Network Security: IPsec CS 239 Computer Software March 3, 2004

nter 2004

IPsec

- Until recently, the IP protocol had no standards for how to apply security
- Encryption and authentication layered on top
 - Or provided through ad hoc extensions
- Increasing security needs mandated a standard method of securing IP traffic

.

Lecture 13 Page 2

How Was This Handled?

- The usual way that enhancements to standard Internet protocols are handled
 - -The RFC/IETF mechanism
- Smart people worked out a proposal
- They published the proposal and requested comments
- · Eventually agreement was reached

CS 239, Winter 2004

Lecture 1

IP Security RFCs

- RFC 2401 (originally RFC 1825)
 - -Security Architecture for the Internet Protocol
- RFC 2402 (originally RFC 1826)
 - -IP Authentication Header
- RFC 2406 (originally RFC 1827)
 - -IP Encapsulating Security Payload

CS 239, Winter 2004

Lecture 13

Other Related RFCs

- RFC 1828 IP Authentication Using Keyed MD5
- RFC 1829 The ESP DES-CBC Transform
- RFC 1851 The ESP Triple DES Transform
- RFC 1852 IP Authentication Using Keyed SHA
- RFC 2085 HMAC-MD5 IP Authentication With Replay Prevention
- And many, many others

Lecture 13 Page 5

RFC 2401

- Defined the basics of security for the Internet Protocol
- Briefly, add per-packet encryption and authentication standards
- Basically, two mechanisms
 - -A way to authenticate IP packets
 - −A way to encrypt IP packets

CS 239, Winter 2004

What Is Covered

- · Message integrity
- Message authentication
- Message confidentiality

2004

What Isn't Covered

- Non-repudiation
- · Digital signatures
- Key distribution
- Traffic analysis
- Handling of security associations
- Some of these covered in later RFCs and related standards

CS 239, Winter 2004

Lecture 13 Page 8

Some Important Terms for IPsec

- Security Association "A set of security information related to a given network connection or set of connections"
 - Basically, a secure channel
- SPI (Security Parameters Index) "An unstructured opaque index which is used in conjunction with the Destination Address to identify a particular Security Association"
 - Basically, a unique identifier

CS 239, Winter 2004

Lecture I

General Structure of IPsec

- Really designed for end-to-end encryption

 Though gould do link level.
 - Though could do link level
- Designed to operate with either IPv4 or IPv6
- Meant to operate with a variety of different encryption protocols
- And to be neutral to key distribution methods

CS 239, Winter 2004

Lecture 1

What IPsec Requires

- Protocol standards
 - -To allow messages to move securely between nodes
- Supporting mechanisms at hosts running IPsec
- Lots of plug-in stuff to do the cryptographic heavy lifting

CS 239. Winter 2004

Lecture 1: Page 11

The Protocol Components

- Pretty simple
- Necessary to interoperate with non-IPsec equipment
- So everything important is inside an individual IP packet's payload
- No inter-message components to protocol
 - Though some security modes enforce inter-message invariants

CS 239, Winter 2004

The Supporting Mechanisms

- Methods of defining security associations
- Databases for keeping track of what's going on with other IPsec nodes
 - To know what processing to apply to outgoing packets
 - To know what processing to apply to incoming packets

CS 239, Winter 2004

Lecture 1 Page 13

Plug-In Mechanisms

- Designed for high degree of generality
- So easy to plug in:
 - -Different crypto algorithms
 - -Different hashing/signature schemes
 - Different key management mechanisms

CS 239 Winter 2004 -

Lecture 13 Page 14

Security Associations

- Groups of entities that legitimately are cooperating in use of IPsec for a particular connection
 - Hosts, applications, gateways, etc.
- Uniquely identified by:
 - Destination address
 - IPsec protocol (to be discussed later)
 - Plus a Security Parameter Index
 - Basically a pseudo-random number

CS 239, Winter 2004

Page 15

Creating Security Associations

- Setting them up properly is a major task in itself
- Not covered in basic IPsec RFCs
 - But being heavily studied
- One way
 - Two way traffic requires two Security Associations
- Sometimes, single packet goes through multiple SAs

CS 239, Winter 2004

Lecture Page 16

New IPSEC Protocols

- The RFCs define two new protocols
 - -Authentication Header
 - -Encapsulating Security Payload
- Part of the identification of an SA
- These in turn require special headers
- Can be used together

CS 239, Winter 200

Lecture 13 Page 17

Authentication Header Protocol

- AH
- Provides integrity and authentication
 - Not confidentiality
- The associated header is calculated on payload plus most IP header fields
 - Except those that change in transit
 - So both data and headers are authenticated

CS 239, Winter 2004

Authentication and Backwards Compatibility

- The authentication header is carried in the packet payload
- Non-participating routers can ignore it
- Participating routers know its payload location and can extract and check it as necessary

inter 2004

What's In the Authentication Header?

8 bits8 bits16 bitsNext
HeaderLengthRESERVED

Security Parameters Index

Sequence Number Field

Authentication Data (variable number of 32-bit words)

Lecture 1

Authentication Header Fields

- Next header identifies the next header in the packet
 - Might be unrelated to IPsec
- Length is length of this header's Authentication Data in words (minus two)
- Reserved is, well, reserved
- SPI identifies the Security Association
- Sequence Number Field monotonically increasing counter value (for each SA)
- Authentication data is the actual "signature"

CS 239, Winter 2004

Lecture 1 Page 21

Creating the AH

- Sending site increments per-SA counter and inserts into packet
- Then computes hash
 - -Using algorithm specified for SA
 - Based on packet payload, AH header fields, and unchanging or predictable IP header fields

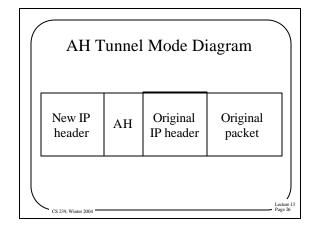
CS 239, Winter 2004

Lecture 13

Using the AH

- At receiving site, based on SA, extract AH from packet
- Check that sequence number is higher
 - Optional at this end
- Compute hash on same fields as sender did
- Check if sent hash matches locally computed hash

CS 220 Winter 2004


Lecture 13 Page 23

Different AH Modes

- Transport mode
 - -Slip the AH between IP header and transport header
- Tunnel mode
 - -Put AH in front of entire packet
 - -Put new IP header in front of AH

CS 239, Winter 2004

AH Transport Mode Diagram IPv4 AH Normal Packet Payload CS 259, Winter 2004 Lecture 13 Page 25

Encapsulating Security Payload (ESP) Protocol

- Encrypt the data and place it within the ESP
- The ESP has normal IP headers
- Can be used to encrypt just the payload of the packet
- Or the entire IP packet

CS 239, Winter 2004

ESP Modes

- · Transport mode
 - Encrypt just the transport -level data in the original packet
 - No IP headers encrypted
- · Tunnel mode
 - Original IP datagram is encrypted and placed in
 - Unencrypted headers wrapped around ESP

CS 239, Winter 2004

Lecture Pogo 29

What's in the ESP Header?

8 bits

8 bits

16 bits

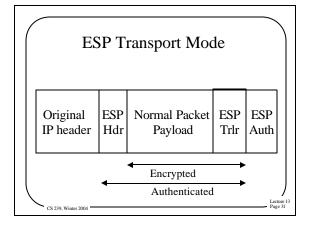
Security Parameters Index

Sequence Number

Payload Data (variable length)

Padding Pad Length Next Hdr

Authentication Data (variable number of 32-bit words)

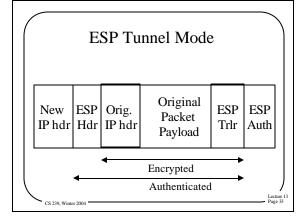

CS 239, Winter 2004

Lecture 13 Page 29

ESP in Transport Mode

- Extract the transport-layer frame
 - -E.g., TCP, UDP, etc.
- Encapsulate it in an ESP
- Encrypt it
- The encrypted data is now the last payload of a cleartext IP datagram

CS 239, Winter 2004



Using ESP in Tunnel Mode

- Encrypt the IP datagram
 - -The entire datagram
- Encapsulate it in a cleartext IP datagram
- Routers not understanding IPsec can still handle it
- Receiver reverses the process

•

Page 32

What's the Status of IPsec?

- The standard is done
- Widely implemented and used
 - In both Unix and Windows products
- The architecture doesn't require everyone to use it
- Generally considered to be a successful extension to IP

Lecture 1

What More Is Needed?

- Key distribution
 - -E.g., IKE
- · Security association handling
 - -Also dealt with by IKE
- Implementations of IPsec and IKE are freely available
- More work on broadcast/multicast use

× 2004

IPsec and the AES Ciphers

- RFC 3602 on using AES in IPsec recently accepted as standard
 - Actually only covers CBC mode
 - But much of content is relevant to any AES mode
- Further drafts looking at different modes/aspects of AES
- Expected that AES will become default for ESP in IPsec

CS 239, Winter 2004

Page 36