Security Protocols CS 239 Computer Security February 10, 2003

ter 2003

Outline

- Societal issues and cryptography
- Key recovery cryptosystems
- Designing secure protocols
- Basic protocols
 - -Key exchange

Lecture 8

Legal and Political Issues in Cryptography

- Cryptography is meant to help keep secrets
- But should all secrets be kept?
- Many legal and moral issues

ter 2003

Societal Implications of Cryptography

- Criminals can conceal communications from the police
- Citizens can conceal taxable income from the government
- Terrorists can conceal their activities from governments trying to stop them

CS 239, Winter 2003 —

Lecture Page 4

Problems With Controlling Cryptography

- Essentially, it's mostly algorithms
- If you know the algorithm, you can have a working copy easily
- At which point, you can conceal your secrets from anybody
 - -To the strength the algorithm provides

2002

Governmental Responses to Cryptography

- They vary widely
- Some nations require government approval to use cryptography
- Some nations have no laws governing it at all
- The US laws less restrictive than they used to be

CS 239, Winter 2003

Lecture Page 6

The US Government Position on Cryptography

- All forms of cryptography are legal to use in the US
- BUT
 - -Some minor restrictions on exporting cryptography to other countries
- The NSA used to try to keep a lid on cryptographic research

CS 239. Winter 2003

US Restrictions on Cryptographic Exports

- Rules changed in 2000
- Greatly liberalizing cryptographic exports
- Almost all cryptography is exportable
- Exception is for government use by a handful of countries
 - -Those the US government currently doesn't like

Cryptographic Source Code and Free Speech

- US government took Phil Zimmermann to court over PGP
- Court ruled that he had a free-speech right to publish PGP source
- Eventually, appeals courts also found in favor of Zimmermann

CS 239, Winter 2003

Other Nations and Cryptography

- Generally, most nations have few or no restrictions on cryptography
- A group of treaty signatories have export restrictions similar to US's
- Some have strong restrictions
 - China, Russia, Vietnam, a few others
- A few have laws on domestic use of crypto
 - E.g., Australia, UK, India have laws that demand decryption with court order

Key Recovery Cryptosystems

- An attempt to balance:
 - Legitimate societal security needs
 - Requiring strong encryption
 - And legitimate governmental and law enforcement needs
 - · Requiring access to data
- How can you have strong encryption and still satisfy governments?

CS 239. Winter 2003

Idea Behind Key Recovery

- Use encryption algorithms that are highly secure against cryptanalysis
- But with mechanisms that allow legitimate law enforcement agency to:
 - Obtain any key with sufficient legal authority
 - Very, very quickly
 - Without the owner knowing

Proper Use of Data Recovery Methods

- All encrypted transmissions (or saved data) must have key recovery methods applied
- Basically, the user must cooperate
 - Or his encryption system must force him to cooperate
 - Which implies everyone must use this form of cryptosystem

CS 239, Winter 2003

Lecture

Methods to Implement Key Recovery

- · Key registry method
 - -Register all keys before use
- Data field recovery method
 - -Basically, keep key in specially encrypted form in each message
 - With special mechanisms to get key out of the message

CS 239, Winter 2003

Lecture 8 Page 14

Problems With Key Recovery Systems

- Requires trusted infrastructures
- Requires cooperation (forced or voluntary) of all users
- Requires more trust in authorities than many people have
- International issues
- Performance and/or security problems with actual algorithms

CS 239, Winter 2003

Page 15

The Current Status of Key Recovery Systems

- Pretty much dead
- US tried to convince everyone to use them
 - -Skipjack algorithm, Clipper chip
- Very few agreed
- US is moving on to other approaches to dealing with cryptography

CS 239, Winter 2003

Lecture Page 16

Basics of Security Protocols

- Work from the assumption (usually) that your encryption is sufficiently strong
- Given that, how do you design the exchange of messages to securely achieve a given result?
- Not nearly as easy as you probably think

CS 220 Winter 2002

Lecture 8 Page 17

Security Protocols

- A series of steps involving two or more parties designed to accomplish a task with suitable security
- Sequence is important
- Cryptographic protocols use cryptography
- Different protocols assume different levels of trust between participants

CS 239, Winter 2003

Lecture : Page 18

Types of Security Protocols

- Arbitrated protocols
 - -Involving a trusted third party
- Adjudicated protocols
 - -Trusted third party, after the fact
- Self-enforcing protocols
 - -No trusted third party

Key Exchange Protocols

- Often we want a different encryption key for each communication session
- How do we get those keys to the participants?
 - Securely
 - Quickly
 - Even if they've never communicated before

CS 239. Winter 2003

Key Exchange With Symmetric Encryption and a Arbitrator

- Alice and Bob want to talk securely with a new key
- They both trust Trent
 - Assume Alice & Bob each share a key with Trent
- How do Alice and Bob get a shared key?

239, Winter 2003

Lecture Page 24

What Has the Protocol Achieved?

- Alice and Bob both have a new session key
- The session key was transmitted using keys known only to Alice and Bob
- Both Alice and Bob know that Trent participated
- But there are vulnerabilities

Problems With the Protocol

- What if the initial request was grabbed by Mallory?
- Could he do something bad that ends up causing us problems?
- Yes!
- (And there are also replay problems)

The Man-in-the-Middle Attack

- A class of attacks where an active attacker interposes himself secretly in a protocol
- Allowing alteration of the effects of the protocol
- Without necessarily attacking the encryption

Page 30

Defeating the Man In the Middle

- Problems:
- 1). Trent doesn't really know what he's supposed to do
- 2). Alice doesn't verify he did the right thing
- Minor changes can fix that
 - 1). Encrypt request with K_A
 - 2). Include identity of other participant in response $E_{K_A}(K_S, Bob)$

, Winter 2003 Page :

Key Exchange With Public Key Cryptography

- With no trusted arbitrator
- Alice sends Bob her public key
- Bob sends Alice his public key
- Alice generates a session key and sends it to Bob encrypted with his public key, signed with her private key
- Bob decrypts Alice's message with his private key
- Encrypt session with shared session key

Lecture Page 38

Defeating This Man-in-the-Middle Attack

- Use Rivest and Shamir's *interlock* protocol
- Doesn't require any authorities
- Essentially, send stuff in pieces of an encrypted whole
- The man in the middle has little chance of correctly dealing with pieces

CS 239, Winter 2003

Lecture 8 Page 43

Using the Interlock Protocol

- Alice sends Bob her public key
- Bob sends Alice his public key
- Alice encrypts the message in Bob's public key and sends half of it to Bob
- Bob encrypts his message in Alice's public key and sends half of it to Alice
- Alice sends her other half to Bob

CS 239 Winter 2003

Page 44

Continuing the Interlock Protocol

- Bob puts Alice's two halves together and decrypts
- Bob sends the other half of his encrypted message to Alice
- Alice puts Bob's halves together and decrypts

CS 239, Winter 2003

Lecture 8

Why Does This Protocol Help?

- Because the man in the middle must provide half of an encrypted message before he gets all of it
- Consider one part of the attack -
 - Mallory wants to translate the message in Alice's public key into Mallory's public key

CS 239, Winter 2003

Lecture Page 46

What Does Mallory Do?

- Mallory has deceptively sent out her public key to Bob and Alice
 - Claiming it's theirs
 - And Mallory knows their public keys
- Alice send Mallory half of an encrypted message
- Now Mallory must send Bob half an encrypted message

CS 239, Winter 2003

Lecture 8 Page 47

Mallory's Problem

- Mallory can't yet decrypt Alice's message

 Since he only has half of it
- Mallory must provide Bob two matching halves eventually
 - And one right now
- Mallory's only choice is to generate a new message before he knows the real message

inter 2003

Why Is This A Problem For Mallory?

- Mallory must now spoof <u>proper</u> <u>contents</u> of Bob and Alice's conversation
- Without knowing the real contents until later
- Bob and Alice are likely to notice problems quickly

CS 239, Winter 2003

Is This Generally Feasible?

- Not really
- Assumes Bob has a useful, unguessable message before Alice's message arrives
- Not really the way the world works
- If Mallory can guess Bob's message, he can play the standard man-in-the-middle game

CS 239, Winter 2003

Lecture

Diffie/Hellman Key Exchange

- Securely exchange a key
 - -Without previously sharing any secrets
- Alice and Bob agree on a large prime *n* and a number *g*
 - -g should be primitive mod n
- *n* and *g* don't need to be secrets

CS 239, Winter 2003

Lecture 8 Page 53

Exchanging a Key in Diffie/Hellman

- Alice and Bob want to set up a session key
 - -How can they learn the key without anyone else knowing it?
- Protocol assumes authentication
- Alice chooses a large random integer x and sends Bob X = g^xmod n

CS 239, Winter 2003

Lecture Page 54

Exchanging the Key, Con't

- Bob chooses a random large integer y and sends Alice Y = g^y mod n
- Alice computes $k = Y^x \mod n$
- Bob computes $k' = X^y \mod n$
- k and k' are both equal to $g^{xy} mod n$
- But nobody else can compute *k* or *k*'

CS 239, Winter 2003

Lecture 8

Why Can't Others Get the Secret?

- What do they know?
 - -n, g, X, and Y
 - $-\operatorname{Not} x \operatorname{or} y$
- Knowing \vec{X} and y gets you k
- Knowing Y and x gets you k'
- Knowing *X* and *Y* gets you nothing
 - Unless you compute the discrete logarithm to obtain *x* or *y*

CS 239, Winter 2003

Lecture 8