
1

Page 1
CS 239, Winter 2003

Lecture 4
Page 1

Operating System Security,
Continued

CS 239
Computer Security
January 15, 2003

Page 2
CS 239, Winter 2003

Lecture 4
Page 2

Outline

• Buffer overflows
• Designing secure operating systems
• Assuring OS security
• Logging and auditing

Page 3
CS 239, Winter 2003

Lecture 4
Page 3

Buffer Overflows

• One of the most common causes for
compromises of operating systems

• Due to a flaw in how operating
systems handle process inputs
– Or a flaw in programming languages
– Or a flaw in programmer training
– Depending on how you look at it

Page 4
CS 239, Winter 2003

Lecture 4
Page 4

What Is a Buffer Overflow?

• A program requests input from a user
• It allocates a temporary buffer to hold

the input data
• It then reads all the data the user

provides into the buffer, but . . .
• It doesn’t check how much was

provided

Page 5
CS 239, Winter 2003

Lecture 4
Page 5

For Example,

int main(){
char name[31];
printf(“Please type your name: “);
gets(name);
printf(“Hello, %s”, name);
return (0);

}

• What if the user enters more than 32 characters?

Page 6
CS 239, Winter 2003

Lecture 4
Page 6

Well, What If the User Does?

• The code continues reading data into
memory
– That’s how gets() works

• The first 32 bytes go into name
• Where do the remaining bytes go?
• Onto the stack

2

Page 7
CS 239, Winter 2003

Lecture 4
Page 7

Munging the Stack

• The temporary variable name is allocated
on the stack
– Close to the record of the function

currently being run
• The overflow will spill into whatever’s next

on the stack
• Commonly, that’s effectively going to

overwrite the instruction pointer

Page 8
CS 239, Winter 2003

Lecture 4
Page 8

Using Buffer Overflows to
Compromise Security

• Carefully choose what gets written into
the instruction pointer

• So that the program jumps to
something you want to do
– Under the identity of the program

that’s running
• Such as, execute a command shell

Page 9
CS 239, Winter 2003

Lecture 4
Page 9

Effects of Buffer Overflows

• Remote or unprivileged local user gets
to run a program with greater
privileges

• If buffer overflow is in a root program,
gets all privileges, essentially

• Common mechanism to allow attackers
to break into machines

Page 10
CS 239, Winter 2003

Lecture 4
Page 10

Are Buffer Overflows Common?

• You bet!
• Weekly occurrences in major

systems/applications
• Recently one found in U. of

Washington’s widely used IMAP code
• Probably one of the most common

security bugs

Page 11
CS 239, Winter 2003

Lecture 4
Page 11

Fixing Buffer Overflows

• Check the length of the input
• Use programming languages that prevent

them
• Put in OS controls that prevent overwriting

the stack
• Why aren’t these things commonly done?
• Presumably because programmers and

designers neither know nor care about
security

Page 12
CS 239, Winter 2003

Lecture 4
Page 12

Desired Security Features of a
Normal OS

• Authentication of users
• Memory protection
• File and I/O access control
• General object access control
• Enforcement of sharing
• Fairness guarantees
• Secure IPC and synchronization
• Security of OS protection mechanisms

3

Page 13
CS 239, Winter 2003

Lecture 4
Page 13

Extra Features for a Trusted OS

• Mandatory and discretionary access
control

• Object reuse protection
• Complete mediation
• Audit capabilities
• Intruder detection capabilities

Page 14
CS 239, Winter 2003

Lecture 4
Page 14

How To Achieve OS Security

• Kernelized design
• Separation and isolation mechanisms
• Virtualization
• Layered design

Page 15
CS 239, Winter 2003

Lecture 4
Page 15

Advantages of Kernelization

• Smaller amount of trusted code
• Easier to check every access
• Separation from other complex pieces

of the system
• Easier to maintain and modify security

features

Page 16
CS 239, Winter 2003

Lecture 4
Page 16

Reference Monitors

• An important security concept for OS
design

• A reference monitor is a subsystem
that controls access to objects
– It provides (potentially) complete

mediation
• Very important to get this part right

Page 17
CS 239, Winter 2003

Lecture 4
Page 17

Assurance of Trusted Operating
Systems

• How do I know that I should trust
someone’s operating system?

• What methods can I use to achieve the
level of trust I require?

Page 18
CS 239, Winter 2003

Lecture 4
Page 18

Assurance Methods

• Testing
• Formal verification
• Validation

4

Page 19
CS 239, Winter 2003

Lecture 4
Page 19

Secure Operating System
Standards

• If I want to buy a secure operating
system, how do I compare options?

• Use established standards for OS
security

• Several standards exist

Page 20
CS 239, Winter 2003

Lecture 4
Page 20

Some Security Standards

• U.S. Orange Book
• European ITSEC
• U.S. Combined Federal Criteria
• Common Criteria for Information

Technology Security Evaluation

Page 21
CS 239, Winter 2003

Lecture 4
Page 21

The U.S. Orange Book

• The earliest evaluation standard for
trusted operating systems

• Defined by the Department of Defense
in the late 1970s

• Now largely a historical artifact

Page 22
CS 239, Winter 2003

Lecture 4
Page 22

Purpose of the Orange Book

• To set standards by which OS security
could be evaluated

• Fairly strong definitions of what features
and capabilities an OS had to have to
achieve certain levels

• Allowing “head-to-head” evaluation of
security of systems
– And specification of requirements

Page 23
CS 239, Winter 2003

Lecture 4
Page 23

Orange Book Security Divisions

• A, B, C, and D
– In decreasing order of degree of security

• Important subdivisions within some of the
divisions

• Requires formal certification from the
government (NCSC)
– Except for the D level

Page 24
CS 239, Winter 2003

Lecture 4
Page 24

Some Important Orange Book
Divisions and Subdivisions

• C2 - Controlled Access Protection
• B1 - Labeled Security Protection
• B2 - Structured Protection

5

Page 25
CS 239, Winter 2003

Lecture 4
Page 25

The C2 Security Class

• Discretionary access
– At fairly low granularity

• Requires auditing of accesses
• And password authentication and

protection of reused objects
• Windows NT has been certified to this

class
Page 26

CS 239, Winter 2003
Lecture 4
Page 26

The B1 Security Class

• Includes mandatory access control
– Using Bell-La Padua model
– Each subject and object is assigned a

security level
• Requires both hierarchical and non-

hierarchical access controls

Page 27
CS 239, Winter 2003

Lecture 4
Page 27

The B3 Security Class

• Requires careful security design
– With some level of verification

• And extensive testing
• Doesn’t require formal verification

– But does require “a convincing
argument”

• Trusted Mach is in this class
Page 28

CS 239, Winter 2003
Lecture 4
Page 28

Logging and Auditing

• An important part of a complete
security solution

• Practical security depends on knowing
what is happening in your system

• Logging and auditing is required for
that purpose

Page 29
CS 239, Winter 2003

Lecture 4
Page 29

Logging

• No security system will stop all attacks
– Logging what has happened is vital

to dealing with the holes
• Logging also tells you when someone

is trying to break in
– Perhaps giving you a chance to close

possible holes

Page 30
CS 239, Winter 2003

Lecture 4
Page 30

Access Logs

• One example of what might be logged
for security purposes

• Listing of which users accessed which
objects
– And when and for how long

• Especially important to log failures

6

Page 31
CS 239, Winter 2003

Lecture 4
Page 31

Other Typical Logging Actions

• Logging failed login attempts
– Can help detect intrusions or

password crackers
• Logging changes in program

permissions
– Often done by intruders

Page 32
CS 239, Winter 2003

Lecture 4
Page 32

Problems With Logging

• Dealing with large volumes of data
• Separating the wheat from the chaff

– Unless the log is very short, auditing
it can be laborious

• System overheads and costs

Page 33
CS 239, Winter 2003

Lecture 4
Page 33

Log Security

• If you use logs to detect intruders, smart
intruders will try to attack logs
– Concealing their traces by erasing or

modifying the log entries
• Append-only access control helps a lot here
• Or logging to hard copy
• Or logging to a remote machine

Page 34
CS 239, Winter 2003

Lecture 4
Page 34

Auditing

• Security mechanisms are great
– If you have proper policies to use them

• Security policies are great
– If you follow them

• For practical systems, proper policies and
consistent use are a major security problem

`

Page 35
CS 239, Winter 2003

Lecture 4
Page 35

Auditing

• A formal (or semi-formal) process of
verifying system security

• “You may not do what I expect, but
you will do what I inspect.”

• A requirement if you really want your
systems to run securely

Page 36
CS 239, Winter 2003

Lecture 4
Page 36

Auditing Requirements

• Knowledge
– Of the installation and general

security issues
• Independence
• Trustworthiness
• Ideally, big organizations should have

their own auditors

7

Page 37
CS 239, Winter 2003

Lecture 4
Page 37

When Should You Audit?

• Periodically
• Shortly after making major system

changes
– Especially those with security

implications
• When problems arise

– Internally or externally
Page 38

CS 239, Winter 2003
Lecture 4
Page 38

Auditing and Logs

• Logs are a major audit tool
• Some examination can be done

automatically
• But part of the purpose is to detect

things that automatic methods miss
– So some logs should be audited by

hand

Page 39
CS 239, Winter 2003

Lecture 4
Page 39

A Typical Set of Audit Criteria

• For a Unix system
• Some sample criteria:

– All accounts have passwords
– Limited use of setuid root
– Display last login date on login
– Limited write access to system files
– No “.” in PATH variables

Page 40
CS 239, Winter 2003

Lecture 4
Page 40

What Does an Audit Cover?

• Conformance to policy
• Review of control structures
• Examination of audit trail (logs)
• User awareness of security
• Physical controls
• Software licensing and intellectual

property issues

