be proportional to the rate of allocation,
rather than the number of free blocks, and may scale better than other indexing
schemes. If the associated constants are low enough, bi tmapped allocation may
do quite well. It may also be valuable in conjunction with other indexing schemes.

78 This can be enhanced in several ways. One enhancement allows the fast detection of
longer runs that cross 8-bit boundaries by using a different lookup tables to compute
the number of leading and trailing zeroes, so that a count can be maintained of the
number of zeroes seen so far. Another is to use redundant encoding of the size by
having headers in large objects, obviating long scans when determining the size of a
block being freed.

79 It is increasingly common for allocators to ensure double-word alignment (even on
32-bit machines), padding requests as necessary, for architectural reasons. In that
case, half as many bits are needed. There may also be clever encodings that can
make some of the bits in a bitmap do double duty, especially if the minimum object
size is more than two alignment units.

62

3.10 D i sc u s s ion of Basic Mechan i sms .

By now it should be apparent that our conventional taxonomy is of only very
limited utility, because the implementation focus obscures issues of policy. At a
sufficiently high level of abstraction, all of these allocators are really "indexed"
fits--they record which areas of memory are free in some kind of data struc-
t u r e - b u t they vary in terms of the policies they implement, how efficiently
their mechanisms support the desired policy, and how flexible the mechanism
are in supporting policy variations. Even in its own mechanism-based terms, the
taxonomy is collapsing under its own weight due to the use of hybrid algorithms
that can be categorized in several ways.

Simple segregated storage is simple and quite fast--allocation and dealloca-
tion usually take only a few instructions each--but lacks freedom to split and
coalesce memory blocks to support later requests for different-sized objects. It is
therefore subject to serious external fragmentation, as well as internal fragmen-
tation, with some tradeoff between the two.

Buddy systems support fairly flexible splitting, but significantly restricted
coalescing.

Sequential fits support flexible splitting and (with boundary tags) general
coalescing, but cannot support most policies without major scalability con-
cerns. (More precisely, the boundary tag implementation technique supports
completely generM coalescing, but the "index" is so simple that searches may be
very expensive for some policies.)

This leaves us with the more general indexed storage techniques, which in-
clude tree-structured indexes, segregated fits using boundary tags, and bitmap-
ped techniques using bitmaps for both boundary tags and indexing. All of these
can be used to implement a variety of policies, including exact or approximate
best fit. None of them require more space overhead per object than buddy sys-
tems, for typical conventional language systems, and all can be expected to have
lower internal fragmentation.

In In considering any indexing scheme, issues of strategy and policy should
be conconsidered carefully. Scalability is a significant concern for large systems,
and may become increasingly important.

Constant factors should not be overlooked, however. Alignment and header
and footer costs may be just as significant as actual fragmentation. Similarly,
the speed of common operations is quite important, as well as scalability to large
heaps. In the next section, we discuss techniques for increasing the speed of a
variety of general allocators.

3.11 Quick Lists and Defer red Coalescing

Deferred coalescing can be used with any of the basic allocator mechanisms we
have described. The most common way of doing this is to keep an array of free
lists, often called "quick lists" or "subpools" IMPS71], one for each size of block
whose coMescing is to be deferred. Usually, this array is only large enough to have
a separate free list for each individual size up to some maximum, such as 10 or

63

32 words; only those sizes will be treated by deferred coalescing [Wei76]. Blocks
larger than this maximum size are simply returned directly to the "general"
allocator, of whatever type.

The following discussion describes what seems to be a typical (or at least
reasonable) arrangement. (Some allocators differ in significant details, notably
Lea's segregated fits scheme.)

To the general allocator, a block on a quick list appears to be allocated, i.e.,
uncoalescable. For example, if boundary tags are used for coalescing, the flag
indicates that the block is allocated. The fact that the block is free is encoded
only in its presence on the quick list.

When allocating a small block, the quick list for that size is consulted. If
there is a free block of that size on the list, it is removed from the list and used.
If not, the search may continue by looking in other quick lists for a larger-sized
block that will do. If this fails, the general allocator is used, to allocate a block
from the general pool. When freeing a small block, the block is simply added to
the quick list for that size. Occasionally, the blocks in the quick lists are removed
and added to the general pool using the general allocator to coalesce neighboring
free blocks.

The quick lists therefore act as caches for the location and size information
about free blocks for which coalescing has not been at tempted, while the general
allocator acts as a "backing store" for this information, and implements general
coalescing. (Most often, the backing store has been managed using an unscalable
algorithm such as address-ordered first fit using a linear list.) Using a scalable
algorithm for the general allocator seems preferable.

Another alternative is to use an allocator which in its usual operation main-
tains a set of free lists for different sizes or size classes, and simply to defer
the coalescing of the blocks on those lists. This may be a buddy system (as in
[Kan84]) or a segregated lists allocator such as segregated fits. s~

Some allocators, which we will call "simplified quick fit" allocators, are struc-
tured similarly but don' t do any coalescing for the small blocks on the quick lists.
In effect, they simply use a non-coMescing segregated lists allocator for small ob-
jects and an entirely different allocator for large ones. (Examples include Wain-
stock and Wulf 's simplification of their own Quick Fit allocator [WW88], and an
allocator developed by Grunwald and Zorn, using Lea's allocator as the general
allocator[GZH93].) One of the advantages of such a scheme is that the minimum
block size can be very smal l - -only big enough to hold a header and and a single
link pointer. (Doubly-linked lists aren' t necessary, since no coalescing is done for
small objects.)

These simplified designs are not true deferred coalescing allocators, except
in a degenerate sense. (With respect to small objects, they are non-coalescing
allocators, like simple segregated storage.)

True deferred coalescing schemes vary in significant ways besides what gen-

80 The only deferred coalescing segregated fits algorithm that we know of is Doug Lea's
allocator, distributed freely and used in several recent studies (e.g., [GZH93, Vo95,
WJNB95]).

64

eral allocator is used, notably in how often they coalesce items from quick lists,
and which items are chosen for coalescing. They also may differ in the order in
which they allocate items from the quick lists, e.g., LIFO or FIFO, and this may
have a significant effect on placement policies.

S c h e d u l i n g o f coa le sc ing . Some allocators defer all coalescing until memory
runs out, and then coalesce all coalescable memory. This is most common in
early designs, including Comfort 's original proposal [Com64] sl and Weinstock's
"Quick Fit" scheme [Wei76].

This is not an attractive strategy in most modern systems, however, because
in a virtual memory, the program never "runs out of space" until backing store
is exhausted. If too much memory remains uncoalesced, wasting virtual memory,
locality may be degraded and extra paging could result. Most systems therefore
a t tempt to limit the amount of memory that may be wasted because coalescing
has not been at tempted.

Some systems wait until a request cannot be satisfied without either coales-
cing or requesting more memory from the operating system. They then perform
some coalescing. They may perform all possible coalescing at that time, or just
enough to satisfy that request, or some intermediate amount.

Another possibility is to periodically flush the quick lists, returning all of the
items on the quick lists to the general store for coalescing. This may be done
incrementally, removing only the older items from the quick lists.

In Margolin et al.'s scheme [MPS71], the lengths of the free lists are bounded,
and those lengths are based on the expected usage of different sizes. This ensures
that only a bounded amount of memory can be wasted due to deferred coalescing,
but if the estimates of usage are wrong, deferred coalescing may not work as
wel l - -memory may sit idle on some quick lists when it could otherwise be used
for other sizes.

In Oldehoeft and Allah's system [OA85], the number of quick lists varies over
time, according to a FIFO or Working Set policy. This has an adaptive character,
especially for the Working Set policy, in that sizes that have not been freed
recently are quickly coalesced, while "active" sizes are not. This adaptat ion may
not be sufficient to ensure that the memory lost to deferred coalescing remains
small, however; if the system only frees blocks of a few sizes over a long period
of time, uncoalesced blocks may remain on another quick list indefinitely. (This
appears to happen for some workloads in a similar system developed by Zorn
and Grunwald [ZG94], using a fixed-length LI~U queue of quick lists.)

Doug Lea's segregated fits allocator uses an unusual and rather complex pol-
icy to perform coalescing in small increments. (It is optimized as much for speed
as for space.) Coalescing is only performed when a request cannot otherwise be
satisfied without obtaining more memory from the operating system, and only

81 In Comfort's proposed scheme, there was no mechanism for immediate coalescing.
(Boundary tags had not been invented.) The only way memory could be coalesced
was by examining all of the free lists, and this was considered a awkward and
expensive.

65

enough coalescing is done to satisfy that request. This incremental coalescing
cycles through the free lists for the different size classes. This ensures that co-
alescable blocks will not remain uncoalesced indefinitely, unless the heap is not
growing.

In our view, the best policy for minimizing space usage without undue time
costs is probably an adaptive one that limits the volume of uncoalesced blocks--
i.e. the actual amount of potentially wasted space--and adapts the lengths of
the free lists to the recent usage patterns of the program. Simply flushing the
quick lists periodically (after a bounded amount of allocation) may be sufficient,
and may not incur undue costs if the general allocator is reasonably fast. s2 s3

On the other hand, it may be preferable to avoid at tempting to coalesce very
recently-freed blocks, which are very likely to be usable for another request soon.
One possible technique is to use some kind of "high-water mark" pointer into
each list to keep track of which objects were freed after some point in time, such
as the last allocate/coalesce cycle. However, it may be easier to accomplish by
keeping two lists, one for recently-freed blocks and one for older blocks. At each
a t tempt at coalescing, the older blocks are given to the general allocator, and
the younger blocks are promoted to "older" status, s4 (If a more refined notion
of age is desired, more than two lists can be used.)

W h a t t o coa lesce . As mentioned earlier, several systems defer the coalescing
of small objects, but not large ones. If allocations of large objects are relatively
infrequent--and they generally are-- immediately coalescing them is likely to be
worthwhile, all other things being equal. (This is true both because the time
costs are low and the savings in potentially wasted memory are large.) Deferred
coalescing usually affects the placement policy, however, and the effects of that
interaction are not understood.

82 The issues here are rather analogous to some issues in the design and tuning of
generational garbage collectors, particularly the setting of generation sizes and ad-
vancement thresholds [Wi195].

83 If absolute all-out speed is important, Lea's strategy of coalescing only when a search
fails may be more attractive--it does not require incrementing or checking an allo-
cation total at each allocation or deallocation. (Another possibility would be to use
a timer interrupt, but this is quite awkward. Most allocator designers do not wish to
depend on using interrupts for what is otherwise a fairly simple library, and it also
raises obscure issues of reentrancy--the interrupt handier must be careful not to do
anything that would interfere with an allocation or deallocation that is interrupted.)

84 This is similar to the "bucket brigade" advancement technique used in some gener-
ational garbage collectors [Sha88, WM89, Wi195]. A somewhat similar technique is
used in Lea's allocator, but for a different purpose. Lea's allocator has a quick list
(called the "dirty" list) for each size class used by the segregated fits mechanism,
rather than for every small integer word size. (This means that allocations from the
quick list have to search for a block that fits, but a close spacing of size classes
ensures that there is usually only one popular size per list; the searches are usually
short.) The quick lists are stored in the same array as the main ("clean") free lists.

66

Di scus s ion . There are many possible strategies for deferred coalescing, and any
of them may affect the general allocator's placement policy and /or the locality of
the program's references to objects. For example, it appears that for normal free
lists, FIFO ordering may produce less fragmentation than LIFO ordering, but it
is unknown whether that applies to items on quick lists in a deferred coalescing
scheme. 85 Similarly, when items are removed from the quick list and returned to
the general allocator, it is unknown which items should be returned, and which
should be kept on the quick lists.

To date, only a few sound experiments evaluating deferred coalescing have
been performed, and those that have been performed are rather limited in terms
of identifying basic policy issues and the interactions between deferred coalescing
and the general allocator.

Most experiments before 1992 used synthetic traces, and are of very dubious
validity. To understand why, consider a quick list to be a buffer that absorbs
variations in the number of blocks of a given size. If variations are small, most
allocation requests can be satisfied from a small buffer. If there are frequent
variations in the sizes in use, however, many buffers (quick lists) will be required
in order to absorb them.

Randomization may reduce clustered usage of the same sizes, spreading all
requested sizes out over the whole trace. This may make the system look bad, be-
cause it could increase the probabili ty that the buffers (i.e., the set of quick l ists)
contain objects of the wrong sizes. On the other hand, the smoothed (random
walk) nature of a synthetic trace may flatter deferred coalescing by ensuring that
allocations and frees are fairly balanced over small periods of time; real phase
behavior could overwhelm a too-small buffer by performing many frees and later
many allocations.

3.12 A N o t e o n T i m e Cos t s

An allocator can be made extremely fast if space costs are not a major issue.
Simple segregated storage can be used to allow allocation or deallocation in a
relatively small number of instruct ions--a few for a table lookup to find the
right size class, a few for indexing into the free list array and checking to ensure
the free list is not empty, and a few for the actual unlinking or linking of the
allocated block, s6

This scheme can be made cosiderably faster if the allocator can be compiled
together with the application program, rather than linked as a library in the
usual way. The usual-case code for the allocator can be compiled as an "inline"
procedure rather than a runt ime procedure call, and compile-time analyses can

s5 Informal experiments by Lea suggest that FIFO produces less fragmentation, at least
for his scheme. (Lea, personal communication 1995.)

86 For a closely-spaced series of size classes, it may be necessary to spend a few more
instructions on checking the size to ensure that (in the usual case) it's small enough to
use table lookup, and occasionally use a slower computation to find the appropriate
list for large-sized requests.

67

perform the size-class determination at compile time. In the usual case, the
runt ime code will simply directly access the appropriate free list, check that
it is not empty, and link or unlink a block. This inlined routine will incur no
procedure call overhead. (This kind of alloction inlining is quite common in
garbage collected systems. It can be a little tricky to code the inlined allocation
routine so that a compiler will optimize it appropriately, but it is not too hard.)

If space is an issue, naturally things are more complicated--space efficient al-
locators are more complicated than simple segregated storage. However, deferred
coalescing should ensure that a complex allocator behaves like simple segrega-
ted storage most of the time; with some space/t ime tradeoff. If extreme speed
is desired, coalescing can be deferred for a longer period, to ensure that quick
lists usually have free blocks on them and allocation is fast. s7 Adjusting this
space-time tradeoff is a topic for future research, however.

4 A C h r o n o l o g i c a l R e v i e w o f T h e L i t e r a t u r e

Given the background presented by earlier sections, we will chronologically re-
view the literature, paying special at tention to methodological considerations
that we believe are important . To our knowledge, this is by far the most
thorough review to date, but it should not be considered detailed or exhaus-
tive; valuable points or papers may have escaped our notice, ss We have left
out work on concurrent and parallel allocators (e.g., [GW82, Sto82, BAO85,
MK88, E088, For88, Joh91, JS92, JS92, MS93, lye93]), which are beyond
the scope of this paper. We have also neglected mainly analytical work (e.g.,
[GGU72, Kro73, Bet73, Ree79, ReeS0, McI82, Ree82, BCW85]) to some degree,
because we are not yet familiar enough with all of this literature to do it justice.

The two subsections below cover periods before and after 1991. The period
from 1960 to 1990 was dominated by the gradual development of various allocator
designs and by the synthetic trace methodology. The period after 1990 has (so
far) shown that that methodology is in fact unsound and biased, and that much
still needs to be done, both in terms of reevaluating old designs and inventing
new ones on the basis of new results. (Readers who are uninterested in the history
of allocator design and evaluation may wish to skip to Section 4.2.)

In much of the following, empirical results are presented qualitatively (e.g.,
allocator A was found to use space more efficiently than allocator B). In part,
this is due to the fact that early results used figures of merit that are awkward to
explain in a brief review, and difficult to relate to measures that current readers
are likely to find most interesting. In addition, workloads have changed so much
over the last three decades that precise numbers would be of mostly historical

s7 This is not quite necessarily true. For applications that do little freeing, the initial
carving of memory requested from the operating system will be a significant fraction
of the allocation cost. This can be made quite fast as well, however.

8s A few papers have not escaped our attention but seem to have escaped our libary. In
particular, we have had to rely on secondary sources for Graham's influential work
in worst-case analyses.

68

interest. (Early papers were mostly about managing operating system segments
(or overlays) in fixed main memories, s9 while recent papers are mostly about
managing small objects within the memory of a single process.) The qualitative
presentation is also due in part to our skepticism of the methodology underlying
most of the results before 1991; citing precise numbers would lend undue weight
to quantities we consider questionable.

4.1 T h e f i rs t t h r e e decades : 1960 to 1990

Structure of this section. Our review of the work in this period is structured
chronologically, and divided into three parts, roughly a decade each. Each of the
three sections begins with an overview; the casual reader may want to read the
overviews first, and skim the rest. We apologize in advance for a certain amount
of redundancy--we have at tempted to make this section relatively free-standing,
so that it can be read straight through (by a reader with sufficient fortitude)
given the basic concepts presented by earlier sections.

1960 t o 1969.

Overview. Most of the basic designs still in use were conceived in the 1960's, in-
cluding sequential fits, buddy systems, simple segregated storage, and segregated
lists using exact lists, and sequential fits. (Some of these, particularly sequential
fits, already existed in the late 50's, but were not well described in the literature.
Knuth [Knu73] gives pointers to early history of linked list processing.) In the
earliest days, interest was largely in managing memory segments in segmented
operating systems, i.e., managing logical (program and data) segments to phys-
ical memory. By the mid-1960's, the problem of managing storage for different-
sized objects within the address space of a single process was also recognized as
an important one, largely due to the increasing use (and sophistication) of list
processing techniques and languages [Ros61, Com64, BR64]. 9~

Equally important , the 1960's saw the invention of the now-traditional meth-
odology for allocator evaluation. In early papers, the assumptions underlying
this scheme were explicit and warned against, but as the decade progressed, the
warnings decreased in frequency and seriousness.

Some of the assumptions underlying this model made more sense then than
they do now, at least for some purposes. For example, most computers were based

89 Several very early papers (e.g., [Mah61, IJ62]) discussed memory fragmentation, but
in systems where segments could be compacted together or swapped to secondary
storage when fragmentation became a problem; these papers generally do not give
any quantitative results at all, arid few qualitative results comparing different allo-
cation strategies.

90 Early list processing systems used only list nodes of one or two sizes, typically con-
taining only two pointers, but later systems supported nodes of arbitrary sizes, to
directly support structures that had multiple links. (Again, see Knuth [Knu73] for
more references.)

69

on segmented memory systems, and highly loaded. In these systems, the memory
utilization was often kept high, by long-term scheduling of jobs. (In some cases,
segments belonging to a process might be evicted to backing storage to make
room when a request couldn' t otherwise be satisfied.) This makes steady-state
and independence assumptions somewhat more plausible than in later decades,
when the emphasis had shifted from managing segments in an operating system
to managing individual program objects within the virtual memory of a single
process.

On the other hand, in retrospect this assumption can be seen to be unwar-
ranted even for such systems. For example, multitasking may introduce phase
behavior, since the segments belonging to a process are usually only released
when that process is running, or when it terminates. Between time slices, a pro-
gram does not generally acquire or release segments. Operations on the segments
associated with a process may occur periodically.

Other assumptions that became common during the 1960's (and well beyond)
also seem unwarranted in retrospect. It was widely assumed that segment, sizes
were independent, perhaps because most systems were used by many users at
the same time, so that most segments were typically "unrelated." On reflection,
even in such a system there is good reason to think that particular segment sizes
may be quite common, for at least three reasons. First, if the same program is
run in different processes simultaneously, the statically-allocated da ta segment
sizes of frequently-used programs may appear often. Second, some important
programs may use da ta segments of particular characteristic sizes. (Consider a
sort utility that uses a fixed amount of memory chosen to make internal sorting
fast, but using merging fl'om external storage to avoid bringing all of the data
into memory.) Third, some segment sizes may be used in unusually large numbers
due to peculiarities of the system design, e.g., the minimum and/or maximum
segment size. (Segments or overlays were also typically fairly large compared to
total memory, so statistical mechanics would not be particularly reliable even
for random workloads.)

The original paraphernalia for the lottery had been lost long ago, and
the black box. . , had been put into use even before Old Man Warner,
the oldest man in town, was born. Mr. Summers spoke frequently to the
villagers about making a new box, but no one liked to upset even as
much tradition as was represented by the black box. There was a story
that the present box had been made with some pieces of the box that
had preceded it, the one that had been constructed when the first people
settled down to make a village here.
--Shirley Jackson, "The Lottery"

Co l l ins [Co161] apparently originated the random-trace methodology, and
reported on experiments with best fit, worst fit, first fit, and random fit.

Collins described his simulations as a "game," in the terminology of game
theory. The application program and the allocator are players; the application

70

makes moves by requesting memory allocations or deallocations, and the alloca-
tor responds with moves that are placement decisions. 91

Collins noted that this methodology required further validation, and that
experiments with real workloads would be better. Given this caveat, best fit
worked best, but first fit (apparently address-ordered) was almost equally good.
No quantitative results were reported, and the distributions used were not spec-
ified.

C o m f o r t , in a paper about list processing for different-sized objects [Com64],
briefly described the segregated lists technique with splitting and coalescing, as
well as address-ordered first fit, using an ordered linear llst. 9~ (The address order
would be used to support coMescing without any additional space overhead.)
Comfort did not mention that his "multiple free lists" technique (segregated
fits with exact lists) was an implementation of a best fit policy, or something
very similar; later researchers would often overlook this scheme. Comfort also
proposed a simple form of deferred coalescing, where no coalescing was done until
memory was exhausted, and then it was all done at once. (Similar coalescing
schemes seem to have been used in some early systems, with process swapping
or segment eviction used when coalescing failed to obtain enough contiguous free
memory.) No empirical results were reported.

T o t s c h e k [Tot65] reported the distribution of job sizes (i.e., memory as-
sociated with each process) in the SDC (Systems Development Corporation)
timesharing system. Later papers refer to this as "the SDC distribution". Natu-
rally, the "block" sizes here were rather large. Totschek found a roughly trimodal
distribution, with most jobs being either around 20,000 words, or either less than
half or more than twice that. He did not find a significant correlation between
job size and running time.

K n o w l t o n [Kno65] published the first paper on the (binary) buddy system,
although Knuth [Knu73] reports that same idea was independently invented
and used by H. Markowitz in the Simscript system around 1963. Knowlton also
suggested the use of deferred coalescing to avoid unneeded overheads in the
common case where objects of the same size were frequently used.

Ross, in [Ros67] described a sophisticated storage management system for
the AED engineering design support system. While no empirical results were
reported, Ross describes different patterns of memory usage that programs may
exhibit, such as mostly monotonic accumulation (ramps), and fragmentation
caused by different characteristic lifetimes of different-sized objects.

The storage allocation scheme divided available memory into "zones," which
could be managed by different allocators suitable to different application's usual

91 We suspect that the history of allocator research might have been quite different
if this metaphor had been taken more seriously--the application program in the
randomized methodology is a very unstable individual, or one using a very peculiar
strategy.

92 Knuth [Knu73] reports that this paper was written in 1961, but unpublished until
1964.

71

behavior. 93 Zones could be nested, and the system was extens ib le- -a zone could
use one of the default allocators, or provide its own allocation and deallocation
routines. I t was also possible to free an entire zone at once, rather than freeing
each object individually. The default allocators included first fit and simple seg-
regated storage. (This is the first published mention of simple segregated storage
tha t we have found, though Comfor t ' s multiple free list scheme is similar.)

G r a h a m , in an unpublished technical report [Gra], described the problem of
analyzing the worst-case memory use of allocators, and presented lower bounds
on worst case f ragmentat ion. 94 (An earlier memo by Doug McIlroy may have
mot iva ted this work, as well as Robson's later work.)

G r a h a m characterized the problem metaphorical ly as a board game between
an "attacker," who knows the exact policy used by the allocator ("defender")
and submits requests ("makes moves") that will force the defender's policy to do
as badly as possible. (This is a common metaphor in "minimax" game theory;
such an omniscient, malevolent opponent is commonly called a "devil" or "evil
demon.")

K n u t h surveyed memory allocation techniques in Volume One of The Art of
Computer Programming [Knu73], which has been a s tandard text and reference
ever since. It has been part icularly influential in the area of memory allocation,
both for popularizing existing ideas and for presenting novel algori thms and
analyses.

Knuth introduced next fit (called "modified first fit" in many subsequent
papers), the boundary tag technique, and splitting thresholds. In an exercise,
he suggested the Fibonacci buddy system (Ex. 2.5.31) In another exercise, he
suggests using balanced binary trees for best fit (Answer to Ex. 2.5.9).

Knuth adopted Collins' random-trace simulation methodology to compare
best fit, first fit, next fit, and binary buddy. Three size distributions were used,
one smooth (uniform) and two spiky. 95 The published results are not very de-
tailed. First fit was found to be bet ter than best fit in terms of space, while
next fit was bet ter in terms of time. The (binary) buddy system worked better
than expected; its l imited coalescing usually worked. Simple segregated storage
worked very poorly. 96

93 Comparable schemes were apparently used in other early systems, including one that
was integrated with overlaying in the IBM PL/I compiler [Boz84].

94 We do not have a copy of this report at this writing. Our information comes from
secondary sources.

95 One consisted of the six powers of two from 1 to 32, chosen with probability inversely
proportional to size, and the other consisted of 22 sizes from 10 to 4000, chosen with
equal probability. The latter distribution appears (now) to be unrealistic in that
most real programs' size distributions are not only spiky, but skewed toward a few
heavily-used sizes.

98 This contrasts strongly with our own recent results for synthetic traces using ran-
domized order (but real sizes and lifetimes), described later. We are unsure why this
is, but there are many variables involved, including the relative sizes of memories,
pages, and objects, as well as the size and lifetime distributions.

72

Knuth also presented the "fifty-percent rule" for first fit, and its derivation.
This rule states that under several assumptions (effectively random allocation
request order, steady-state memory usage, and block sizes infrequently equal to
each other) the length of the free list will tend toward being about half the num-
ber of blocks actually in use. (All of these assumptions now appear to be false for
most programs, as we will explain later in the discussions of IMPS71], [ZG94] and
[WJNB95]. Shore would later show that Knuth 's simplifying assumptions about
the lack of systematicity in the allocator's placement were also unwarranted. 97
Betteridge [Bet82] provides a somewhat different critique of the fifty percent
rule.)

In a worst-case analysis, Knuth showed that the binary buddy system requires
at most 2M log 2 n memory.

After Knuth 's book appeared, many papers showed that (in various random-
ized simulations) best fit had approximately the same memory usage as address-
ordered first fit, and sometimes better, and that next fit had significantly more
fragmentation. Nonetheless, next fit became quite popular in real systems. It is
unclear whether this is because next fit seems more obviously scalable, or simply
because Knuth seemed to favor it and his book was so widely used.

R a n d e l l [Ran69] defined internal and external fragmentation, and pointed
out that internal fragmentation can be traded for reduced external fragmentation
by allocating memory in multiples of some grain size g; this reduces the effective
number of sizes and increases the chances of finding a fit.

Randell Mso reported on simulation experiments with three storage allocation
methods: best fit, random fit, and an idealized method that compacts memory
continually to ensure optimal memory usage. (All of these methods used a ran-
dom free list order.) He used the synthetic trace methodology, basing sizes on an
exponential distribution and on Totschek's SDC distribution. He found that the
grain size g must be very small, or the increase in external fragmentation would
outweigh the decrease in internal fragmentation. 9s (Given the smoothing effects
of the randomization of requests, and its possibly different effects on internal
and externM fragmentation, this result should be interpreted with caution.)

Randell used three different placement algorithms. The first (called RELOC)
was an idealized algorithm that continually compacted memory to obtain the
best possible space usage. The other two (non-compacting) algorithms were best
fit (called MIN) and random. Comparisons between these two are not given. The
only quantitative da ta obtainable from the paper are from figures 2 and 3, which
show that for best fit, the SDC distribution exhibits less fragmentation (about

97 Nonetheless, his fifty-percent rule (and others' corollaries) are still widely quoted in
textbooks on data structures and operating systems. (To our minds, the fault for
this does not lie with Knuth, who presented eminently reasonable first-cut analyses
in the course of writing a tremendously ambitious, valuable and general series of
books.)

9s On first reading, RandeU's grain sizes seem quite large---the smallest (nonzero) value
used was 16 words. Examining Totschek's distribution, however, it is clear that this
is quite small relative to the average "object" (segment) size [Tot65].

73

11 or 12 percent) than an exponential distribution (about 17 or 18 percent), and
both suffer considerably as the grain size is increased.

M i n k e r et al. [M+69] published a technical report which contained a distri-
bution of "buffer sizes" in the University of Maryland UNIVAC Exee 8 system.99
Unfortunately, these data are imprecise, because they give counts of buffers
within ranges of sizes, not exact sizes.

These data were later used by other researchers, some of whom described
the distribution as roughly exponential. The distribution is clearly not a simple
exponential, however, and the use of averaging over ranges may conceal distinct
spikes. 1~176

1970 t o 1979.

Overview. The 1970's saw a few significant innovations in allocator design and
methodology. However, most research was focused on at tempts to refine known
allocator designs (e.g., the development of vorious buddy systems), on exper-
iments using different combinations of distributions and allocators, or on at-
tempts to derive analytical formulae that could predict the performance of actual
implementations for (randomized) workloads.

Analytic techniques had much greater success within a certain limited scope.
Bounds were found for worst-case fragmentation, both for specific algorithms
and for all algorithms. The results were not encouraging. Building on Graham's
analysis framework, Robson's 1971 paper dashed any hope of finding an allocator
with low fragmentation in the worst case.

Most empirical studies used synthetic trace techniques, which were refined
as more information about real lifetime and size distributions became available,
and as it became obvious that the relative performance of different algorithms
depended on those factors. Exponential distributions became the most com-
mon size distribution, and a coramon lifetime distribution, because empirical
da ta showed that allocations of small and short-lived objects were frequent. The
fact that these distributions were often spiky--or effectively smoothed in the
statistics-gathering process--was often overlooked, as was the non-independence
of requests.

Perhaps the most innovative and empirical paper of this period was Mar-
golin's, which used sound methodology, and evaluated a new form of deferred
coalescing.

o9 We have not yet obtained a copy of this report--our information is taken from [Rus77]
and other secondary sources. We are unclear on exactly what sense of "buffer" is
meant, but believe that it means mean memory used to cache logical segments for
processes; we suspect that the sizes reported are ranges because the system used a
set of fixed buffer sizes, and recorded those, rather than the exact sizes of segments
allocated in those buffers. We are also unsure of the exact units used.

100 Our tentative interpretation of the data is that the distribution is at least bimodal,
with modes somewhere around roughly 5 units (36% of all requests) and roughly 20
units (30% of all requests).

74

Fenton and Payne's "half fit" policy is also novel and interesting; it is based
on a very different strategy from those used in other allocators. Wise's (unpub-
lished) double buddy design is also well-motivated. Purdom, Stigler and Cheam
introduced the segregated fits mechanism, which did not receive the attention it
was due.

Batson and Brundage's statistics for Algol-60 segment sizes and lifetimes were
quite illuminating, and their commentary insightfully questioned the plausibility
of the usual assumptions of randomness and independence. They underscored
the difficulty of predicting allocator performance. Unfortunately, though their
results and commentary were available in 1974 in a technical report, they were
not published in a journal until 1977.

Denn ing [Den70] used Knuth's fifty percent rule to derive an "unused mem-
ory rule", which states that under assumptions of randomness and steady-state
behavior, fragmentation generally increases memory usage by about half; he also
pointed out that sequential free list searches tend to be longer when memory is
heavily loaded. Ge l enbe also derived a similar "two thirds rule" [Gel71] in a
somewhat different way. (These essentially identical rules are both subject to
the same criticisms as Knuth's original rule.)

P u r d o m and $t igler [PS70] performed statistical analyses of the binary
buddy system, and argued that limitations on buddy system coalescing were
seldom a problem. Their model was based on strong assumptions of independence
and randomness in the workload, including exponentially distributed random
lifetimes.

Batson , J u and W o o d [BJWT0] reported segment size and lifetime distrib-
utions in the University of Virginia B5500 system. Most segments were "small"--
about 60 percent of the segments in use were 40 (48-bit) words or less in length.

About 90 percent of the programs run on this system, including system pro-
grams, were written in Algol, and the sizes of segments often corresponded to the
sizes of individual program objects, e.g., Algol arrays. (In many other systems,
e.g., Totschek's SDC system, segments were usually large and might contain
many individual program objects.) The data were obtained by sampling at var-
ious times, and reflect the actual numbers of segments in use, not the number
of allocation requests.

This distribution is weighted toward small objects, but Batson et al. note
that it is not well described as an exponential. Unfortunately, their results are
presented only in graphs, and in roughly exponentially spaced bins (i.e., more
precise for smaller objects than large ones). This effectively smooths the results,
making it unclear what the actual distribution is, e.g., whether it is spiky. The
general shape (after smoothing) has a rounded peak for the smaller sizes, and
is roughly exponential after that. (In a followup study [BB77], described later,
Batson and Brundage would find spikes.)

A note about Algol-60 is in order here. Algol-60 does not support general
heap allocation--all data allocations are associated with procedure activations,

75

and have (nested) dynamic extents. (In the case of statically allocated data, that
extent is the entire program run.) In the B5500 Algol system, scalar variables
associated with a procedure were apparently allocated in a segment; arrays were
allocated in separate segments, and referenced via an indirection. Because of the
B5500's limit of 1023 words per segment, large arrays were represented as a set
smMler arrays indexed by an array of descriptors (indirections) 3 ~

Because of this purely block-structured approach to storage allocation, Algol-
60 data lifetimes may be more closely tied to the phase structure of the program
than would be expected for programs in more modern languages with a general
heap. On the other hand, recent data for garbage-collected systems [Wil95] and
for C and C + + programs [WJNB95] suggest that the majori ty of object lifetimes
in modern programs are also tied to the phase structure of programs, or to the
single large "phase" that covers the whole duration of execution.

C a m p b e l l introduced an "optimal fit" policy, which is a variant of next fit
intended to improve the chances of a good fit without too much cost in extra
searching [Cam71]. (It is not optimal in any useful sense.) The basic idea is that
the allocator looks forward through the linear list for a bounded number of links,
recording the best fit found. It then proceeds forward looking for another fit at
least as good as what it found in that (sample) range. If it fails to find one before
traversing the whole list, it uses the best fit it found in the sample range. (That
is, it degenerates into exhaustive best fit search when the sample contains the
best fit.)

Campbell tested this technique with a real program (a physics problem), but
the details of his design and experiment were strongly dependent on unusual
coordination between the application program and the memory allocator. After
an initial phase, the application can estimate the number of blocks of different
sizes that will be needed later. Campbell 's algorithm exploited this information
to construct a randomized free list containing a good mix of block sizes.

While Campbell 's algorithm worked well in his experiment, it seems that his
results are not applicable to the general allocation problem, and other techniques
might have worked as well or better. (For example, constructing multiple free
lists segregated by size, rather than a random unified free list that must be
searched linearly. See also the discussion of [Pag82] in Section 4.1.)

P u r d o m , S t ig l e r , a n d C h e a m [PSC71] introduced segregated fits using
size classes with range lists (called "segregated storage" in their paper). The na-
ture and importance of this efficient mechanism for best-fit-like policies was not
generally appreciated by later researchers (an exception being Standish [Sta80]).
This may be because their paper's title gave no hint that a novel algorithm was
presented.

Purdom et al. used the random trace methodology to compare first fit, binary
buddy, and segregated fits. (It is unclear which kind of first fit was used, e.g.,

101 Algol-60's dynamically sized arrays may complicate this scenario somewhat, requir-
ing general heap allocation, but apparently a large majority of arrays were statically
sized and stack-like usage predominated.

76

LIFO-ordered or address-ordered). Their segregated fits scheme used powers-of-
two size classes.

They reported that memory usage for segregated fits was almost identical to
that of first fit, while binary buddy's was much worse.

Every year, after the lottery, Mr. Summers began talking again about
a new box, but every year the subject was allowed to fade off without
anything's being done. The black box grew shabbier each year; by now
it was no longer completely black but splintered badly among one side
to show the original wood color, and in some places faded or stained.
--Shirley Jackson, "The Lottery"

Margol in et al. used real traces to study memory allocation in the CP-
67 control program of an IBM System/360 mainframe [MPS71]. (Note that this
allocator allocated storage used by the operating system itself, not for application
programs.)

They warned that examination of their system showed that several assump-
tions underlying the usual methodology were false, for their system's workload:
uncorrelated sizes and lifetimes, independence of successive requests, and well-
behaved distributions. Unfortunately, these warnings were to go generally un-
heeded for two decades, despite the fact that some later researchers used the
distributions they reported to generate randomly-ordered synthetic traces. (We
suspect that their careful analysis of a single system was not given the attention
it deserved because it seemed too ad hoc.)

Their size distribution was both spiky and skewed, with several strong modes
of different sizes. Nearly half (46.7%) of all objects were of size 4 or 5 double-
words; sizes 1 and 8 (doublewords) accounted for about 11% each, and size 29
accounted for almost 16% of the remainder. Many sizes were never allocated at
all.

Margolin et al. began with an address-ordered first fit scheme, and added
deferred coalescing. Their major goal was to decrease the time spent in memory
management inside the CP-67 control program, without an undue increase in
memory usage. Their deferred coalescing subpools (quick lists) pre-allocated
some fraction (50% or 95%) of the expected maximum usage of objects of those
sizes. (This scheme does not appear to adapt to changes in program behavior.)
Deferred coalescing was only used for frequently-allocated sizes.

For their experiments, they used several traces from the same machine, but
gathered at different times and on different days. They tuned the free list sizes
using one subset of the traces, and evaluated them using another. (Their system
was thus tuned to a particular installation, but not a particular run.)

They found that using deferred coalescing increased memory usage by ap-
proximately zero to 25%, while generally decreasing search traversals to a small
fraction of the original algorithm's. In actual tests in the real system, time spent
in memory management was cut by about a factor of six.

77

R o b s o n [Rob74] showed that the worst-case performance of a worst-case-
opt imal algorithm is bounded from below by a function that rises logarithmically
with the ratio n (the ratio of the largest and smallest block sizes), i.e., M log 2 n
times a constant.

I s oda , G o t o a n d K i m u r a [IGKT1] introduced a bi tmapped technique for
keeping track of allocated and unallocated buddies in the (binary) buddy system.
Rather than taking a bit (or several, as in Knowlton's original scheme) out of
the storage for each block, their scheme maintains a bit vector corresponding to
the words of memory. The bit for the last word of each block, and the bit for the
last word occupied by a block is set. The buddy placement constraint lets these
be used as "tail lamps" to look efficiently look through memory to find the ends
of preceding blocks.

G r a h a m , G a r e y , a n d U l l m a n presented new worst case fragmentation
analyses in [GGU72]. (We have not yet obtained this paper, and will not com-
ment on it further.)

H i r s c h b e r g [Hir73] followed Knuth 's suggestion and devised a Fibonacci
buddy system; he compared this experimentally to a binary buddy. Itis exper-
iment used the usual synthetic trace methodology, using a real distribution of
block sizes (from the University of Maryland UNIVAC Exec 8 system [M+69])
and exponential lifetime distribution. His results agreed well with the analytically
derived estimates; Fibonacci buddy's fragmentation increased memory usage by
about 25%, compared to binary buddy's 38%.

Hirschberg also suggested a generalization of the buddy system allowing
Fibonacci-like series where each size was the sum of the previous size and a
size a fixed distance further clown in the size series. (For some fixed integer k,
the ith size in the series may be split into two blocks of sizes i - 1 and i - k.)

R o b s o n [Rob71] put a fairly tight upper and lower bounds on the worst-
case performance of the best possible allocation algorithm, tie showed that a
worst-case-optimal strategy's worst-case memory usage was somewhere between
0.5M log 2 n and about 0.84M log 2 n.

S h e n a n d P e t e r s o n introduced the weighted buddy method [SP74], whose
allowable block sizes are either powers of two, or three times a power of two. They
compared this scheme to binary buddy, using the synthetic trace methodology;
they used only a uniform lifetime distributions, and only two size distributions,
both smooth (uniform and exponential). This is unfortunate, because skew in ob-
ject size request may affect the effectiveness of different block-splitting schemes.

They found that for a uniform size distribution, weighted buddy lost more
memory to fragmentat ion than binary buddy, about 7%. For an exponential
distribution (which is apparently more realistic) this was reversed--weighted
buddy did bet ter by about 7%. By default, they used FIFO-ordered free lists.
With LIFO-ordered free lists, memory usage was about 3% worse.

78

Using a variation of the random trace methodology intended to approximate
a segment-based multiprogramming system, 102 F e n t o n a n d P a y n e [FP74] com-
pared best fit (called "least fit"), first fit, next fit, worst fit, and "half fit." The
half fit policy allocator at tempts to find a block about twice the desired size, in
the hopes that if there is a bias toward particular sizes, remainders from splitting
will be more likely to be a good fit for future requests. They found that best fit
worked best, followed by first fit, half fit, next fit, and worst fit, in that order.
Half fit was almost as good as first fit, with next fit performing significantly
worse, and worst fit much worse.

All of the size distributions used in their experiments were smooth. For many
of their experiments, they used a smooth distribution based on generalizations
about Totschek's SDC distribution and Batson, Ju, and Wood's B5500 distribu-
tion. (This is a "deformed exponential" distribution, which rises quickly, rounds
off at the top, and then descends in a roughly exponential fashion.) Fenton and
Payne apparently didn't consider the possibility that smooth distributions (and
randomized order) might make their half-fit policy work worse than it would in
practice, by decreasing the chance that a request for a particular size would be
repeated soon.

H i n d s [Hin75] presented a fast scheme for recombination in binary and gener-
alized Fibonacci buddy systems. Each block has a "left buddy count" indicating
whether it is a right buddy at the lowest level (in which case the LBC is zero), or
indicating for how many levels above the lowest it is a left buddy. This supports
splitting and merging nearly as quickly as in the binary buddy scheme.

C r a n s t o n a n d T h o m a s [CT75] presented a method for quickly finding the
buddy of a block in various buddy systems, using only three bits per block. This
reduces the time cost of splitting and merging relative to Hirschberg's scheme,
as well as incurring minimal space cost.

Sho re [Sho75] compared best fit and address-ordered first fit more thor-
oughly than had been done previously, and also experimented with worst-fit and
a novel hybrid of best fit and first fit. He used the then-standard methodology,
generating random synthetic traces with (only) uniformly distributed lifetimes.
Size distributions were uniform, normal, exponential, and hyperexponential. He
also performed limited experiments with "partial populations" (i.e., spiky dis-
tributions). The figure of merit was the space-time product of memory usage
over time. (This essentially corresponds to the average memory usage, rather
than peak usage.)

This study was motivated in part by Wald's report of the "somewhat puzzling
success" of best fit in actual use in the Automatic Operating and Scheduling

102 In this model, each object (segment) is assumed to be associated with a different
process. When a request cannot be satisfied, that process blocks (i.e., the death
time of the segment is delayed, but time advances so that other segments may die).
This models embodies an oversimplification relative to most real systems, in that
processes in moss systems may have multiple associated segments whose death times
cannot be postponed independently.

79

P r o g r a m of the Bur roughs D-825 sys tem [Wa166]. (Fragmenta t ion was expected
to be a problem; plans were made for compact ion , but none was needed.)

Shore found tha t best fit and (address-ordered) first fit worked about equally
well, bu t t ha t first fit had an advan tage when the dis t r ibut ion included block
sizes t ha t were relatively large compared to the m e m o r y size. Following K n u t h
[Knu73], he hypothes ized tha t this was due to its tendency to fit small objects
into holes near one end of memory , accumula t ing larger free areas toward the
other end. l~

For part ia l populat ions , Shore found tha t increasing degrees of spikiness
seemed to favor best fit over first fit slightly, but tha t the variance increased
so quickly tha t this result was not reliable. 1~

Shore noted tha t while first fit and best fit policies are roughly similar, they
seem to have somewha t different s t rengths and weaknesses; he hypothesized tha t
these migh t be combinable in a hybr id a lgor i thm tha t would ou tper fo rm either.

Shore exper imented with a novel parameter ized allocator, combin ing features
of first fit and best fit. At one extreme set t ing of the parameter , it behaved like
address-ordered first fit, and at the other extreme it behaved like best fit. He
found tha t an in termedia te pa ramete r set t ing showed less f r agmenta t ion than
either s t anda rd algori thm. If this were to be shown to work for real workloads,
it could be a valuable result. I t suggests tha t best fit and address-ordered first
fit m a y be exploit ing different regularities, and tha t the two strategies can be
combined to give bet ter performance. (Since the inputs were r a n d o m l y ordered,
however, it is not clear whether these regularities exist in real p rogram behavior,
or whether they are as i m p o r t a n t as other regularities.)

Shore also exper imented with worst-fit, and found tha t it performed very
poorly. 1~

Shore warned tha t his results "mus t be interpreted with caution," and tha t

103 We are actually unsure what Shore's claim is here. It is not clear to us whether
he is making the general claim that first fit tends to result in a free list that is
approximately size-ordered, or only the weaker claim that first fit more often has
unusually large free blocks in the higher address range, and that this is important
for distributions that include occasional very large blocks.

i04 Wald had hypothesized that best fit worked well in his system because of the spiky
distribution of requests. Shore notes that "Because there were several hundred pos-
sible requests" in that system, the result "was due more probably to a nonsaturating
workload." The latter makes sense, because Wald's system was a real-time system
and generally not run at saturation. The tbrmer is questionable, however, because
the distribution of actual requests (and of live data) is more important than the
distribution of possible requests.

105 He drew the (overly strong) conclusion that good fits were superior to poor fits; we
suggest that this isn't always the case, and that the strengths of worst fit and best-
fit-like policies might be combinable. Worst fit has the advantage that it tends to
not to create small remainders, as best fit does. It has the disadvantage that it tends
to ensure that there are n o very large free areas--it systematically whittles away at
the largest free block until it is no longer the largest. A hybrid strategy might use
poor fits, but preserve some larger areas as well.

80

some real distributions are not well behaved. Citing Margolin, he noted tht "such
simplifying assumptions as well-behaved distributions, independence of succes-
sive requests, and independence of request sizes and duration are questionable."
These warnings apparently received less at tention than his thorough (and influ-
ential) experimentation within the random trace paradigm.

B u r t o n introduced a generalization of the Fibonacci buddy system [Bur76 l
which is more general than Hirschberg's. Rather than using a fixed function
for generating successive sizes (such as always adding size i - 1 and i - 3 to
generate size i), Burton points out that different sizes in the series can be used.
(For example, adding sizes i - 1 and i - 2 to generate i, but adding sizes j - 1
and j - 4 to generate size j .) Burton's intended application was for disk storage
management, where it is desirable to ensure that the block size, track size, and
cylinder size are all in the series. The result is fairly general, however, and has
usually been overlooked; it could be used to generate application-specific buddy
systems tailored to particular programs' request sizes.

"You didn' t give him time enough to take any paper he wanted. I saw
you. It wasn't fair!"
"Be a good sport, Tessie," Mrs Delacroix called, and Mrs. Graves said,
"All of us took the same chance."
--Shirley Jackson, "The Lottery"

B a t s o n a n d B r u n d a g e [BB77] reported segment sizes and lifetimes in 34
varied Algol-60 programs. Most segments were small, and the averaged size dis-
tr ibution was somewhat skewed and spiky. (Presumably the distributions for
individual programs were even less well-behaved, with individual spikes being
reduced considerably by averaging across multiple programs.)

Lifetime distributions were somewhat better-behaved, but still irregular, l~
When lifetimes were normalized to program running times, evidence of plateau
and ramp usage appeared. (In our interpretation of the data, that is. As men-
tioned earlier, however, Algol-60 associates segment lifetimes with the block
structure of the program.)

Batson and Brundage pointed out that lifetimes are not independent of size,
because some blocks are entered many times, and others only once; most en-
tries to the same block allocate exactly the same number and sizes of segments.
They stated that they had no success fitting any simple curve to their data,
and that this casts doubts on analyses and experiments assuming well-behaved
distributions.

They also suggested that the experiments of Randell, Knuth, and Shore could
be redone be using realistic distributions, but warned that "we must wait for
a bet ter understanding" of "the dynamics of the way in which the allocated

108 Recall that looking at distributions is often misleading, because sudden deaths of
objects born at different times will result in a range of lifetimes. (Section 2.4) Small
irregularities in the lifetime distribution may reflect large dynamic patterns.

81

space is used--before we can make reasonable predictions about the comparat ive
performance of different mechanisms." They go on to say that "there is no reason
to suppose that stochastic processes could possibly generate the observed request
distributions."

Though based on a 1974 technical report, this paper was not published until
1977, the same year tha t saw publication of a flurry of papers based on random
traces with well-behaved distributions. (Described below.)

W e l n s t o e k [~u surveyed some (but not all) of the impor tant work in
allocators before 1976, and presented new empirical results. He also introduced
the "QuickFit" algorithm, a deferred coalescing scheme using size-specific lists
for small block sizes, backed by LIFO-ordered first fit as the general Mlocator. 1~
(Weinstock reported that this scheme was invented several years earlier for use
in the B l i s s / l l compiler [WJW+75], and notes that a similar scheme was inde-
pendently developed and used in the Simscript II.5 language [Joh72]. Margolin's
prior work was overlooked, however.)

Weinstock used the conventional synthetic trace methodology; randomly-
ordered synthetic traces were generated, using two real size distributions and
four artificial ones. One of the real size-and-lifetime distributions came from the
Bl i s s / l l compiler [WJW+75], and the other was from Batson and Brundage's
measurements of the University of Virginia B5500 system [BB77], described
above. The four artificial size distributions were uniform, exponential, Poisson,
and a two-valued distribution designed to be a bad case for first fit and best fit.
(The two-valued distribution was not used in the final evaluation of allocators.)

The B l i s s / l l distribution is heavily weighted toward small objects, but is not
well-described by an exponential curve. It has distinct spikes at 2 words (44%
of all objects) and 9 words (14%). In between those spikes is another elevation
at 5 words and 6 words (9% each).

The figures of merit for space usage in this study were probabilities of failure
in different-sized memories. (That is, how likely it was that the synthetic program
would exhaust memory and fail, given a particular limited memory size.) This
makes the results rather difficult reading, but the use of fixed memory sizes
allows experimentat ion with allocators which perform (deferred) coalescing only
when memory is otherwise exhausted.

Weinstock experimented with QuickFit, best fit, first fit, next fit, and binary
buddies. Variations of best fit used address-ordered or size-ordered free lists.
Variations of first fit and next fit used address-ordered and LIFO-ordered free
lists. The address-ordered versions of best, first, and next fit were also tried with
immediate coalescing and deferred coalescing. Two binary buddy systems were
used, with immediate and deferred coalescing. (In all cases, deferred coalescing
was only performed when memory was exhausted; no intermediate strategies
were used.)

In general, Weinstock found that address-ordered best fit had the best space
usage, followed closely by address-ordered first fit. (Both did about equally well

107 This is not to be confused with the later variant of QuickFit [WW88], which does
no coalescing for small objects, or Standish and Tadman's indexed fits allocator.

82

under light loadings, i.e., when memory was more plentiful.)
After address-ordered best fit came a cluster of algorithms whose ranking

changed depending on the loading and on the distributions used: address-ordered
first fit, address-ordered best fit with deferred coalescing, size-ordered best fit,
and Quick Fit.

After that came a cluster containing address-ordered first fit with deferred
coalescing and address-ordered next fit. This was followed by address ordered
next fit with deferred coalescing, followed in turn by LIFO-ordered first fit.
Binary buddies performed worst, with little difference between the immediate
and deferred coalescing variants.

In summary, address-ordered variants tended to outperform other variants,
and deferred coalescing (in the extreme form used) usually increased fragmen-
tation. FIFO-ordered lists were not tried, however.

In terms of speed, QuickFit was found to be fastest, followed by binary buddy
with deferred coalescing. Then came binary buddy with immediate coalescing.
Rankings are given for the remaining allocators, but these are probably not
particularly useful; the remaining algorithms were based on linear list imple-
mentations, and could doubtless be considerably improved by the use of more
sophisticated indexing systems such as splay trees or (in the case of best fit)
segregated fits.

Weinstock made the important point that seemingly minor variations in al-
gorithms could have a significant effect on performance; he therefore took great
care in the describing of the algorithms he used, and some of the algorithms used
in earlier studies.

In a brief technical communication, Bays [Bay77] replicated some of Shore's
results comparing first fit and best fit, and showed that next fit was distinctly in-
ferior when average block sizes were small. When block sizes were large, all three
methods degraded to similar (poor) performance. (Only uniformly distributed
lifetimes and exponentially distributed sizes were used.)

"Seems like there's no time at all between lotteries any more," Mrs.
Delacroix said to Mrs. Graves in the back row.
--Shirley Jackson, "The Lottery"

Pe t e r son and N o r m a n [PN77] described a very general class of buddy sys-
tems, and experimentally compared several varieties of buddy systems: binary,
Fibonacci, a generalized Fibonacci [HS64, Fer76], and weighted. They used the
usual random trace methodology, with both synthetic (uniform and exponential)
and real size distributions. Their three size distributions were Margolin's CP-67
distribution, the University of Maryland distribution, and a distribution from
an IBM 360 OS/MVT system at Brigham Young University. (This "BYU" dis-
tribution was also used in several later studies.) They point out that the latter
two distributions were imprecise, grouping sizes into ranges; they generated sizes
randomly within those ranges. (The implication of this is that these distributions
were smoothed somewhat; only the CP-67 distribution is truly natural.)

83

(The BYU distribution is clearly not exponential, although some later re-
searchers would describe it that way; while it is skewed toward small sizes, it is
at least bimodal. Given that it is reported in averages over ranges, there may be
other regularities that have been smoothed away, such as distinct spikes.)

We are unsure what lifetime distribution was used.
Peterson and Norman found that these buddy systems all had similar memory

usage; the decreases in internal fragmentation due to more-refined size series were
usually offset by similar increases in external fragmentation.

R o b s o n [Rob77] showed that the worst-case performance of address-ordered
first fit is about M log 2 n, while best fit's is far worse, at about M log 2 n. He also
noted that the roving pointer optimization made next fit's worst case similarly
b a d - - b o t h best fit and next fit can suffer about as much from fragmentation as
any allocator with general splitting and coalescing.

N i e l s e n [Nie77] studied the performance of memory allocation algorithms
for use in simulation programs. His main interest was in finding fast allocators,
rather than memory-efficient allocators. He used a variation of the usual random
trace methodology intended to model the workloads generated by discrete-event
simulation systems. A workload was modeled as a set of streams of event objects;
each stream generated only requests of a single size, but these requests were gen-
erated randomly according to size and inter-arrival time distributions associated
with the streams. To construct a workload, between 3 and 25 request streams
were combined to simulate a simulation with many concurrent activities.

Eighteen workloads (stream combinations) were used. Of these, only two
modeled any phase behavior, and only one modeled phases that affected different
streams (and object sizes) in correlated ways. l~

Nielsen's experiments were done in two phases. In the first phase a single
workload was used to test 35 variants of best fit, first fit, next fit, binary bud-
dies, and segregated fits. (This workload consisted of 10 streams, and modeled
no phase behavior.) Primarily on the basis of time costs, all but seven of the
initial set of allocators were eliminated from consideration. (This is unfortunate,
because different implementation strategies could implement many of the same
policies more efficiently. Best fit and address-ordered first fit were among the
policies eliminated.) Of the surviving seven allocators, six had poor memory us-
age. The seventh allocator, which performed quite well in terms of both speed

10s In our view, this does not constitute a valid cross-section of discrete event simula-
tion programs, for several reasons. (They may better reflect the state of the art in
simulation at the time the study was done, however.) First, in many simulations,
events are not generated at random, but in synchronized pulses or other patterns.
Second, many events in some simulations are responses to emergent interactions of
other events, i.e., patterns in the domain-level systems being simulated. Third, many
simulation programs have considerable state local to simulated objects, in addition
to the event records themselves. Fourth, many simulation systems include analysis
facilities which may create objects with very different lifetime characteristics than
the simulation objects themselves; for example, an event log that accumulates mon-
otonically until the simulation terminates.

84

and memory usage, was "multiple free lists," i.e., segregated fits with exact lists.

In [Sho77], Shore analyzed address-ordered first fit theoretically, and showed
that the allocator itself violates a statistical assumption underlying Knuth's fifty
percent rule. He argued that systematicity in the placement of objects interacts
with "the statistics of the release process" to affect the length of the the free list
under equilibrium conditions.

Shore demonstrated that the relative performance of best fit and (address-
ordered) first fit depended on the shape of the lifetime distribution.

Shore was primarily concerned with simple, well behaved distributions, how-
ever, and made the usual assumptions of randomness (e.g., independence of
successive allocations, independence of size and lifetime). He did not consider
possible systematicities in the application program's allocations and releases,
such as patterned births and deaths. (He did aptly note that "the dynamics
of memory usage comprise complicated phenomena in which observable effects
often have subtle causes.")

Russel l [Rus77] attempted to derive formulas for expected fragmentation in
a Fibonacci and a generalized Fibonacci buddy system, 1~ based on the assump-
tion that size distributions followed a generalization of Zipf's law (i.e., a decreas-
ing function inversely related to the sizes). Based on this assumption, he derived
estimated lower and upper bounds, as well as estimated average performance.
He compared this to simulation results, using the conventional synthetic trace
methodology and basing size distributions on three real distributions (Margolin's
CP-67 distribution, the BYU distribution, and the U. of Maryland distribution.)
For the generalized Fibonacci system, average fragmentation for the three work-
loads was close to what was predicted (22% predicted, 21% observed). For the
plain Fibonacci system, the error was significant (29% predicted, 22% observed).
For binary buddy the error was rather large (44% predicted, 30% observed).

Russell notes that the CP-67 data do not closely resemble a Zipf distribution,
and for this distribution the fragmentation using conventional Fibonacci is in fact
lower (at 15%) than his estimated lower bound (24%). Averaging just the results
for the other two distributions brings the results closer to the predicted values
on average, but for generalized Fibonacci they move further away. We believe
that his estimation technique is unreliable, partly because we do not believe that
distributions are generally exponential, and partly because of the randomness of
request order that he assumes.

Wise, in an unpublished technical report [Wis78], described a double buddy
system and its advantages over Fibonacci systems in terms of external fragmen-
tation (producing free blocks of the same size as requested blocks). This report
apparently went unnoticed until well after double buddy was reinvented by Page
and Hagins [PH86]. 11~

109 See also Bromley [Bro80].
110 The first author of the present paper overlooked both and reinvented it yet again in

1992. It is next expected to appear in the year 2000.

85

R e e v e s [Ree79, Ree80, Ree82, Ree83] used analytic techniques to determine
the effect of a random fit allocator policy in the face of random workloads, using
a "generating function" approach originated by Knuth [Knu73]. This work relies
extremely heavily on randomness assumptions--usual ly in both the workload
and the a l loca tor - - to enable the analyses of memories of significant size.

1980 t o 1990.

People at first were not so much concerned with what the story meant;
what they wanted to know was where these lotteries were held, and
whether they could go there and watch.
--Shirley Jackson, "On the Morning of June 28, 1948, and 'The Lot-
tery ' "

Overview. The 1980-1990 period saw only modest development of new alloca-
tor techniques, and little new in the way of evaluation methodologies, at least in
academic publications. Despite doubts cast by Margolin and Batson, most exper-
imenters continued to use synthetic traces, often with smooth and well-behaved
distributions. This is probably due to the lack of a comprehensive survey address-
ing methodological concerns. (The present paper is an a t tempt to remedy that
problem.) By this time, there were many papers on allocators, and Margolin's
and Batson's were probably not among the most studied. I l l Most theoretical
papers continued to make strong assumptions of randomness and independence,
as well, with the exception of papers about worst-case performance.

Among the more interesting designs from this period are Standish and Tad-
man's exact lists scheme, Page and Hagins' double buddy system, Beck's age-
match algorithm, and Hanson's obstack system.

S t a n d i s h surveyed memory allocation research in a (short) chapter of a book
on da ta structures [Sta80], describing segregated fits and introducing a segrega-
ted free lists method using exact lists. Citing Tadman 's masters thesis [Tad78], he
reported that an experimental evaluation showed this scheme to perform quite
similarly to best f i t - -which is not surprising, because it is best fit, in policy
t e rms- -and that it was fast. (These experiments used the usual synthetic trace
methodology, and Standish summarized some of Weinstock's results as well.)

P a g e [Pag84] analyzed a "cyclic placement" policy similar to next fit, both
analytically and in randomized simulations. (Only uniformly distributed sizes
and lifetimes were used.) The cyclic placement scheme generally resulted in sig-
nificantly more fragmentat ion than first fit or best fit.

111 Margolin's paper was published in an IBM journal, while the main stream of allocator
papers was published in Communications of the A CM. Batson and Brundage's paper
was published in CA CM, but its title may not have conveyed the significance of their
data and conclusions.

86

"...over in the north village they're talking of giving up the lottery."
--Shirley Jackson, "The Lottery"

L e v e r e t t a n d H i b b a r d [LH82] performed one of the all-too-rare studies
evaluating memory allocators using real traces. Unfortunately, their workload
consisted of five very small programs (e.g., towers of Hanoi, knight's tour) coded
in Algol-68; none was more than 100 lines. It is unclear how well such textbook-
style programs represent larger programs in general use.

Algol-68 did support general heap allocation, an improvement over Algol-60.
The Algol-68 system used for experiments used reference counting to reclaim
space automatically, m2 (Deferred) coalescing was performed only when memory
is exhausted. The general allocator was first fit with a LIFO-ordered free list.

LIFO-ordered quick lists for different-sized blocks were used, as well as per-
procedure lists for activation records, m3 and some lists for specific data types.
Deferred coalescing greatly improved the speed of their allocator, and usually
decreased overall memory usage.

Leverett and Hibbard also found that Knuth 's roving pointer modification
(i.e., next fit) was disappointing; search lengths did not decrease by much, and
for some programs got longer.

P a g e [Pag82] evaluated Campbell's "optimal fit" method analytically and
in randomized trace simulations. (Page's version of optimal fit was somewhat
different from Campbell's, of necessity, since Campbell 's was intertwined with a
particular application program structure.) Page showed that Campbell 's anal-
ysis erred in assuming randomness in first-fit-like placement policies, and that
systematicities in placement matter considerably. In Page's analysis and simu-
lations, Campbell 's "optimal" fit was distinctly inferior to first fit and best fit
in both search times and memory usage. (Only uniformly distributed sizes and
lifetimes were used, however.)

Page also showed that (for uniformly distributed sizes and lifetimes), a first
fit policy resulted in the same placement decisions as best fit most of the time, if
given the same configuration of memory and the same request. He also showed
that the free list for first fit tended toward being roughly sorted in size order.
(See also similar but possibly weaker claims in [Sho75], discussed earlier.)

B e t t e r i d g e [Bet82] at tempted to compute fragmentation probabilities for
different allocators using first-order Markov modeling. (This book is apparently

112 A possibly misleading passage says that memory is freed "explicitly," but that is
apparently referring to a level of abstraction below the reference counting mechanism.
Another potentially confusing term, "garbage collection," is used to refer to deferred
coalescing where coalescing is performed only when there is no sufficiently large block
to satisfy a request. This is very different from the usual current usage of the term
[Wi195], but it is not uncommon in early papers on allocators.

113 Activation records were apparently allocated on the general heap; presumably this
was used to support closures with indefinite extent (i.e., "block retention"), and/or
"thunks" (hidden parameterless subroutines) for call-by-name parameter passing
[Ing61].

87

Betteridge's dissertation, completed in 1979.) The basic idea is to model all
possible states of memory occupancy (i.e., all arrangements of allocated and free
blocks), and the transition probabilities between those states. Given a fixed set
of transition probabilities, it is possible to compute the likelihood of the system
being in any particular state over the long run. This set of state probabilities can
then be used to summarize the likelihood of different degrees of fragmentation.

Unfortunately, the number of possible states of memory is exponential in
the size of memory, and Betteridge was only able to compute probabilities for
memories of sizes up to twelve units. (These units may be words, or they may
be interpreted as some larger grain size. However, earlier results suggest tha t
small grain sizes are preferred.) He suggests several techniques to make it easier
to use somewhat larger models, but had little success with the few he tried. (See
also [Ben81, Ree82, McI82].) We are not optimistic that this approach is useful
for realistic memory sizes, especially since memory sizes tend to increase rapidly
over time.

To allow the use of a first-order Markov model, Betteridge assumed that
object lifetimes were completely independent- -not only must death times be
random with respect to allocation order, but there could be no information in
the request stream that might give an allocator any exploitable hint as to when
objects might die. For this, Betteridge had to assume a random exponential
lifetime function, i.e., a half-life function where any live object was exactly as
likely to die as any other at a given time. (Refer to Section 2.2 for more on the
significance of this assumption.) This is necessary to ensure that the frequencies
of actual transitions would stabilize over the long run (i.e., the Markov model is
crgodic--see Section 2.2), and allows the computation of the transition probabil-
ities without running an actual simulation for an inconveniently infinite period
of time. The system need not keep track of the sequences of transitions that
result in particular s ta tes--actual sequences are abstracted away, and only the
states where histories intersect are represented.

Even with these extremely strong assumptions of randomness, this problem
is combinatorially explosive. (This is true even when various symmetries and
rotations are exploited to combine (exactly) equivalent states [Ben81, McI82].)

We believe that the only way to make this kind of problem remotely tractable
is with powerful abstractions over the possible states of memory. For the gen-
eral memory allocation problem, this is simply not possible--for an arbitrary
interesting allocator and real request streams, there is always the possibility of
systematic and even chaotic interactions. The only way to make the real problem
formalizable is to find a useful qualitative model that captures the likely range of
program behaviors, each allocator's likely responses to classes of request streams,
and (most important ly) allows reliable characterization of request streams and
allocators in the relevant ways. We are very far away from this deep understand-
ing at present.

B e c k [Bec82] described the basic issue of fragmentation clearly, and designed
two interesting classes of allocators, one idealized and one implementable. Beck
pointed out that basic goal of an allocator is to reduce the number of isolated

88

free blocks, and that the existence of isolated free blocks is due to neighboring
blocks having different death times.

This motivated the design of an idealized offline allocator that looks ahead
into the future to find out when objects will die; it attempts to place new objects
near objects that will die at about the same time. This policy can't be used in
practice, because allocators must generally make their decisions online, but it
provides an idealized standard for comparison. This "release-match" algorithm
is philosophically similar to Belady's well-known MIN (or OPT) algorithm for
optimal demand-paging. (It is heuristic, however, rather than optimal.)

Beck also described an implementable "age match" algorithm intended to
resemble release-match, using allocation time to heuristically estimate the deal-
location (release) time.

For an exponential size distribution and uniform lifetime distribution, he
found that the effectiveness of the age-match heuristic depended on the lifetime
variance (i.e., the range of the uniform distribution). This is not surprising,
because when lifetimes are similar, objects will tend to be deallocated in the
order that they are allocated. As the variance in lifetimes increases, however,
the accuracy of prediction is reduced.

Beck also experimented with hyper-exponential lifetime distributions. In this
case, the age-match heuristic systematically failed, because in that case the age
of an object is negatively correlated with the time until it will die. This should
not be surprising. (In this case it might work to reverse the order of estimated
death times.)

S t ephenson [Ste83] introduced the "Fast Fits" technique, using a Cartesian
tree of free blocks ordered primarily by address and secondarily by block size.
He evaluated the leftmost fit (address-ordered first fit) and better fit variants
experimentally. Details of the experiment are not given, but the general result
was that the space usage of the two policies was similar, with better fit appearing
to have a time advantage. (A caveat is given, however, that this result appears to
be workload-dependent, in that different distributions may give different results.
This may be a response to the then-unpublished experiments in [BBDT84], but
no details are given.)

K a u f m a n [Kau84] presented two buddy system allocators using deferred co-
alescing. The first, "tailored list" buddy systems, use a set of size-specific free lists
whose contents are not usually coalesced. 114 This system attempts to keep the
lengths of the free lists proportional to the expected usage of the corresponding
sizes; it requires estimates of program behavior. The second scheme, "recombi-
nation delaying" buddy systems, adapts dynamically to the actual workload. In
experiments using the usual synthetic trace methodology, Kaufman found that
both systems worked quite well at reducing the time spent in memory manage-
ment. These results are suspect, however, due to the load-smoothing effects of
random traces, which flatter small caches of free blocks (Section 3.11).115

114 This tailoring of list length should not be confused with the tailoring of size classes
as mentioned in [PN77].

89

B o z m a n e t al. [BBDT84] studied a wide variety of Mlocators, including
sequential fits, deferred coalescing schemes, buddy systems, and Stephenson's
Cartesian tree system. (Not M1 allocators were compared directly to each other,
because some were tailored to an IBM operating system and others were not.)
They used synthetic traces based on real lifetime distributions, primarily from
two installations of the same IBM operating system, VM-SP. (Their main goal
was to develop an efficient allocator for that system.) They also measured the
performance of a resulting algorithm in actual use in the VM-SP system.

First, Bozman et al. compared first fit, next fit and best fit with the VM-SP
algorithm. This algorithm, based on earlier research by Margolin et al., used
deferred coalescing with a generM pool managed by address-ordered first fit.
In terms of fragmentation, VM-SP was best, followed by best fit, which was
significantly better than first fit. This result is unclear, however, because they
don' t state which variety of first fit they were using (e.g., address-ordered or
LIFO-ordered free lists). Next fit was considerably worse, using about 50% more
memory than the VM-SP algorithm.

They then compared best-fit-first (taking the first of several equally good
fits) with best-fit-last (taking the last), and found that best-fit-last was better.
They also added a splitting threshold, which reduced the difference between best
fit and first fit. (We are not sure whether these got better or worse in absolute
terms.) Adding the splitting threshold also reversed the order of best-fit-first and
best-fit-last.

Bozman et al. also tested a binary buddy and a modified Fibonacci buddy.
They found that the memory usage of both was poor, but both were fast; the
memory usage of the modified Fibonacci buddy was quite variable.

Testing Stephenson's Cartesian tree allocator, they found that the leftmost
fit (address ordered first fit) policy worked better than the "better fit" policy;
they latter suffered from "severe" external fragmentation for the test workload.
They suggest that leftmost fit would make a good general allocator in a system
with deferred coalescing.

After these initial experiments, Bozman et al. developed a fast deferred coa-
lescing allocator. This allocator used 2 to 15 percent more memory than best fit,
but was much faster. We note tha t the extra memory usage was likely caused at
least in part by the policy of keeping "subpools" (Dee lists caching free blocks of
particular sizes) long enough that the miss rate was half a percent or less. (That
is, no more than one in two hundred allocations required the use of the general
allocator.)

This allocator was deployed and evaluated in the same installations of the
VM-SP operating system from which their test statistics had been gathered,
The performance results were favorable, and close to what was predicted. From

115 The tailored list scheme worked better than the recombination delaying scheme, but
this reslflt is especially suspect; the tailored list scheme does not respond dynamically
to the changing characteristics of the workload, but this weakness is not stressed by
an artificial trace without significant phase behavior.

90

this Bozman et al. make the general claim--which is clearly far too strong--
that the statistical assumptions underlying the random-trace methodology are
not a problem, and that the results are highly predictive. (We believe that this
conclusion is difficult to support with what amount to two data points, especially
since their validation was primarily relevant to variations on a single optimized
design, not the wide variety of basic allocators they experimented with using
synthetic traces.)

In a related paper, Bozman [Boz84] described a general "software lookaside
buffer" technique for caching search results in data structures. One of his three
applications (and empirical evaluations) was for deferred coalescing with best
fit and address-ordered first fit allocators. In that application, the buffer is a
FIFO queue storing the size and address of individual blocks that have been
freed recently. It is searched linearly at allocation time.

For his evaluation, Bozman used the conventional synthetic trace method-
ology, using a real size distribution from a VM-SP system and exponentially
distributed lifetimes; he reported considerable reductions in search lengths, in
terms of combined FIFO buffer and general allocator searches. (It should be
noted that both general allocators used were based on linear lists, and hence not
very scalable to large heaps; since the FIFO buffer records individual free blocks,
it too would not scale well. With better implementations of the general allocator,
this would be less attractive. It also appears that the use of a randomized trace
is likely to have a significant effect on the results (Section 3.11).

Coffman, Kadota~ and Shepp [CKS85] have conjectured that address-
ordered first fit approaches optimal as the size of memory increases. They make
very strong assumptions of randomness and independence, including assuming
that lifetimes are unrelated and exponentially distributed.

In support of this conjecture, they present results of simulations using pseudo-
random synthetic traces, which are consistent with their conjecture. They claim
that "we can draw strong engineering conclusions from the above experimental
result."

Naturally, we are somewhat skeptical of this statement, because of the known
non-randomness and non-independence observed in most real systems. Coffman,
Kadota, and Shepp suggest that their result indicates that large archival storage
systems should use first fit rather than more complex schemes, but we believe
that this result is inapplicable there. (We suspect that there are significant reg-
ularities in file usage that are extremely unlikely to occur with random traces
using smooth distributions, although the use of compression may smooth size
distributions somewhat.)

We also note that for secondary and tertiary storage more generally, contigu-
ous storage is not strictly required; freedom from this restriction allows schemes
that are much more flexible and less vulnerable to fragmentation. (Many systems
divide all files into blocks of one or two fixed sizes, and only preserve logicalconti-
guity (e.g., [ROgl, VC90, SKW92, CG91, AS95]). If access times are important,
other considerations are likely to be much more significant, such as locality. (For

91

rotat ing media and especially for tapes, placement has more impor tant effects
on speed than on space usage.)

O l d e h o e f t a n d A l l a n [OA85] experimented with variants of deferred coa-
lescing, using a working-set or FIFO policy to dynamically determine which sizes
would be kept on quick lists for for deferred coalescing. The system maintained
a cache of free lists for recently-freed sizes. (Note that where Bozman had main-
tained a cache of individual free blocks, Oldehoeft and Allan maintained a cache
of free lists for recently-freed sizes.) For the FIFO policy, this cache contains
a fixed number of free lists. For the Working Set policy, a variable number of
free lists are maintained, depending on how many sizes have been freed within a
certain t ime window. In either policy, when a free list is evicted from the cache,
the blocks on that list are returned to the general pool and coalesced if possible.
Note that the number and size of uneoalesced free blocks is potentially quite
variable in this scheme, but probably less so than in schemes with fixed-length
quick lists.

One real trace was used, and two synthetic traces generated from real dis-
tributions. The real trace was from a Pascal heap (program type not stated) and
tile real distributions were Margolin's CP-67 data and Leverett and Hibbard's
da ta for small Algol programs.

Oldehoeft and Allan reported results for FIFO and Working Set with compa-
rable average cache sizes. ']?he FIFO policy may defer the coalescing of blocks for
a very variable time, depending on how many different sizes of object are freed.
The Working Set policy to coalesce all blocks of sizes that haven' t been freed
within its t ime window. Neither policy bounds the volume of memory contained
in the quick lists, although it would appear that Working Set is less likely to
have excessive amounts of idle memory on quick lists.

The Working Set policy yielded higher hit rates--i .e. , more allocations were
satisfied from the size-specific lists, avoiding use of the general allocator.

They also experimented with a totally synthetic workload using uniform ran-
dom size and lifetime distributions. For that workload, Working Set and FIFO
performed about equally, and poorly, as would be expected.

Effects on actual memory usage were not reported, so the effect of their
deferred coalescing on overall memory usage is unknown.

K o r n a n d Vo [KV85] evaluated a variety of UNIX memory allocators, both
production implementations distributed with several UNIX systems, and new
implementations and variants. Despite remarking on the high fragmentation ob-
served for a certain usage pattern combined with a next fit allocator (the simple
loop described in Section 3.5), they used the traditional synthetic trace meth-
odology. (Vo's recent work uses real traces, as described later.) Only uniform
size and lifetime distributions were used. They were interested in both time and
space costs, and in scalability to large heaps.

Five of their allocators were variants of next fit. 116 The others included simple

118 Next fit is called "first fit" in their paper, as is common.

92

segregated storage (with powers of two size classes) 117 address-ordered first fit
(using a self-adjusting "splay" tree [ST85]), segregated fits (using Fibonacci-
spaced size classes), better fit (using Stephenson's Cartesian tree scheme), and
two best fit algorithms (one using a balanced binary tree, and the other a splay
tree).

It may be significant that Korn and Vo modified most of their allocators to
include a "wilderness preservation heuristic," which treats the last block of the
heap memory area specially; this is the point (called the "break") where the
heap segment may be extended, using UNIX sbrk () system call, to obtain more
virtual memory pages from the operating system. (See Section 3.5.)

To summarize their results, we will give approximate numbers obtained by
visual inspection of their Figure 3. (These numbers should be considered very
approximate, because the space wastage varied somewhat with mean object size
and lifetimes.)

Space waste (expressed as an increase over the amount of live data, and in in-
creasing order), was as follows. Best fit variants worked best, with space wastage
of roughly 6 to 11 percent (in order of increasing waste, best fit (splay), best fit
(balanced), better fit Cartesian). Segregated fits followed at about 16 percent.
Address-ordered next fit wasted about 20 percent, and address-ordered first fit
wasted about 24 percent. Standard next fit and a variant using adaptive search
followed, both at about 26 percent. Two other variants of next fit followed at
a considerable distance; one used a restricted search (42 percent) and the other
treated small blocks specially (45 percent). Simple segregated storage (powers of
two sizes) was worst at about 47 percent. (These numbers should be interpreted
with some caution, however; besides the general problem of using synthetic work-
loads, there is variation among the allocators in per-block overheads.)

In terms of time costs, two implementations scaled very poorly, being fast for
small mean lifetimes (and hence heap sizes), but very slow for large ones. The
implementations of these algorithms both used linear lists of all blocks, allocated
or free. These algorithms were a standard next fit and an address-ordered next
fit.

Among the other algorithms, there were four clusters at different time per-
formance levels. (We will name the algorithms within a cluster in approximately
increasing cost order.) The first cluster contained only simple segregated stor-
age, which was by far the fastest. The second cluster contained next fit with
restricted search, next fit with special treatment of small blocks, segregated fits,
and next fit with adaptive search. (This last appeared to scale the worst of this
cluster, while segregated fits scaled best.) The third cluster contained best fit
(splay), better fit (Cartesian), and address-ordered first fit (splay).

Ga l a n d M e z z a l a m a [GM85] presented a very simple deferred coalescing
scheme, where only one size class is treated specially, and the standard C library

117 This is allocator (implemented by Chris Kingsley and widely distributed with the
BSD 4.2 UNIX system) is called a buddy system in their paper, but it is not; it does
no coalescing at all.

93

allocator routines are used for backing storage. (The algori thms used in this
l ibrary are not stated, and are not standardized.)

Their target application domain was concurrent simulations, where many
variat ions of a design are tested in a single run. As the run progresses, faults
are detected and faul ty designs are deleted. 11s An interesting characteristic of
this kind of system is tha t m em ory usage follows a backward (decreasing) r amp
function after the initialization phase- -as ide from short- term variat ions due to
short-l ived objects, the general shape of the memory-use function is monotonic-
ally decreasing.

To test their allocator, they used a synthetic workload where memory usage
rises sharply at the beginning and oscillates around a linearly descending ramp.
The use of this synthetic trace technique is more somewhat more reasonable for
this specialized allocator than for the general allocation problem; since there 's no
external f ragmenta t ion, there 's no difference between a real trace and a synthetic
one in tha t regard.

They reported tha t this quick list technique was quite fast, relative to the
(unspecified) general allocator.

From our point of view, we find the experimental results less interesting
than the explanation of the overall pat tern of memory usage in this class of
application, and what the attractiveness of this approach indicates about the
s tate of heap management in the real world (refer to Section 1.1).

P a g e a n d H a g i n s [PH86] provided the first published double buddy system,
and experimental ly compared it to binary and weighted buddy systems. Using
the s tandard simulation techniques, and only uniformly distr ibuted sizes and
lifetimes, they show tha t double buddies suffer from somewhat less f ragmentat ion
than binary and weighted buddies. They also present an analysis that explains
this result. 119

B r e n t [Bre89] presented a scalable algori thm for the address-ordered first
fit policy, using a "heap," da ta s t ructure-- i .e . , a partially-ordered tree, not to
be confused with the sense of "heap" as a pool for dynamic storage a l loca t ion- -
embedded in an array. To keep the size of this heap array small, a two-level
scheme is used. Memory is divided into equal-sized chunks, and the heap recorded
the size of the largest free block in each chunk. Within a chunk, conventional
linear searching is used. While this scheme appears to scale well, it has the

11s This is actually intended to test a test system; faulty designs are intentionally in-
cluded in the set, and should be weeded out by the test system. If not, the test
system must be improved.

119 While we believe that double buddies are indeed effective, we disagree somewhat
with their methodology and their analysis. Uniform random distributions do not
exhibit the skewed and non-uniform size distributions often seen in real programs,
or pronounced phase behavior. All of these factors may affect the performance of the
double buddy system; a skew towards a particular size favors double buddies, where
splitting always results in same-sized free blocks. Phase behavior may enhance this
effect, but on the other hand may cause problems due to uneven usage of the two
component (binary) buddy systems, causing external fragmentation.

94

drawback that the constant factors are apparently rather high. Other scalable
indexing schemes may provide higher performance for address-ordered first fit.

Although the villagers had forgotten the ritual and lost the original black
box, they still remembered to use stones...
"It isn't fair, it isn't right," Mrs. Hutchison screamed and then they were
upon her.
--Shirley Jackson, "The Lottery"

C o f f m a n a n d L e i g h t o n , in a paper titled "A Provably Efficient Algorithm
for Dynamic Storage Allocation" [CL89] describe an algorithm combining some
characteristics of best fit and address-ordered first fit, 12~ and prove that its
memory usage is asymptotically optimal as system size increases toward infinity.

To enable this proof, they make the usual assumptions of randomness and in-
dependence, including randomly ordered and exponentially distributed lifetimes.
(See Section 2.2.) They also make the further assumption that the distribution
of object sizes is known a priori, which is generally not the case in real systems.

Coffman and Leighton say that probabilistic results are less common than
worst-case results, "but far more important ," that their result has "strong conse-
quences for practical storage allocation systems," and that algorithms designed
to "create sufficiently large holes when none exist will not be necessary except
in very special circumstances."

It should be no surprise that we feel compelled to take exception with such
strongly-stated claims. In our view, the patterned time-varying nature of real
request streams is the major problem in storage allocation, and in particular
the time-varying shifts in the requested sizes. Assuming that request distribu-
tions are known and stable makes the problem mathematical ly tractable, but
considerably less relevant.

Coffman and Leighton offer an asymptotic improvement in memory usage,
but this amounts to no more than a small constant factor in practice, since real
algorithms used in real systems apparently seldom waste more than a factor of
two in space, and usually much less. 1~1

While we believe that this result is of limited relevance to real systems, it does
seem likely that for extremely large systems with many complex and independent
tasks, there may be significant smoothing effects that tend in this direction. In
tha t case, there may be very many effectively random holes, and thus a likely
good fit for any particular request.

120 This algorithm bears a resemblance to one devised by Krogdahl to ensure good
worst-case performance [Kro73].

lzl We also note that their algorithm requires logz n time--where n is the number of
free blocks--which tends toward infinity as n tends toward infinity. In practical
terms, it becomes rather slow as systems become very large. However, more scalable
(sublogarithmic) algorithms could presumably exploit the same statistical tendencies
of very large systems, if real workloads resembled stochastic processes.

95

Unfortunately, we suspect that the result given is not directly relevant to any
existing system, and for any sufficiently large and complex systems, other consid-
erations are likely to be more impor tan t . For the foreseeable future, t ime-varying
behavior is the essential policy consideration. If systems eventually become ver
large (and heterogeneous), locality concerns are likely to be crucial. (Consider
the effects on locality in a large system when objects are placed in effectively
randomly-generated holes; the scattering of related da ta seems likely to be a
problem.)

H a n s o n [Han90] presents a technique for allocating objects and deallocating
them e n m a s s e . This is often more efficient and convenient than traversing da ta
structures being deallocated, and freeing each object individually. A special kind
of heap can be created on demand. In the GNU C compiler system, these are
called "obstacks," short for "object stacks," and we will adopt that te rm here.
Objects known to die at the end of a phase can be allocated on an obstack,
and all freed at once when the phase is over. More generally, nested phases
are supported, so that objects can 1;e deallocated in batches whose extents are
nested. Freeing an object s imply frees that object and all objects allocated after
it. (This is actually a very old idea, dating at least to Collins' "zone" system. 122
The fact tha t this idea has been independently developed by a variety of system
implementors attests to the obvious and exploitable phase behavior evident in
m a n y programs.)

The obstack scheme has two advantages. First, it is often easier for the pro-
g rammer to manage batches of objects than to code freeing routines tha t free
each object individually. Second, the allocator implementat ion can be optimized
for this usage style, reducing space and t ime costs for freeing objects. In Han-
son's system, storage for a special ly-managed heap is allocated as a linked list
of large chunks, and objects can be allocated contiguously within a chunk; no
header is required on each small object. The usual t ime cost for allocation is
just the incrementing of a pointer into a chunk, plus a check to see if the chunk
is full. The t ime cost for freeing in a large specially-managed heap is roughly
proport ional to the number of chunks freed, with fairly small constant factors,
rather than the number of small objects freed.

Obstack allocation must be used very carefully, because it intertwines the
management of da ta structures with the control structure of a program. It is
easy to make mistakes where objects are allocated on the obstack, but the da ta
objects they manage are allocated on the general heap. (E.g., a queue object
m a y be allocated on an obstack, but allocate its queue nodes on the general
heap.) When the controlling objects are freed, the controlled objects are not;
this is especially likely to happen in large systems, where intercalling libraries
do not obey the same storage management conventions. 12a

122 Similar techniques have been used in Lisp systems (notably the Lisp Machine sys-
tems), and are known by a variety of names.

12a The opposite kind of mistake is also easy to make, if the controlling objects' routines
are coded on the assumption that the objects it controls will be freed automati-
cally when it is freed, but the controlling object is actually allocated on the general

96

4.2 R e c e n t S t u d i e s U s i n g R e a l T r a c e s

"Some places have already quit lotteries," Mrs. Adams said.
"Nothing but trouble in that," Old Man Warner said stoutly.
--Shirley Jackson, "The Lottery"

Z o rn , G r u n w a l d , e t al. Zorn and Grunwald and their collaborators have per-
formed a variety of experimental evaluations of allocators and garbage collectors
with respect to space, time, and locality costs. This is the first major series of
experiments using valid methodology, i.e., using real traces of program behavior
for a variety of programs.

Our presentation here is sketchy and incomplete, for several reasons. Zorn and
Grunwald are largely interested in time costs, while we are (here) more interested
in placement policies' effect on fragmentation. They have often used complicated
hybrid allocator algorithms, making their results difficult to interpret in terms
of our basic policy consideration, and in general, they do not carefully separate
out the effects of particular implementation details (such as per-object overheads
and minimum block sizes) from "true" fragmentation. (Nonetheless, their work
is far more useful than most prior experimental work.) Some of Zorn and Grun-
wald's papers - -and much of their da ta and their test p rograms--are available
via anonymous Internet F T P (from cs . c o l o r a d o , edu) for further analysis and
experimentation.

In [ZG92], Z o r n a n d G r u n w a l d present various allocation-related statistics
on six allocation-intensive C programs, i.e., programs for which the speed of the
allocator is important . (Not all of these use large amounts of memory, however.)
They found that for each of these programs, the two most popular sizes accounted
for at least half (and as much as 93%) of all allocations. In each, the top ten
sizes accounted for at least 85% of all allocations.

Z o r n a n d G r u n w a l d [ZG94] a t tempted to find fairly conventional models
of memory allocation that would allow the generation of synthetic traces useful
for evaluating allocators. They used several models of varying degrees of sophis-
tication, some of which modeled phase behavior and one of which modeled fine-
grained patterns stochastically (using a first-order Markov model). To obtain the

heap rather than an obstack. In that case, a storage leak results. These kinds of
errors (and many others) can usually be avoided if garbage collection [Wil95] is used
to free objects automatically. Baker reports that the heavy use of an obstack-like
scheme used in MIT Lisp machines was a continuing source of bugs (Baker, personal
communication 1995). David Moon reports that a similar facility in the Symbolics
system often resulted in obscure bugs, and its use was discouraged after an efficient
generational garbage collector [Moo84] was developed (Moon, personal communica-
tion 1995); generational techniques heuristically exploit the lifetime distributions of
typical programs [LH83, Wi195]. For systems without garbage collection, however,
the resulting problems may be no worse than those introduced by other explicit
deallocation strategies when used carefully and in well-documented ways.

97

relevant statistics, they gathered real traces and analyzed them to quantify var-
ious properties, then constructed various drivers using pseudo-random numbers
to generate request streams accordingly.

In general, the more refined a t tempts at modeling real behavior failed. (Our
impression is that they did not necessarily expect to succeed--their earlier em-
pirical work shows a strong disposition toward the use of real workloads.) They
found that their most accurate predictor was a simple "mean value" model,
which uses only the mean size and lifetime, and generates a request stream with
uniformly distributed sizes and lifetimes. (Both vary from zero to twice the mean,
uniformly.) Unfortunately, even their best model is not very accurate, exhibiting
errors of around 20%. For a small set of allocators, this was sufficient to predict
the rank ordering (in terms of fragmentation) in most cases, but with ordering
errors when the allocators were within a few percent of each other.

From this Zorn and Grunwald conclude that the only reliable method cur-
rently available for studying allocators is trace-driven simulation with real traces.
While this result has received too little attention, we believe that this was a wa-
tershed experiment, invalidating most of the prior experimental work in memory
allocation.

Ironically, Zorn and Grunwald's results show that some of the most simplis-
tic models - -embodying clearly false assumptions of uniform size and lifetime
distr ibutions--generMly produce more accurate results than more "realistic"
models. It appears that some earlier results using unsound methods have ob-
tained the right results by sheer luck- - the "better" algorithms do in fact tend
to work bet ter for real programs behavior as well. (Randomization introduces
biases tha t tend to cancel each other out for most policies tested in earlier work.)
The errors produced are still large, however, often comparable to the total frag-
menta t ion for real programs, once various overheads are accounted for.

(Our own later experiments [WJNB95], described later, show that the ran-
dom trace methodology can introduce serious and systematic errors for some
allocators which are popular in practice but almost entirely absent in the ex-
perimental literature. This is ironic as well--earlier experimenters happened to
choose a combination of policies and experimental methodology that gave some
of the right answers. It is clear from our review of the literature that there
was-and still i s - -no good model that predicts such a happy coincidence.)

Z o r n , G r u n w a l d , a n d H e n d e r s o n [GZH93] measured the locality effects
of several allocators: next fit, the G + + segregated fits allocator by Doug Lea,
simple segregated storage using powers of two size classes (the Berkeley 4.2 BSD
allocator by Chris Kingsley), and two simplified quick fit schemes (i.e., "Quick
Fit" in the sense of [WW88], i.e., without coalescing for small objects).

One of simplified these quick fit allocators (written by Mike Haertel) uses first
fit as the general allocator, and allocates small objects in powers-of-two sized
blocks. (We are not sure which variant of first fit is used.) As an optimization, it
stores information about the memory use within page-sized (4KB) chunks and
can reclaim space for entirely empty pages, so that they can be reused for objects
of other sizes. It can also use the pagewise information in an a t tempt to improve
the locality of free list searches.

98

The other simplified quick fit allocator is uses the G + + segregated fits system
as its general allocator, and uses quick lists for each size, rounded to the nearest
word, up to 8 words (32 bytes).

Using Larus' QP tracing tool [BL92], Zorn et al. traced five C programs
combined with their five allocators, and ran the traces through virtual memory
and cache simulators.

They found that next fit had by far the worst locality, and attr ibute this to
the roving pointer mechanism--as free list searches cycle through the free list,
they may touch widely separated blocks only once per cycle. We suspect that
there is more to it than this, however, and that the poor locality is also due
to the effects of the free list policy; it may intersperse objects belonging to one
phase among objects belonging to others as it roves through memory.

Because of the number of variables (use of quick lists, size ranges of quick lists,
type of general allocator, etc.), we find the other results of this study difficult
to summarize. It appears that the use of coarse size ranges degrades locality,
as does excessive per-object overhead due to boundary tags. (The version of
Lea's allocator they used had one-word footers as well as one-word headers; we
have since removed the footers.) FIFO-managed segregated lists promote rapid
reuse of memory, improving locality at the small granularities relevant to cache
memories. Effects on larger-scale locality are less clear.

B a r r e t t a n d Z o r n [BZ93] present a very interesting scheme for avoiding
fragmentation by heuristically segregating short-lived objects from other ob-
jects. Their "lifetime prediction" allocator uses ofttine profile information from
"training" runs on sample da ta to predict which call sites will allocate short-
lived objects. During normal (non-training) runs, the allocator examines the
procedure call stack to distinguish between different patterns of procedure calls
that result in allocations. Based on profile information, it predicts whether the
lifetimes of objects created by that call pattern can be reliably predicted to be
short. (This is essentially a refinement of a similar scheme used by Demers et al.
for lifetime prediction in a garbage collector; that scheme [DWH+90] uses only
the size and stack pointer, however, not the call chain.)

For five test applications, Barrett and Zorn found that examining the stack
to a depth of four calls generally worked quite well, enabling discrimination
between qualitatively different patterns that result in allocations from the same
allocator call site.

Their predictor was able to correctly predict that 18% to 99% of all allocated
bytes would be short-lived. (For other allocations, no prediction is made; the dis-
tinction is between "known short-lived" and "don't know.") While we are not
sure whether this is the best way of exploiting regularities in real workloads, 124
it certainly shows that exploitable regularities exist, and that program behavior
is not random in the manner assumed (implicitly or explicitly) by earlier re-

124 As noted in SecLionsec:RealPgmBehavior, we suspect that death time discrimination
is easier than lifetime prediction.

99

searchers. (Barrett and Zorn found that using only the requested size was less
predictive, but still provided useful information.)

Z o r n a n d G r u n w a l d [GZ93] have investigated the tailoring of allocators
to particular programs, primarily to improve speed without undue space cost.
One impor tan t technique is the use of inlining (incorporating the usual-case
allocator code at the point of call, rather than requiring an out-of-line call to
a subroutine). The judicious use of inlining, quick lists for the impor tant size
classes, and a general coalescing backing allocator appears to be able to provide
excellent speed with reasonable memory costs.

Another useful empirical result is that when programs are run on different
data sets, they typically allocate the same sizes in roughly similar propor t ions- -
the most impor tant size classes in one run are likely to be the most impor tant
size classes in another, allowing of[line tailoring of the algorithm using profile
data.

Vo. In a forthcoming article, Vo reports on the design of a new allocator frame-
work and empirical results comparing several allocators using real traces [Vo95].
(Because this is work in progress, we will not report the empirical results in
detail.)

Vo's v m a l l o c () allocator is conceptually similar to Ross' zone system, al-
lowing different "regions" of memory to be managed by different policies. 1~5
(Regions are subsets of the overall heap memory, and are not contiguous in gen-
eral; to a first approximation, they are sets of pages.) A specific allocator can
be chosen at link time by setting appropriate UNIX environment variables. This
supports experimentation with different allocators to tune memory management
to specific applications, or to different parts of the same application, which may
allocate in zones that are managed differently. Various debugging facilities are
also provided.

The default allocator provided by Vo's system is a deferred coalescing scheme
using best fit for the general allocator. (The size ordering of blocks is maintained
using a splay tree.) In comparisons with several other allocators, this allocator is
shown to be consistently among the fastest and among the most space efficient,
for several varied test applications.

W i l s o n , J o h n s t o n e , Nee ly , a n d Boles . In a forthcoming report [WJNB95],
we will present results of a variety of memory allocation experiments using real
traces from eight varied C and C+-t- programs, and more than twenty variants of
six general allocator types (first fit, best fit, next fit, buddy systems, and simple
segregated storage) [WJNB95]. We will briefly describe some of the major results
of that study here.

125 See also Delacour's [De192] and Attardi's [AF94] and Delacour's sophisticated sys-
tems for low-level storage management in (mostly) garbage-collected systems using
mixed languages and implementation strategies.

100

To test the usual experimental assumptions, we used both real and synthetic
traces, and tried to make the synthetic traces as realistic as possible in terms
of size and lifetime distributions. We then compared results of simulations using
real traces with those from randomly-ordered traces. (To generate the random
traces, we simply "shuffled" the real traces, preserving the size and lifetime dis-
tributions much more accurately than most synthetic trace generation schemes
do.) We found that there was a significant correlation between the results from
real traces and those from shuffled traces, but there were major and systematic
errors as well. In an initial test of eight varied allocators, the correlations ac-
counted for only about a third of the observed variation in performance. This
shows that the random ordering of synthetic traces discards the majority of the
information relevant to estimating real fragmentation. Results from most of pre-
1992 experiments are therefore highly questionable.

Using real traces, we measured fragmentation for our eight programs using
our large set of allocators. We will report results for the twelve we consider most
interesting here; for more complete and detailed information, see the forthcoming
report [WJNB95]. These allocators are best fit (using FIFO-ordered free lists126),
first fit (using LIFO-ordered, FIFO-ordered and address-ordered free lists), next
fit (also using LIFO, FIFO, and address order), Lea's segregated fits allocator,
binary and double buddy systems, simple segregated storage using powers--of-
two size classes, and simple segregated storage using twice as many size classes
(powers of two, and three times powers of two, as in the weighted buddy system).

We at tempted to control as many implementation-specific costs as possible.
In all cases, objects were aligned on double-word (eight-byte) boundaries, and
the minimum block size was four words. Fragmentation costs will be reported as
a percentage increase, relative to the baseline of the number of actual bytes of
memory devoted to program objects at the point of maximum memory usage.
All allocators had one-word headers, except for the simple segregated storage
allocators, which had no headers) 2r (As explained earlier, we believe that in
most systems, these will be the usual header sizes for well-implemented allocators
of these types.)

We will summarize fragmentat ion costs for twelve allocators, in increasing
order of space cost. We note that some of these numbers may change slightly
before [WJNB95] appears, due to minor changes in our experiments. The nu-
bers for next fit are also somewhat suspect--we are currently trying to deter-

126 No significant differences were found between results for variations of best fit using
different free list orders. This is not too surprising, given that the best fit policy
severely restricts the choice of free blocks.

127 Rather than varying the actual implementations' header and footer schemes, we sim-
ulated different header sizes by compensating at allocation time and in our measure-
ments. The sequential fits, segregated fits, and simple segregated storage allocators
actually use two-word headers or one word headers and one word footers, but we
reduced the request sizes by one word at allocation time to "recover" one of those
words by counting it as available to hold a word of an object.

101

mine whether they are affected by a failure to respect Korn and Vo's wilderness
preservation heuristic328

It should also be noted tha t our experimental methodology could introduce
errors on the order of a percent or two. Worse, we found tha t the variance
for some of these allocators was quite high, especially for some of the poorer
algori thms. (We are also concerned that any sample of eight programs cannot
be considered representative of all real programs, though we have done our best
[WJNB95].) The rank ordering here should thus be considered very approximate ,
especially within clusters.

To our great surprise, we found tha t best fit, address-ordered first fit, and
FIFO-ordered first fit all performed extremely wel l - -and nearly identically well.
All three of these allocators had only about 22% fragmentat ion, including losses
due to header costs, rounding up for doubleword alignment, and rounding small
block sizes up to four words.

They were followed by a cluster containing address-ordered next fit, segrega-
ted fits, and FIFO-ordered next fit at 28%, 31% and 32%. Then came a cluster
consisting of LIFO-ordered first fit, double buddy, and LIFO-ordered next fit,
and at 54%, 56%, and 59%. These were followed by a cluster consisting of sim-
ple segregated storage using closely-spaced size classes (73%) and binary buddy
(74%). Simple segregated storage using powers-of-two sizes came last, at 85%.

For first fit and next fit, we note that the LIFO free list order performed far
worse than the FIFO free list order or the address order. For many programmers
(including us), LIFO ordering seems most natural; all other things being equal,
it would also appear to be advantageous in terms of locality. Its f ragmenta t ion
effects are severe, however, typically increasing f ragmentat ion by a factor of two
or three relative to either address-order or FIFO-order. We are not sure why this
is; the main characteristic the latter two seem to have in common is deferred
reuse. It m a y be tha t a deferred reuse s trategy is more impor tan t than the details
of the actual policy. If so, that suggests that a wide variety of policies may have
excellent m e m o r y usage. This is encouraging, because it suggests that some of
those policies may be amenable to very efficient and scalable implementat ions.

Double buddy worked as it was designed t o - - i f we assume that it reduced in-
ternal f ragmenta t ion by the expected (approximate) 14%, it seems tha t the dual
buddy scheme did not introduce significant external f ragmenta t ion- - re la t ive to
binary budd ies - -as Fibonacci and weighted schemes are believed to do. Still, its
performance was far worse than tha t of the best allocators.

In simulations of two of the best allocators (address-ordered first fit and best
fit), e l iminating all header overhead reduced their memory waste to about 14%.
We suspect tha t using one-word alignment and a smaller min imum object size
could reduce this by several percent more. This suggests the "real" f ragmenta t ion
produced by these pol icies--as opposed to waste caused by the implementa t ion
mechanisms we u s e d - - m a y be less than 10%. (This is comparable to the loss we
expect just f rom the double word al ignment and min imum block sizes.)

12s Most of the allocators appear fairly insensitive to this issue, and the others (our first
fit and best fit) were designed to respect it by putting the end block at the far end
of the free list from the search pointer.

102

While the rankings of best fit and address-ordered first fit are similar to
results obtained by random-trace methods, we found them quite surprising, due
to the evident methodological problems of random-trace studies. We know of no
good model to explain them. 129

While the three excellent allocators fared well with both real and random-
ized traces, other allocators fared differently in the two sets of simulations. The
segregated storage schemes did unrealistically well, relative to other allocators,
when traces were randomized.

The results for randomized traces show clearly that size and lifetime dis-
tributions are not sufficient to predict allocator performance for real workloads.
The ordering information interacts with the allocator's policies in ways that are
often more important than the distributions alone. Some of these results were
not unexpected, given our understanding on the methodology. For example, the
unrealistically good performance of simple segregated fits schemes relative to the
others was expected, because of the smoothing effect of random walks--synthet ic
traces tend not to introduce large amounts of external fragmentation, which is
the Achilles' heel of non-splitting, non-coalescing policies.

Like Zorn and Grunwald, we will make the test programs we used available
for others to use for replication of our results and for other experiments. 13~

5 S u m m a r y a n d C o n c l u s i o n s

"[People refused to believe that the earth went around the sun] because
it looked like the sun went around the earth."
"What would it have looked like if it had looked like the earth went
around the sun?"
--attributed to Ludwig Wittgenstein

There is a very large space of possible allocator policies, and a large space of
mechanisms that can support them. Only small parts of these spaces have been
explored to date, and the empirical and analytical techniques used have usually
produced results of dubious validity.

There has been a widespread failure to recognize anomalous data as under-
mining the dominant paradigm, and to push basic causal reasoning th rough- - to
recognize what data could be relevant, and what other theories might be consis-
tent with the observed facts. We find this curious, and suspect it has two main
c a u s e s .

One cause is simply the immatur i ty of the field, and expectations that com-
puter science issues would be easily formalized, after many striking early suc-
cesses. (Ullman [Ul195] eloquently describes this phenomenon.)

129 We have several just-so stories that could explain them, of course, but we haven't
yet convinced ourselves that any of them are true.

130 Our anonymous FTP repository is on f t p . c s . u t e x a s . e d u in the directory
pub/garbage. This repository also contains the BibTeX bibliography file used for
this paper and [Wi195], several papers on persistence and memory hierarchies, and
numerous papers on garbage collection by ourselves and others.

103

Another is doubtless the same kind of paradigm entrenchment that occurs
in other, more mature sciences [Kuh70]. Once the received view has been used
as a theoretical underpinning of enough seemingly successful experiments, and
reiterated in textbooks without the caveats buried in the original research papers,
it is very hard for people to see the alternatives.

The history of memory allocation research may serve as a cautionary tale
for empirical computer science. Har tmanis has observed that computer science
seems less prone to paradigm shifts than most fields [Har95]. We agree in par t
with this sentiment, but the successes of computer science can lead to a false
sense of confidence. Compute r scientists often have less to worry about in te rms
of the validity of "known" results, relative to other scientists, but in fact they
often worry less about it, which can be a problem, too.

5.1 M o d e l s a n d T h e o r i e s

There has been a considerable amount of theoretical work done in the area of
memory a l locat ion-- i f we use "theory" in the parlance of computer science, to
mean a part icular subdiscipline using part icular kinds of logical and m a t h e m a t -
ical analyses. There has been very little theoretical work done, however, if we
use the vernacular and central sense of "theory," i.e., what everyday working
scientists do.

We simply have no theory of program behavior, much less a theory of how
allocators exploit that behavior. (Batson made similar comments in 1976, in a
slightly different context [Bat76], but after nearly two decades the situation is
much the same.)

Aside f rom several useful studies of worst-case performance, most of the
analytical work to date seems to be based on several assumptions that turn out
to be incorrect, and the results cannot be expected to apply directly to the real
problems of memor y allocation.

Like much work in mathemat ics , however, theoretical results may yet prove
to be enlightening. To make sense of these results and apply them properly will
require considerable thought, and the development of a theory in the vernacular
sense.

For example, the striking similarities in performance between best fit and
address-ordered first fit for randomized workloads should be explained. How is
it tha t such different policies are so comparable, for an essentially unpredictable
sequence of requests? More important ly, how does this relate to real request se-
quences? The known dependencies of these algorithms on lifetime distributions
should also be explained more clearly. Randomizat ion of input order may elimi-
nate certain impor tan t variables, and allow others to be explored more or less in
isolation. On the other hand, interactions with real programs may be so system-
atically different that these phenomena have nothing impor tan t in c o m m o n - - f o r
example, dependence on size distributions may be an effect that has little impor-
tance in the face of systematic interactions between placement policy and phase
behavior.

104

Understanding real program behavior still remains the most important first
step in formulating a theory of memory management. Without doing that, we
cannot hope to develop the science of memory management; we can only fumble
around doing ad hoc engineering, in the too-often-used pejorative sense of the
word. At this point, the needs of good science and of good engineering in this
area are the same--a deeper qualitative understanding. We must try to discern
what is relevant and characterize it; this is necessary before formal techniques
can be applied usefully.

5.2 Strategies and Policies

Most policies used by current allocators are derived fairly straightforwardly from
ideas that date from the 1960's, at least. Best fit and address-ordered first fit
policies seem to work well in practice, but after several decades the reasons why
are not much clearer than they were then. It is not clear which regularities in
real request streams they exploit. (It is not even very clear how they exploit
regularities in synthetic request streams, where the regularities are minimal and
presumably much easier to characterize.) Because our current understanding of
these issues is so weak, we will indulge in some speculation.

Given that there is no reason to think that these early policies were so well
thought out that nothing could compete with them, it is worthwhile to wonder
whether there is a large space of possible policies that work at least as well as
these two. Recent results for FIFO-ordered sequential fits may suggest that close
fits and address ordering are not crucial for good performance.

It may well be that the better allocators perform well because it 's very easy
to perform well. Program behavior may be so redundant (in certain relevant
ways) that the important regularities in request streams are trivial to exploit.
The known good policies may only be correlated to some more fundamental
s trategy--or combination of strategies--yet to be discovered.

Given the real and striking regularities in request streams due to common
programming techniques, it seems likely that better algorithms could be designed
if we only had a good model of program behavior, and a good understanding of
how that interacts with allocation policies. Clustered deaths due to phase be-
havior, for example, suggest that contiguous allocation of consecutively-Mlocated
blocks may tend to keep fragmentation low. (It probably has beneficial effects
on locality as well.)

Segregation of different kinds of objects may avoid fragmentation due to
differing death times of objects used for different purposes. (Again, this may in-
crease locality as well--by keeping related objects clustered after more ephemeral
objects have been deallocated.)

On the other hand, it is possible that the regularities exploited by good
existing allocators are so strong and simple that we cannot improve memory
usage by much-- i t ' s possible that all of our best current algorithms exploit them
to the fullest, however accidentally. The other patterns in program behavior may
be so subtle, or interact in such complex ways, that no strategy can do much
better. Or it may turn out that once the regularities are understood, the task

105

of exploiting them online is just too expensive. (That doesn't seem likely to us,
though some intermediate situation seems plausible.)

If all else fails, relying best fit and first fit usually won't be a disaster, as
long as the mechanisms used are scalable. (If one of them doesn't work well for
your program, it 's likely that the other wil l--or that some other simple policy
will suffice.)

On the other hand, it is not clear that our best policies are robust enough
to count on- -so far, only a few experiments have been performed to asses the
interactions between real program behavior and allocator policies. It is entirely
possible that there is a non-negligible percentage of programs for which our
"best" algorithms will fail miserably.

5.3 M e c h a n i s m s

Many current allocator policies are part ly artifacts of primitive implementation
techniques-- they are mostly based on obvious ways of managing linear lists.
Modern data structure techniques allow us to build much more sophisticated in-
dexing schemes, either to improve performance or support better-designed poli-
cies.

Segregated fits and (other) indexing schemes can be used to implement poli-
cies known to work well in practice, and many others. More sophisticated index-
ing schemes will probably allow us to exploit whatever exploitable regularities
we are clever enough to characterize, in a scalable way.

Deferred coalescing allows optimization of common patterns of short-term
memory use, so that scalable mechanisms don' t incur high overheads in practice.
The techniques for deferred coalescing must be studied carefully, however, to
ensure that this mechanism doesn't degrade memory usage unacceptably by
changing placement policies.

5.4 E x p e r i m e n t s

New experimental methods must be developed for the testing of new theories.
Trace-driven simulations of real program/al locator pairs will be quite impor-
tant, of course-- they are an indispensable reality check. These trace-driven sim-
ulations should include locality studies as well as conventional space and time
measurements. Sound work of both sorts has barely begun; there is a lot to do.

If we are to proceed scientifically, however, just running experiments with
a grab-bag of new allocators would may be doing things backwards. Program
behavior should be studied in (relative) isolation, to identifying the fundamental
regularities that are relevant to to various allocators and memory hierarchies.
After that , it should be easier to design strategies and policies intelligently.

5.5 D a t a

Clearly, in order to formulate useful theories of memory management, more data
are required. The current set of programs used for experimentation is not large
enough or varied enough to be representative.

106

Some kinds of programs that are not represented are:

- Sc ien t i f i c c o m p u t i n g programs (especially those using sophisticated sparse
matrix representations),

- l ong - runn ing s y s t e m p r o g r a m s such as operating system kernels, name
servers, file servers, and graphics display servers,

- business data analys is programs such as spreadsheets, report generators, and
so on,

- graphical p r o g r a m s such as desktop publishing systems, CAD interaction
servers and interactive 3-D systems (e.g., virtual reality),

- in terac t i ve p r o g r a m m i n g e n v i r o n m e n t s with source code management sys-
tems and interactive debugging facilities,

- heavi ly ob jec t -or i en ted p r o g r a m s using sophisticated kits and frameworks
composed in a variety of ways,

- a u t o m a t i c a l l y - g e n e r a t e d p r o g r a m s of a variety of types, created using special-
ized code-generation systems or compilers for very-high-level languages.

This partial list is just a beginning--there are many kinds of programs, writ-
ten in a variety of styles, and test application suites should include as many of
them as possible.

There are some difficulties in obtaining and using such programs that can't
be overlooked. The first is that the most easily obtainable programs are often
not the most representative--freely available code is often of a few types, such as
script language interpreters, which do not represent the bulk of actual computer
use, particularly memory use.

Those programs that are available are often difficult to analyze, for various
reksons. Many used hand-optimized memory allocators, which must be removed
to reveal the "true" memory usage--and this "true" memory usage itself may
be skewed by the awkward programming styles used to avoid general heap allo-
cation.

5.6 Chal lenges and Oppor tun i t i e s

Computer Science and Engineering is a field that attracts a different kind
of thinker... Such people are especially good at dealing with situations
where different rules apply in different cases; they are individuals who
can rapidly change levels of abstraction, simultaneously seeing things "in
the large" and "in the small."
- - D o n a l d K n u t h , quoted in [Har95]

Memory management is a fundamental area of computer science, spanning
several very different levels of abstraction--from the programmer's strategies for
dealing with data, language-level features for expressing those concepts, language
implementations for managing actual storage, and the varied hardware memories
that real machines contain. Memory management is where the rubber meets the
road--if we do the wrong thing at any level, the results will not be good. And if

107

we don' t make the levels work well together, we are in serious trouble. In many
areas of computer science, problems can be decomposed into levels of abstraction,
and different problems addressed at each level, in nearly complete isolation.
Memory management requires this kind of thinking, but that is not enough-- i t
also requires the ability to reason about phenomena that span multiple levels.
This is not easy.

Unfortunately, the compartmental izat ion of computing disciplines has dis-
couraged the development of a coherent memory management community. Mem-
ory management tends to be an orphan, sometimes harbored by the program-
ruing language community, sometimes by the operating systems communi ty - -
and usually ignored by the architecture community.

It seems obvious that memory management policies can have a profound
impact on locality of reference, and therefore the overall performance of modern
computers, but in the architecture community locality of reference is generally
treated as a mysterious, incomprehensible substance. (Or maybe two or three
substances, all fairly mysterious.) A program is pret ty much a black box, however
abraded and splintered, and locality comes out of the box if you're lucky. It is
not generally recognized that different memory management policies can have
an effect on memory hierarchies that is sometimes as significant as differences
in programs' intrinsic behavior. Recent work in garbage collection shows this to
be true ([WLM92, Wi195, GA95]), but few architects are aware of it, or aware
that similar phenomena must occur (to at least some degree) in conventionally-
managed memories as well [GZH93].

The challenge is to develop a theory that can span all of these levels. Such
a theory will not come all at once, and we think it is unlikely to be primarily
mathematical , at least not for a long time, because of the complex and ill-defined
interactions between different phenomena at different levels of abstraction.

Computer science has historically been biased toward the paradigms of math-
ematics and physics--and often a rather naive view of the scientific process in
those f ields--rather than the "softer" natural sciences. We recommend a more
naturalistic approach, which we believe is more appropriate for complex multi-
level systems that are only partly hierarchically decomposable.

The fact that fact that we study mostly deterministic processes in formally-
describable machines is sometimes irrelevant and misleading. The degrees of
complexity and uncertainty involved in building real systems require that we
examine real data, theorize carefully, and keep our eyes open.

Computer science is often a very "hard" science, which develops along the
lines of the great developments in the physical sciences and mathematics the
seventeenth, eighteenth and nineteenth centuries. It owes a great deal to the
examples set by Newton and Descartes. But the nineteenth century also saw a
very great theory that was tremendously important without being formalized at
a l l - -a theory that to this day can only be usefully formalized in special, restricted
cases, but which is arguably the single most important scientific theory ever.
Perhaps we should look to Darwin as an examplar, too.

108

Acknowledgements

We would like to thank Hans Boehm and especially Henry Baker for many
enlightening discussions of memory management over the last few years, and for
comments on earlier versions of this paper.

Thanks to Ivor Page, for comments tha t seem to connect impor tant pieces of
the puzzle more concretely than we expected, and to Ben Zorn, Dirk Grunwald
and Dave Detlefs for making their test applicatons available.

Thanks also to Dave Barrett , Sheetal Kakkad, Doug Lea, and Phong Vo for
comments that have improved our understanding and presentation, and to Henry
Baker and Janet Swisher for their help and extraordinary patience during the
paper's preparation. (Of course, we bear sole responsibility for any opinions and
errors.)

References

[Abr67]

[AF94]

[AS95]

[Bae73]

[Bak93]

[BAO85]

[Bat76]

[Bay77]

[BB77]

[BBDT84]

[BC79]

[BCW85]

[BDS91]

John Abramowich. Storage allocation in a certain iterative process. Com-
munications of the A CM, 10(6):368-370, June 1967.
G. Attardi and T. Flagella. A customizable memory management frame-
work. In Proceedings of the USENIX C++ Conference, Cambridge, Mas-
sachussetts, 1994.
Sedat Akyiirek and Kenneth Salem. Adaptive block rearrangement. A CM
Transactions on Computer Systems, 13(2):95-121, May 1995.
H. D. Baecker. Aspects of reference locality in list structures in virtual
memory. Software Practice and Experience, 3(3):245-254, 1973.
Henry G. Baker. Infant mortality and generational garbage collection.
SIGPLAN Notices, 28(4):55-57, April 1993.
B. M. Bigler, S. J. Allan, and R. R. Oldehoeft. Parallel dynamic storage
allocation. In 1985 International Conference on Parallel Processing, pages
272-275, 1985.
Alan Batson. Program behavior at the symbolic level. IEEE Computer,
pages 21-26, November 1976.
C. Bays. A comparison of next-fit, first-fit and best-fit. Communications
of the ACM, 20(3):191-192, March 1977.
A. P. Batson and R. E. Brundage. Segment sizes and lifetimes in ALGOL
60 programs. Communications of the A CM, 20(1):36-44, January 1977.
G. Bozman, W. Buco, T .P . Daly, and W. H. Tetzlaff. Analysis of free
storage algorithms--revisited. IBM Systems Journal, 23(1):44-64, 1984.
Daniel G. Bobrow and Douglas W. Clark. Compact encodings of llst
structure. A CA/[Transactions on Programming Languages and Systems,
1(2):266-286, October 1979.
B. S. Baker, E. G. Coffman, Jr., and D. E. Willard. Algorithms for resolv-
ing conflicts in dynamic storage allocation. Journal of the A CM, 32(2):327-
343, April 1985.
Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel
garbage collection. In Proceedings of the 1991 SIGPLAN Conference on
Programming Language Design and Implementation [PLD91], pages 157-
164.

109

[Bec82]

[Ben81]

[Bet73]

[BetS2]

[BJWr0]

[BL92]

[Boz84]

[BR64]

[Bre89]

[Bro80]

[Bur76]

[BW88]

[BZ93]

[BZ95]

[Cam71]

[CG91]

[CK93]

Leland L. Beck. A dynamic storage allocation technique based on memory
residence time. Communications of the ACM, 25(10):714-724, October
1982.
V. E. Benes. Models and problems of dynamic storage allocation. In Ap-
plied Probability and Computer Science--the Interface. Institute of Man-
agement Science and Operations Research Society of America, January
1981.
Terry Betteridge. An analytical storage allocation model. Acta Informat-
ica, 3:101-122, 1973.
Terry Betteridge. An Algebraic Analysis of Storage Fragmentation. UMI
Research Press, Arm Arbor, Michigan, 1982.
A. P. Batson, S. M. Ju, and D. C. Wood. Measurements of segment size.
Communications of the A CM, 13(3):155-159, March 1970.
Ball and Larus. Optimal profiling and tracing of programs. In Confer-
ence Record of the Nineteenth Annual A CM Symposium on Principles of
Programming Languages, pages 59-70. ACM Press, January 1992.
Gerald Bozman. The software lookaside buffer reduces search overhead
with linked lists. Communications of the ACM, 27(3):222 227, March 1984.
Daniel G. Bobrow and Bertram Raphael. A comparison of list-processing
computer languages. Communications of the ACM, 7(4):231-240, April
1964.
R. Brent. Efficient implementation of the first-fit strategy for dynamic
storage allocation. A CM Transactions on Programming Languages and
Systems, July 1989.
A. G. Bromley. Memory fragmentation in buddy methods for dynamic
storage allocation. Acta Informatica, 14(2):107-117, August 1980.
Warren Burton. A buddy system variation for disk storage allocation.
Communications of the A CM, 19(7):416-417, July 1976.
Hans-Juergen Boehm and Mark Weiser. Garbage collection in an unco-
operative environment. Software Practice and Experience, 18(9):807-820,
September 1988.
David A. Barrett and Bejamin G. Zorn. Using lifetime predictors to im-
prove memory allocation performance. In Proceedings of the 1993 SIG-
PLAN Conference on Programming Language Design and Implementation
[PLD93], pages 187-196.
David A. Barrett and Benjamin G. Zorn. Garbage collection using a dy-
namic threatening boundary. In Proceedings of the 1995 SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 301-
314, La Jolla, California, June 1995. ACM Press.
J. A. Campbell. A note on an optimal-fit method for dynamic allocation
of storage. Computer Journal, 14(1):7-9, February 1971.
Vincent Cate and Thomas Gross. Combining the concepts of compression
and caching for a two-level file system. In Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV), pages 200-209, Santa Clara, California, April 1991.
Robert Cmelik and David Keppel. Shade: A fast instruction-set simu-
lator for execution profiling. Technical Report UWCSE 93-06-06, Dept.
of Computer Science and Engineering, University of Wastfington, Seattle,
Washington, 1993.

110

[CKS85]

[CL89]

[Co161]

[Com64]

[CT75]

[DDZ93]

[DEB94]

[Del92]

[Den70]

[Det92]

[Dij69]

[Dou93]

[DTM93]

[DWH+90]

[EO88]

[Fer76]

[For88]

E. G. Coffman, Jr., T. T. Kadota, and L. A. Shepp. On the asymptotic
optimality of first-fit storage allocation. IEEE Transactions on Software
Engineering, SE-11(2):235-239, February 1985.
E. G. Coffman, Jr. and F. T. Leighton. A provably efficient algorithm for
dynamic storage allocation. Journal of Computer and System Sciences,
38(1):2-35, February 1989.
G. O. Collins. Experience in automatic storage allocation. Communica-
tions of the A CM, 4(10):436-440, October 1961.
W. T. Comfort. Multiword list items. Communications of the ACM, 7(6),
June 1964.
B. Cranston and R. Thomas. A simplified recombination scheme for the
Fibonacci buddy system. Communications of the ACM, 18(6):331-332,
July 1975.
David Detlefs, A1 Dosser, and Benjamin Zorn. Memory allocation costs in
large C and C + + programs. Technical Report CU-CS-665-93, University
of Colorado at Boulder, Dept. of Computer Science, Boulder, Colorado,
August 1993.
R. Kent Dybvig, David Eby, and Carl Bruggeman. Don't stop the BIBOP:
Flexible and efficient storage management for dynamically typed languages.
Technical Report 400, Indiana University Computer Science Dept., March
1994.
V. Delacour. Allocation regions and implementation contracts. In Yves
Bekkers and Jacques Cohen, editors, International Workshop on Memory
Management, number 637 in Lecture Notes in Computer Science, pages
426-439, St. Malo, France, September 1992. Springer-Verlag.
Peter J. Denning. Virtual memory. Computing Surveys, 3(2):153-189,
September 1970.
David L. Detlefs. Garbage collection and runtime typing as a C + + library.
In USENIX C++ Conference, Portland, Oregon, August 1992. USENIX
Association.
Edsger W. Dijkstra. Notes on structured programming. In Structured Pro-
gramming. Academic Press, 1969.
Fred Douglis. The compression cache: Using on-line compression to extend
physical memory. In Proceedings of 1993 Winter USENIX Conference,
pages 519-529, San Diego, California, January 1993.
Amer Diwan, David Tarditi, and Eliot Moss. Memory subsystem perfor-
mance of programs with intensive heap allocation. Submitted for publica-
tion, August 1993.
Alan Demers, Mark Weiser, Barry Hayes, Daniel Bobrow, and Scott
Shenker. Combining generational and conservative garbage collection:
Framework and implementations. In Conference Record of the Seventeenth
Annual A CM Symposium on Principles of Programming Languages, pages
261-269, San Francisco, California, January 1990. ACM Press.
C. S. Ellis and T. J. Olson. Algorithms for parallel memory allocation.
International Journal of Parallel Programming, 17(4):303-345, 1988.
H. R. P. Ferguson. On a generalization of the Fibonacci numbers useful
in memory allocation schema. The Fibonacci Quarterly, 14(3):233-243,
October 1976.
R. Ford. Concurrent algorithms for real-time memory management. IEEE
Software, pages 10-23, September 1988.

111

[FP74]

[FP91]

[GA95]

[GelTt]

[GGU72]

[CM85]

[Gra]

[Gw82]

[GZ93]

[GZH93]

[Han90]

[Har95]

[Hay91]

[tIay93]

[HinT5]

[Hir73]

[HS64]

[HS89]

[mK71]

J. S. Fenton and D. W. Payne. Dynamic storage allocations of arbitrary
sized segments. In Proc. IFIPS, pages 344-348, 1974.
Matthew Farrens and Arvin Park. Dynamic base register caching: A tech-
nique for reducing address bus width. In 18th Annual International Sym-
posium on Computer Architecture, pages 128-137, Toronto, Canada, May
1991. ACM Press.
Marcelo J. R. Goncalves and Andrew W. Appeh Cache performance of
fast-allocating programs. In FPCA '95, 1995.
E. Gelenbe. The two-thirds rule for dynamic storage allocation under equi-
librium. Information Processing Letters, 1(2):59-60, July 1971.
M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis of
memory allocation algorithms. In Fourth Annual A CM Symposium on the
Theory of Computing, 1972.
S. Gai and M. Mezzalama. Dynamic storage allocation: Experiments using
the C language. Software Practice and Experience, 15(7):693-704, July
1985.
R. L. Graham. Unpublished technical report on worst-case analysis of
memory allocation algorithms, Bell Labs.
A. Gottlieb and J. Wilson. Parallelizing the usual buddy algorithm. Tech-
nical Report System Software Note 37, Courant Institute, New York Uni-
versity, 1982.
Dirk Grunwald and Benjamin Zorn. CustoMalloc: Efficient synthesized
memory allocators. Software Practice and Experience, 23(8):851-869, Au-
gust 1993.
Dirk Grunwald, Benjamin Zorn, and Robert Henderson. hnproving the
cache locality of memory allocation. In Proceedings of the 1993 SIG-
PLAN Conference on Programming Language Design and Implementation
[PLD93], pages 177-186.
David R. Hanson. Fast allocation and deallocation of memory based on
object lifetimes. Software Practice and Experience, 20(1), January 1990.
Juris Hm'tmanis. Turing award lecture: On computational complexity and
the nature of computer science. Computing Surveys, 27(1):7 16, March
1995.
Barry Hayes. Using key object opportunism to collect old objects. In An-
dreas Paepcke, editor, Conference on Object Oriented Programming Sys-
tems, Languages and Applications (OOPSLA '91), pages 33-46, Phoenix,
Arizona, October 1991. ACM Press.
Barry Hayes. Key Objects in Garbage Collection. PhD thesis, Standford
University, March 1993.
J. A. Hinds. An algorithm for locating adjacent storage blocks in the buddy
system. Communications of the ACM, 18(4):221-222, April 1975.
D. S. Hirschberg. A class of dynamic memory allocation algorithms. Com-
munications of the A CM, 16(10):615-618, October 1973.
V. C. Harris and C. C. Styles. A generalization of the Fibonacci numbers.
The Fibonacci Quarterly, 2(4):227-289, December 1964.
Mark D. Hill and Alan Jay Smith. Evaluating associativity in CPU caches.
IEEE Transactions on Computers, 38(12):1612-1629, December 1989.
S. Isoda, E. Goto, and I. Kimura. An efficient bit table technique for dy-
namic storage allocation of 2n-word blocks. Communications of the ACM,
14(9):589-592, September 1971.

112

[IJ62]

[Ing61]

[Iye93]

[Joh72]

[Joh91]

[JS92]

[Kau84]

[KLS92]

[Kno65]

[IZnu73]

[Kri72]
[Kro73]

[K~hTO]

[Kv85]

[LH82]

[LH83]

[M+69]

[Mah61]

[MarS2]
[McC91]

[McC95]

[MeI82]

[MK88]

J. K. Iliffe and J. G. Jodeit. A dynamic storage allocation scheme. Com-
puter Journal, 5(3):200-209, October 1962.
P. Z. Ingerman. Thunks. Communications of the ACM, 4(1):55-58, Jan-
uary 1961.
Arun K. Iyengar. Parallel dynamic storage allocation algorithms. In Fifth
IEEE Symposium on Parallel and Distributed Processing, 1993.
G. D. Johnson. Simscript II.5 User's Manual, S/360-370 Version, Release
6, 1972.
Theodore Johnson. A concurrent fast fits memory manager. Technical
Report 91-009, University of Florida, 1991.
T. Johnson and D. Sasha. Parallel buddy memory management. Parallel
Processing Letters, 2(4):391-398, 1992.
Arie Kaufman. Tailored-list and recombination-delaying buddy systems.
A CM Transactions on Programming Languages and Systems, 6(4): 118-125,
1984.
Phillip J. Koopman, Jr., Peter Lee, and Daniel P. Siewiorek. Cache perfor-
mance of combinator graph reduction. A CM Transactions on Programming
Languages and Systems, 14(2):265-297, April 1992.
Kenneth C. Knowlton. A fast storage allocator. Communications of the
A CM, 8(10):623-625, October 1965.
Donald E. Knuth. The Art of Computer Programming, volume 1: Funda-
mental Algorithms. Addison-Wesley, Reading, Massachusetts, 1973. First
edition published in 1968.
Saul A. Kripke. Naming and Necessity. Harvard University Press, 1972.
S. Krogdahl. A dynamic storage allocation problem. Information Process-
ing Letters, 2:96-99, 1973.
Thomas S. Kuhn. The Structure of Scientific Revolutions (Second Edition,
Enlarged). University of Chicago Press, Chicago, Illinois, 1970.
David G. Korn and Kiem-Phong Vo. In search of a better malloc. In
Proc. USENIX Summer 1985, pages 489-506, Portland, Oregon, June 1985.
USENIX Association.
B. W. Leverett and P. G. Hibbard. An adaptive system for dynamic storage
allocation. Software Practice and Experience, 12(6):543-556, June 1982.
Henry Lieberman and Carl Hewitt. A real-time garbage collector based on
the lifetimes of objects. Communications of the A CM, 26(6):419-429, June
1983.
J. Minker et al. Analysis of data processing systems. Technical Report
69-99, University of Maryland, College Park, Maryland, 1969.
R. J. Maher. Problems of storage allocation in a multiprocessor multipro-
trammed system. Communications of the A CM, 4(10):421-422, October
1961.
David Marr. Vision. Freeman, New York, 1982.
Ronald McClamrock. Marr's three levels: a re-evaluation. Minds and Ma-
chines, 1:185-196, 1991.
Ronald McClamrock. Existential Cognition: Computational Minds in the
World. University of Chicago Press, 1995.
M. D. McIlroy. The number of states of a dynamic storage allocation sys-
tem. Computer Journal, 25(3):388-392, August 1982.
Marshall Kirk McKusick and Michael J. Karels. Design of a general-
purpose memory allocator for the 4.3bsd UNIX kernel. In Proceedings of the

113

[Moo84]

[MPS71]

[MS93]

[Nel91]
[Nie77]

[oa851

[Pag82]

[Pag84]

[PH86]

[PLD911

[PLDg3]

[PN77]

[PS70]

[PSC71]

[Ran69]

[Ree79]

[Ree80]

[Ree82]

[Ree83]

[Rei94]

[Ro91]

Summer 1988 USENIX Conference, San Francisco, California, June 1988.
USENIX Association.
David Moon. Garbage collection in a large Lisp system. In Conference
Record of the 1984 A CM Symposium on LISP and Functional Programming,
pages 235-246, Austin, Texas, August 1984. ACM Press.
B. H. Margolin, R. P. Parmelee, and M. Schatzoff. Analysis of free-storage
algorithms. IBM Systems Journal, 10(4):283-304, 1971.
Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation
on shared-memory multiprocessors. In USENIX 1993 Winter Technical
Conference, San Diego, California, January 1993. USENIX Association.
Mark Nelson. The Data Compression Book. M & T Books, 1991.
N. R. Nielsen. Dynamic memory allocation in computer simulation. Com-
munications of the A CM, 20(11):864-873, November 1977.
R. R. Oldehoeft and S. J. Allan. Adaptive exact-fit storage management.
Communications of the ACM, 28(5):506-511~ May 1985.
Ivor P. Page. Optimal fit of arbitrary sized segments. British Computer
Journal, 25(1), January 1982.
Ivor P. Page. Analysis of a cycfic placement scheme. Computer Journal,
27(1):18-25, January 1984.
Ivor P. Page and Jeff Hagins. Improving the performance of buddy systems.
IEEE Transactions on Computers, C-35(5):441-447, May 1986.
Proceedings of the 1991 SIGPLAN Conference on Programming Language
Design and Implementation, Toronto, Ontario, June 1991. ACM Press.
Published as SIGPLAN Notices 26(6), June 1992.
Proceedings of the 1993 SIGPLAN Conference on Programming Language
Design and Implementation, Albuquerque, New Mexico, June 1993. ACM
Press.
J. L. Peterson and T. A. Norman. Buddy systems. Communications of the
A CM, 20(6):421-431, June 1977.
P.W. Purdom and S. M. Stigler. Statistical properties of the buddy system.
Journal of the A CM, 17(4):683-697, October 1970.
P. W. Purdom, S. M. Stigler, and Tat-Ong Cheam. Statistical investigation
of three storage allocation algorithms. BIT, 11:187-195, 1971.
Brian Randell. A note on storage fragmentation and program segmenta-
tion. Communications of the ACM, 12(7):365 372, July 1969.
C. M. Reeves. Free store distribution under random-fit allocation. Com-
puter Journal, 22(4):346-351, November 1979.
C. M. Reeves. Free store distribution under random-fit allocation: Part 2.
Computer Journal, 23(4):298-306, November 1980.
C. M. Reeves. A lumped-state model of clustering in dynamic storage
allocation. Computer Journal, 27(2):135-142, 1982.
C. M. Reeves. Free store distribution under random-fit allocation, part 3.
Computer Journal, 26(1):25-35, February 1983.
Mark B. Reinhold. Cache performance of garbage-collected programs. In
Proceedings of the 1994 SIGPLAN Conference on Programming Language
Design and Implementation, pages 206-217, Orlando, Florida, June 1994.
ACM Press.
Mendel Rosenblum and John K. Ousterhout. The design and implemen-
tation of a log-structured file system. In Proceedings of the Thirteenth
Symposium on Operating Systems Principles, pages 1-15, Pacific Grove,

114

I'R,.-,h711
t I

[Rob74]

[Rob77]

[Ros61]

[Ros67]

[Rus77]

[Sam89]

[Sha88]

[Sho75]

[Sho77]

[SKW92]

[SP7~

[ST85]

[Sta80]

[Ste83]

[Sto82]

[Tad78]

[ThiS9]

California, October 1991. ACM Press. Published as Operating Systems
Review 25(5).
3. M. Robson. An estimate of the store size necessary for dynamic storage
allocation. Journal of the A CM, 18(3):416-423, July 1971.
J. M. Robson. Bounds for some functions concerning dynamic storage al-
location. Journal of the ACM, 21(3):491-499, July 1974.
J. M. Robson. Worst case fragmentation of first fit and best fit storage
allocation strategies. Computer Journal, 20(3):242-244, August 1977.
D. T. Ross. A generalized technique for symbol manipulation and numeri-
cal calculation. Communications of the ACM, 4(3):147-150, March 1961.
D. T. Ross. The AED free storage package. Communications of the ACM,
10(8):481-492, August 1967.
D. L. Russell. Internal fragmentation in a class of buddy systems. SIAM
J. Comput., 6(4):607-621, December 1977.
A. Dain Samples. Mache: No-loss trace compaction. In A CM SIGMET-
RICS, pages 89-97, May 1989.
Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stan-
ford University, Palo Alto, California, February 1988. Technical Report
CSL-TR-88-351, Stanford University Computer Systems Laboratory.
J. E. Shore. On the external storage fragmentation produced by first-fit and
best-fit allocation strategies. Communications of the A CM, 18(8):433-440,
August 1975.
J. E. Shore. Anomalous behavior of the fifty-percent rule in dynamic mem-
ory allocation. Communications of the ACM, 20(11):558-562, November
1977.
Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: an efficient,
portable persistent store. In Antonio Albano and Ron Morrison, editors,
Fifth International Workshop on Persistent Object Systems, pages 11-33,
San Miniato, Italy, September 1992. Springer-Verlag.
K. K. Shen and J. L. Peterson. A weighted buddy method for dynamic
storage allocation. Communications of the A CM, 17(10):558-562, October
1974.
Daniel Dominic Sleator and Robert Endre Tarjan. Serf-adjusting binary
search trees. Journal of the ACM, 32(3), 1985.
Thomas Standish. Data Structure Techniques. Addison-Wesley, Reading,
Massachusetts, 1980.
C. J. Stephenson. Fast fits: New methods for dynamic storage allocation.
In Proceedings of the Ninth Symposium on Operating Systems Principles,
pages 30-32, Bretton Woods, New Hampshire, October 1983. ACM Press.
Published as Operating Systems Review 17(5), October 1983.
Harold S. Stone. Parallel memory allocation using the FETCH-AND-ADD
instruction. Technical report, IBM Thomas 3. Watson Research Center,
Yorktown Heights, New York, November 1982.
M. Tadman. Fast-fit: A new hierarchical dynamic storage allocation tech-
nique. Master's thesis, UC Irvine, Computer Science Dept., 1978.
Dominique Thiebaut. The fractal dimension of computer programs and its
application to the prediction of the cache miss ratio. IEEE Transactions
on Computers, pages 1012-1026, July 1989.

115

[Tot65]

[uJ88]

[Ul195]

[Ung86]

[VC90]

[VMH+83]

[Vo95]

[Vui8o]

[Wa166]

[WB95]

[WDH89]

[Wei76]

[Whi8o]

[wn9o]

[Wi191]

[Wi195]

[Wis78]

[wJ93]

R. A. Totschek. An empirical investigation into the behavior of the SDC
timesharing system. Technical Report SP2191, Systems Development Cor-
poration, 1965.
David Ungar and Frank Jackson. Tenuring policies for generation-based
storage reclamation. In Norman Meyrowitz, editor, Conference on Ob-
ject Oriented Programming Systems, Languages and Applications (OOP-
SLA '88) Proceedings, pages 1-17, San Diego, California, September 1988.
ACM Press.
Jeffrey D. Ullman. The role of theory today. Computing Surveys, 27(1):43-
44, March 1995.
David Ungar. Design and Evaluation of a High-Performance Smalltalk
System. MIT Press, Cambridge, Massachusetts, 1986.
P. Vongsathorn and S. D. Carson. A system for adaptive disk rearrange-
ment. Software Practice and Experience, 20(3):225-242, March 1990.
J. Voldman, B. Mandelbrot, L. W. Hoevel, J. Knight, and P. Rosenfeld.
Fractal nature of software-cache interaction. IBM Journal of Research and
Development, 27(2):164-170, March 1983.
Kiem-Phong Vo. Vmalloc: A general and efficient memory allocator. So]t-
ware Practice and Experience, 1995. To appear.
Jean Vuillemin. A unifying look at data structures. Communications of
the A CM, 29(4):229-239, April 1980.
B. Wald. Utifization of a multiprocessor in command and control. Proceed-
ings of the IEEE, 53(12):1885-1888, December 1966.
Paul R. Wilson and V. B. Balayoghan. Compressed paging. In preparation,
1995.
Mark Weiser, Alan Demers, and Carl Hauser. The portable common run-
time approach to interoperability. In Proceedings of the Twelfth Symposium
on Operating Systems Principles, December 1989.
Charles B. Weinstock. Dynamic Storage Allocation Techniques. PhD the-
sis, Carnegie-Mellon University, Pittsburgh, Pennsylvania, April 1976.
Jon b. White. Address/memory management for a gigantic Lisp environ-
ment, or, GC considered harmful. In LISP Conference, pages 119-127,
Redwood Estates, California, August 1980.
Paul R. Wilson. Some issues and strategies in heap management and mem-
ory hierarchies. In OOPSLA/ECOOP '90 Workshop on Garbage Collection
in Object-Oriented Systems, October 1990. Also appears in SIGPLAN No-
tices 23(3):45-52, March 1991.
Paul R. Wilson. Operating system support for small objects. In Interna-
tional Workshop on Object Orientation in Operating Systems, pages 80-86,
Palo Alto, California, October 1991. IEEE Press.
Paul R. Wilson. Garbage collection. Computing Surveys, 1995. Ex-
panded version of [?]. Draft available via anonymous internet FTP from
cs. utexas, edu as pub/garbage/bigsurv, ps. In revision, to appear.
David S. Wise. The double buddy-system. Technical Report 79, Computer
Science Department, Indiana University, Bloomington, Indiana, December
1978.
Paul R. Wilson and Mark S. Johnstone. Truly real-time non-copying
garbage collection. In OOPSLA '93 Workshop on Memory Management
and Garbage Collection, December 1993. Expanded version of workshop
position paper submitted for publication.

116

[WJNB95]

[WJW + 75]

[WLM91]

[WLM92]

[WM89]

[Wo165]

[ww88]

[Yua90]

[ZG92]

[ZG94]

[Zor93]

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Mem-
ory allocation policies reconsidered. Technical report, University of Texas
at Austin Department of Computer Sciences, 1995.
William A. Wulf, R. K. Johnsson, C.B. Weinstock, S. O. Hobbs, and

C. M. Geschke. Design of an Optimizing Compiler. American Elsevier,
1975.
Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective static-
graph reorganization to improve locality in garbage-collected systems. In
Proceedings of the 1991 SIGPLAN Conference on Programming Language
Design and Implementation [PLD91], pages 177-191. Published as SIG-
PLAN Notices 26(6), June 1992.
Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching consid-
erations for generational garbage collection. In Conference Record of the
1992 A CM Symposium on LISP and Functional Programming, pages 32-42,
San Francisco, California, June 1992. ACM Press.
Paul R. Wilson and Thomas G. Moher. Design of the Opportunistic
Garbage Collector. In Conference on Object Oriented Programming Sys-
tems, Languages and Applications (OOPSLA '89) Proceedings, pages 23-35,
New Orleans, Louisiana, 1989. ACM Press.
Eric Wolman. A fixed optimum cell-size for records of various lengths.
Journal of the ACM, 12(1):53-70, January 1965.
Charles B. Weinstock and William A. Wulf. Quickfit: an efficient algorithm
for heap storage allocation. ACM SIGPLAN Notices, 23(10):141-144, Oc-
tober 1988.
Taichi Yuasa. The design and implementation of Kyoto Common Lisp.
Journal of Information Processing, 13(3), 1990.
Benjamin Zorn and Dirk Grunwald. Empirical measurements of six
allocation-intensive C programs. Technical Report CU-CS-604-92, Univer-
sity of Colorado at Boulder, Dept. of Computer Science, July 1992.
Benjamin Zorn and Dirk Grunwald. Evaluating models of memory alloca-
tion. A CM Transactions on Modeling and Computer Simulation, 1(4):107-
131, 1994.
Benjamin Zorn. The measured cost of conservative garbage collection.
Software--Practice and Experience, 23(7):733-756, July 1993.

