Cryptography and Encryption
Algorithms
CS 239
Computer Security
January 28, 2004

CS 239, Winter 2004

cture 5 ge 1

Outline

- Uses of cryptography
- Symmetric cryptography
- Asymmetric cryptography

CS 220 Winter 2004

Page 2

Uses of Cryptography

- What can we use cryptography for?
- Lots of things
 - -Secrecy
 - Authentication
 - -Prevention of alteration

CS 239, Winter 2004

Page 3

Cryptography and Secrecy

- Pretty obvious
- Only those knowing the proper keys can decrypt the message
 - -Thus preserving secrecy
- Used cleverly, it can provide other forms of secrecy

CS 239, Winter 2004

Lecture

Cryptography and Zero-Knowledge Proofs

- With really clever use, cryptography can be used to prove I know a secret
 - -Without telling you the secret
- Seems like magic, but it can work
- Basically, using multiple levels of cryptography in very clever ways

CS 239, Winter 2004

Lecture 5 Page 5

Cryptography and Authentication

- How can I prove to you that I created a piece of data?
- What if I give you the data in encrypted form?
 - Using a key only you and I know
- Then only you or I could have created it
 - Unless one of us told someone else the key . . .

CS 239, Winter 2004

Lecture 5

Some Limitations on Cryptography and Authentication

- If both parties cooperative, cryptography can authenticate
 - Problems with non-repudiation, though
- What if three parties want to share a key?
 - No longer certain who created anything
 - Public key cryptography can solve this problem
- What if I want to prove authenticity without secrecy?

Vinter 2004

Cryptography and Non-Alterability

- Changing one bit of an encrypted message completely garbles it
- If a checksum is part of encrypted data, that's detectable
- If you don't need secrecy, can get the same effect
 - −By just encrypting the checksum

CS 239, Winter 2004

Lecture 5 Page 8

Symmetric and Asymmetric Cryptosystems

- Symmetric the encrypter and decrypter share a secret key
 - Used for both encrypting and decrypting
- Asymmetric encrypter has different key than decrypter

CS 239, Winter 2004

Lecture :

Description of Symmetric Systems

- C = E(K,P)
- P = D(K,C)
- *E*() and *D*() are not necessarily symmetric operations

CS 239, Winter 2004

ecture 5

Advantages of Symmetric Key Systems

- + Encryption and authentication performed in a single operation
- + Well-known (and trusted) ones perform faster than asymmetric key systems
- + Doesn't require any centralized authority
 - Though key servers help a lot

CS 239, Winter 2004

Lecture 5 Page 11

Disadvantage of Symmetric Key Systems

- Encryption and authentication performed in a single operation
 - Makes signature more difficult
- Non-repudiation hard without servers
- Key distribution can be a problem
- Scaling

CS 239, Winter 2004

Sample Symmetric Key Ciphers

- The Data Encryption Standard
- The Advanced Encryption Standard
- There are many others

Winter 2004

The Data Encryption Standard

- Probably the best known symmetric key cryptosystem
- Developed in 1977
- Still in wide use
 - Which implies no one has seriously broken it, yet
- But showing its age

CS 239, Winter 2004

Lecture Page 15

History of DES

- Developed in response to National Bureau of Standards studies
- · Developed by IBM
- Analyzed, altered, and approved by the National Security Agency
- · Adopted as a federal standard
- One of the most widely used encryption algorithms

CS 239, Winter 2004

Lecture

Overview of DES Algorithm

- A block encryption algorithm
 - 64 bit blocks
- Uses substitution and permutation
 - Repeated applications
 - 16 cycles worth
- 64 bit key
 - Only 56 bits really used, though

CS 239, Winter 2004

Lecture 5 Page 17

More On DES Algorithm

- Uses substitutions to provide confusion
 - To hide the set of characters sent
- Uses transpositions to provide diffusion
 - To spread the effects of one plaintext bit into other bits
- Uses only standard arithmetic and logic functions and table lookup

CS 239, Winter 2004

Description of DES Algorithm

- Alternate applications of two different ciphers
 - -A product cipher
- Starts by breaking block in half
- The algorithm goes through 16 *rounds*
- Each round consists of a substitution followed by a permutation

CS 239, Winter 200

Lecture 5

One DES Round

- Select 48 bits from the key
- Expand right half of block to 48 bits
- XOR with key bits
- Look up result in an S-box

 Resulting in 32 bits
- Perform a permutation using a P -box
- · XOR with left half of block
- Result is new right half
- Old right half becomes new left half

Lecture 5

S-Boxes

- Table lookups to perform substitutions
- Permanently defined for DES
- Eight different S-boxes
 - -Six bits out of 48 bits go to each
 - -Four bits come out of each
- Choice of contents of S-boxes believed to strongly impact security of DES

CS 239, Winter 2004

ecture 5

P-Box

- Maps 32 input bits to 32 output bits
- A single, straight permutation
 - -Unlike S-boxes, which are table lookups

CS 239, Winter 2004

Lecture 5 Page 23

Decrypting DES

- For DES, D() is the same as E()
- You decrypt with exactly the same algorithm
- If you feed ciphertext and the same key into DES, the original plaintext pops out

CS 239, Winter 2004

Is DES Secure?

- Apparently, reasonably
- No evidence NSA put a trapdoor in
 - Alterations believed to have increased security against differential cryptanalysis
- Some keys are known to be weak with DES
 - So good implementations reject them
- To date, only brute force attacks have publicly cracked DES

CS 239, Winter 2004

Lecture 5

Key Length and DES

- Easiest brute force attack is to try all keys
 - -Looking for a meaningful output
- Cost of attack proportional to number of possible keys
- Is 2⁵⁶ enough keys?

CS 239, Winter 2004

Lecture : Page 26

DES Cracking Experiments

- RSA Data Security issued challenge to crack a DES-encrypted message
- Various people got together to do so
 - -Harnessing computers across the Internet
 - -Using a brute-force approach
- Done in 1998

CS 239, Winter 2004

Page 27

How the DES Message Was Cracked

- Required use of tens of thousands of computers
- · Took four months
- The searchers "got lucky"
 - Only one quarter of key space searched
 - On average, brute force requires searching one half of key space
- Done over five years ago
 - So it would presumably take 1/8 1/4 as much time today

CS 239, Winter 2004

Lecture 5

DES and Differential Cryptography

- Research has shown that DES is somewhat susceptible to differential cryptography
- NSA alterations to original DES seem to have strengthened it against this attack
- Only relevant for chosen-plaintext attack scenarios

CS 239, Winter 2004

Lecture 5 Page 29

Does This Mean DES is Unsafe?

- · Depends on what you use it for
- In how many cases will tens of thousands of machines apply spare cycles for several days to break one message?
- On the other hand, computers will continue to get faster
- And motivated opponents can harness vast resources
- Those who care seriously about security don't tend to use DES any more

CS 239, Winter 2004

Triple DES

- Simple way of increasing security of DES
- Apply DES three times iteratively to each block
 - Thus, 1/3 as fast as DES
- · Use different key for each encryption
- Effectively doubles the key length of DES
- · Approved by NIST
 - Which recommends using in in preference to DES

3 239, Winter 2004

ecture 5 age 31

The Advanced Encryption Standard

- A relatively new cryptographic algorithm
- Intended to be the replacement for DES
- · Chosen by NIST
 - Through an open competition
- Chosen cipher was originally called Rijndael
 - Developed by Dutch researchers
 - Uses combination of permutation and substitution

Public Key Encryption Systems

• The encrypter and decrypter have different keys

 $C = E(K_E, P)$

 $P = D(K_D, C)$

• Often, works the other way, too

 $C?? E(K_D, P)$

 $P? D(K_E,C)$

CS 239, Winter 2004

Lecture :

History of Public Key Cryptography

- Invented by Diffie and Hellman in 1976
- Merkle and Hellman developed Knapsack algorithm in 1978
- Rivest-Shamir-Adelman developed RSA in 1978
 - Most popular public key algorithm
- Many public key cryptography advances secretly developed by British and US government cryptographers earlier

CS 239, Winter 2004

Lecture

Practical Use of Public Key Cryptography

- Keys are created in pairs
- One key is kept secret by the owner
- The other is made public to the world
- If you want to send an encrypted message to someone, encrypt with his public key
 - -Only he has private key to decrypt

CS 239, Winter 2004

Lecture 5 Page 35

Authentication With Shared Keys

- If only two people know the key, and I didn't create a properly encrypted message -
 - -The other guy must have
- But what if he claims he didn't?
- Or what if there are more than two?
- Requires authentication servers

CS 239, Winter 2004

Authentication With Public Keys

- If I want to "sign" a message, encrypt it with my private key
- Only I know private key, so no one else could create that message
- Everyone knows my public key, so everyone can check my claim directly

CS 239, Winter 2004

Lecture 5 Page 37

Key Management Issues

- To communicate via shared key cryptography, key must be distributed
 - -In trusted fashion
- To communicate via public key cryptography, need to find out each other's public key
 - -"Simply publish public keys"

CS 239, Winter 2004

Lecture 5

Issues of Key Publication

- Security of public key cryptography depends on using the right public key
- If I am fooled into using the wrong one, that key's owner reads my message
- Need high assurance that a given key belongs to a particular person
- Which requires a key distribution infrastructure

CS 239, Winter 2004

Lecture

RSA Algorithm

- Most popular public key cryptographic algorithm
- In wide use
- Has withstood much cryptanalysis
- Based on hard problem of factoring large numbers

CS 239, Winter 2004

Lecture 5 Page 41

RSA Keys

- Keys are functions of a pair of 100-200 digit prime numbers
- Relationship between public and private key is complex
- Recovering plaintext without private key (even knowing public key) is supposedly equivalent to factoring product of the prime numbers

CS 239, Winter 2004

Comparison of DES and RSA

- DES is much more complex
- However, DES uses only simple arithmetic, logic, and table lookup
- RSA uses exponentiation to large powers
 - Computationally 1000 times more expensive in hardware, 100 times in software
- Key selection also more expensive
- RSA originally patented, but now in public domain

CS 239, Winter 2004

Lecture 5 Page 43

Security of RSA

- <u>Conjectured</u> that security depends on factoring large numbers
 - -But never proven
 - Some variants proven equivalent to factoring problem
- Probably the conjecture is correct

CS 239, Winter 2004

Lecture 5 Page 44

Attacks on Factoring RSA Keys

- In 1994, a 129 bit RSA key was successfully factored
 - 1600 computers, several months
 - 10 years ago, so 1600 computers could do it in several weeks today
- Research on integer factorization suggests keys up to 2048 bits may be insecure
- · Size will keep increasing
- The longer the key, the more expensive the encryption and decryption

CS 239, Winter 2004

Lecture 5 Page 45

Combined Use of Symmetric and Asymmetric Cryptography

- Very common to use both in a single session
- Asymmetric cryptography essentially used to "bootstrap" symmetric crypto
- Use RSA (or another PK algorithm) to authenticate and establish a session key
- Use DES/Triple DES/AES using session key for the rest of the transmission

CS 239, Winter 2004

Lecture 5

Digital Signature Algorithms

- In some cases, secrecy isn't required
- But authentication is
- The data must be guaranteed to be that which was originally sent
- Especially important for data that is long-lived

CS 239, Winter 2004

Lecture 5 Page 47

Desirable Properties of Digital Signatures

- Unforgeable
- Verifiable
- Non-repudiable
- Cheap to compute and verify
- Non-reusable
- · No reliance on trusted authority
- Signed document is unchangeable

CS 239, Winter 2004

Encryption and Digital Signatures

- Digital signature methods are based on encryption
- Encryption can be used as a signature

S 239, Winter 2004

Lecture 5 Page 49

Signatures With Shared Key Encryption

- Requires a trusted third party
- Signer encrypts document with secret key shared with third party
- Receiver checks validity of signature by consulting with trusted third party
- Third party required so receiver can't forge the signature

CS 239, Winter 2004

Lecture 5 Page 50

Signatures With Public Key Cryptography

- Signer encrypts document with his private key
- Receiver checks validity by decrypting with signer's public key
- Only signer has the private key
 - So no trusted third party required
- But receiver must be certain that he has the right public key

CS 239, Winter 2004

Page 51

Problems With Simple Encryption Approach

- Computationally expensive
 - -Especially with public key approach
- Document is encrypted
 - -Must be decrypted for use
 - -If in regular use, must store encrypted and decrypted versions

CS 239, Winter 2004

Lecture 5

Secure Hash Algorithms

- A method of protecting data from modification
- Doesn't actually prevent modification
- But gives strong evidence that modification did or didn't occur
- Typically used with digital signatures

CS 239, Winter 2004

Lecture 5 Page 53

Idea Behind Secure Hashes

- Apply a one-way cryptographic function to data in question
- Producing a much shorter result
- Attach the cryptographic hash to the data before sending
- When necessary, repeat the function on the data and compare to the hash value

CS 239, Winter 2004

Secure Hash Algorithm (SHA)

- Endorsed by NIST
- But produced by the NSA . . .
- Reduces input data of up to 2⁶⁴ bits to 160 bit digest
- Doesn't require secret key
- · Generally felt to be reasonably secure

CS 239. Winter 2004

Lecture 5 Page 55

Use of Cryptographic Hashes

- Must assume opponent also has hashing function
- And it doesn't use secret key
- So opponent can substitute a different message with a different hash
- How to prevent this?
- And what (if anything) would secure hashes actually be useful for?

CS 239, Winter 2004

Page 56

Hashing and Signatures

- Use a digital signature algorithm to sign the hash
- But why not just sign the whole message, instead?
- Computing the hash and signing it may be faster than signing the document
- Receiver need only store document plus hash

CS 239, Winter 2004

Lecture :

Checking a Document With a Signed Hash The party of the first part will be the first part of the party of the first part will be the first party of the first

The Birthday Attack

- How many people must be in a room for the chances to be greater than even that two of them share a birthday?
- Answer is 23
- The same principle can be used to attack hash algorithms

CS 239, Winter 2004

Lecture 5 Page 59

Using the Birthday Attack on Hashes

- For a given document, find a different document that has the effect you want
- Trivially alter the second document so that it hashes to the same value as the target document
 - -Using an exhaustive attack

CS 239, Winter 2004

How Hard Is the Birthday Attack?

- Depends on the length of the hash
 - And the quality of the hashing algorithm
- Essentially, looking for hashing collisions
- So long hashes are good
 - -SHA produces 280 random hashes

CS 239 Winter 2004

Lecture 5

Legal and Political Issues in Cryptography

- Cryptography is meant to help keep secrets
- But should all secrets be kept?
- Many legal and moral issues

CS 239, Winter 2004

Page 62

Societal Implications of Cryptography

- Criminals can conceal communications from the police
- Citizens can conceal taxable income from the government
- Terrorists can conceal their activities from governments trying to stop them

CS 239, Winter 2004

Lecture 5

Problems With Controlling Cryptography

- Essentially, it's mostly algorithms
- If you know the algorithm, you can have a working copy easily
- At which point, you can conceal your secrets from anybody
 - -To the strength the algorithm provides

CS 239, Winter 2004

Lecture

Governmental Responses to Cryptography

- They vary widely
- Some nations require government approval to use cryptography
- Some nations have no laws governing cryptography at all
- The US laws less restrictive than they used to be

CS 239, Winter 2004

Lecture 5

The US Government Position on Cryptography

- All forms of cryptography are legal to use in the US
- BUT
 - Some minor restrictions on exporting cryptography to other countries
- The NSA used to try to keep a lid on cryptographic research

CS 239, Winter 2004

US Restrictions on Cryptographic Exports

- Rules changed in 2000
- Greatly liberalizing cryptographic exports
- Almost all cryptography is exportable
- Exception is for government use by a handful of countries
 - Those the US government currently doesn't like

CS 239, Winter 2004

Lecture :

Cryptographic Source Code and Free Speech

- US government took Phil Zimmermann to court over PGP
- Court ruled that he had a free-speech right to publish PGP source
- Eventually, appeals courts also found in favor of Zimmermann

CS 239, Winter 2004

Lecture 5 Page 68

Other Nations and Cryptography

- Generally, most nations have few or no restrictions on cryptography
- A group of treaty signatories have export restrictions similar to US's
- Some have strong restrictions
 - China, Russia, Vietnam, a few others
- A few have laws on domestic use of crypto
 - E.g., Australia, UK, India have laws that demand decryption with court order

CS 239, Winter 2004

Lecture

Key Recovery Cryptosystems

- An attempt to balance:
 - Legitimate societal security needs
 - Requiring strong encryption
 - And legitimate governmental and law enforcement needs
 - Requiring access to data
- How can you have strong encryption and still satisfy governments?

CS 239, Winter 2004

Lecture

Idea Behind Key Recovery

- Use encryption algorithms that are highly secure against cryptanalysis
- But with mechanisms that allow legitimate law enforcement agency to:
 - Obtain any key with sufficient legal authority
 - Very, very quickly
 - Without the owner knowing

CS 239, Winter 2004

Lecture 5 Page 71

Proper Use of Data Recovery Methods

- All encrypted transmissions (or saved data) must have key recovery methods applied
- Basically, the user must cooperate
 - Or his encryption system must force him to cooperate
 - Which implies everyone must use this form of cryptosystem

CS 239, Winter 2004

Methods to Implement Key Recovery

- Key registry method
 - -Register all keys before use
- Data field recovery method
 - -Basically, keep key in specially encrypted form in each message
 - With special mechanisms to get key out of the message

CS 239, Winter 2004

Lecture 5

Problems With Key Recovery Systems

- Requires trusted infrastructures
- Requires cooperation (forced or voluntary) of all users
- Requires more trust in authorities than many people have
- · International issues
- Performance and/or security problems with actual algorithms

`.....

Lecture 5 Page 74

The Current Status of Key Recovery Systems

- Pretty much dead (for widespread use)
- US tried to convince everyone to use them
 - Skipjack algorithm, Clipper chip
- Very few agreed
- US is moving on to other approaches to dealing with cryptography
- Some businesses run key recovery internally
 - More to avoid losing important data when keys lost than for any other reason

CS 239, Winter 2004

ecture 5