Network Security CS 239 Computer Software March 1, 2004

Finter 2004

Outline

- Basics of network security
- Definitions
- Sample attacks
- Defense mechanisms

CC 220 W. . 2004

Lecture 12 Page 2

Some Important Network Characteristics for Security

- Degree of locality
- Media used
- Protocols used

inter 2004

Degree of Locality

- Some networks are very local
 - E.g., an Ethernet
 - Only handles a small number of machines, mostly related ones
- Other networks are very non-local
 - E.g., the Internet backbone
 - Vast numbers of users/sites share bandwidth

CS 239, Winter 2004

Lecture Page 4

Implications of Locality

- Truly local networks may gain from physical security
- Relative trustworthiness of all participants may help
- Common interests of all on a local network may be helpful, too
- Wide area networks generally harder

CS 220 Winter 200

ecture 12 age 5

Network Media

- Some networks are wires or cables
- Other networks run over the telephone lines
- Other networks are radio links to satellites
- Other networks are broadcast radio links

CS 239, Winter 2004

Implications of Media Type

- Wires can sometimes be physically protected
- Radio links generally can't
 - Though power and technology requirements for satellite links may provide some help
 - -Directional antennae can also help

CS 239, Winter 2004

ecture 12 age 7

Protocol Types

- TCP/IP is probably the most widespread
 - But it only specifies some common intermediate levels
 - Other protocols exist above and below it
- In places, other protocols replace TCP/IP
- And there are lots of supporting protocols
 - Routing protocols, naming and directory protocols, network management protocols
 - And security protocols (IPSec, ssh, ssl)

Lecture 1
 Page 8

Implications of Protocol Type

- The protocol defines a set of rules that will always be followed
 - But usually not quite complete
 - And they assume everyone is at least trying to play by the rules
 - What if they don't?
- Specific attacks exist against specific protocols

CS 239, Winter 2004

Lecture Page 9

Threats to Network Security

- Pretty much the usual suspects:
 - -Wiretapping
 - -Impersonation
 - -Message confidentiality
 - -Message integrity
 - Denial of service

CS 239, Winter 2004

Lecture 10

Why Are Networks Especially Threatened?

- Many "moving parts"
- Many different administrative domains
- Everyone can get some access
- In some cases, trivial for attacker to get a foothold on the network
- Networks encourage sharing
- Networks often allow anonymity

CS 239, Winter 2004

Lecture 12 Page 11

What Can Attackers Attack?

- The media connecting the nodes
- Nodes that are connected to them
- Routers that control the traffic
- The protocols that set the rules for communications

CS 239, Winter 2004

Lecture Page 12

Wiretapping

- An obvious network vulnerability
 - But don't forget, "wiretapping" is a general term
 - Not just networks are vulnerable
- Passive wiretapping is listening in illicitly on conversations
- Active wiretapping is injecting traffic illicitly

Winter 2004

Lecture 1 Page 13

Wiretapping on Wires

- Signals can be trapped at many points
- Actually tapping into some physical wires is possible
- · Other "wires" are broadcast media
 - Packet sniffers can listen to all traffic
- Subverted routers and gateways also offer access

CS 239 Winter 2004

Lecture 12 Page 14

Wiretapping on Wireless

- Often just a matter of putting an antenna up
 - Though position may matter a lot
 - Generally not even detectable that it's happening
 - Directional antennae and frequency hopping may add challenges
- Active threats are easier to detect
 - And, for satellites, technically challenging

CS 239, Winter 2004

Lecture 15

Impersonation

- A packet comes in over the network
 - -With some source indicated in its header
- Often, the action to be taken with the packet depends on the source
- But attackers may be able to create packets with false sources

CS 239, Winter 2004

Lecture

Methods of Network Impersonations

- Even in standard protocols, often easy to change fields in a header
 - -When created or later
 - -E.g., IP allows forging "from" addresses
- Existing networks have little or no built-in authentication

CS 239, Winter 2004

ecture 12 age 17

Authentication to Foil Impersonation

- Higher level protocols often require authentication of transmissions
- Much care required to ensure proper authentication
- And not having authentication underneath can cause many problems
- Authentication schemes are rarely perfect

CS 239, Winter 2004

Page 18

Violations of Message Confidentiality

- Other problems can cause messages to be inappropriately divulged
- Misdelivery can send a message to the wrong place
 - Clever attackers can make it happen
- Message can be read at an intermediate gateway or a router
- Sometimes an intruder can get useful information just by traffic analysis

CS 239, Winter 2004

Lecture 1 Page 19

Message Integrity

- Even if the attacker can't create the packets he wants, sometimes he can alter proper packets
- To change the effect of what they will do

CS 239 Winter 2004

Page 20

Methods of Attacks on Message Integrity

- Replacing part of a packet
- Changing headers to alter destination of a packet
 - -Or its source
- Inserting improper packets into a proper packet stream

CS 239, Winter 2004

Lecture 1:

Denial of Service

- Attacks that prevent legitimate users from doing their work
- By flooding the network
- Or corrupting routing tables
- Or flooding routers
- Or destroying key packets

CS 239, Winter 2004

Lecture Page 22

How Do Denial of Service Attacks Occur?

- Basically, the attacker injects some form of traffic
- Most current networks aren't built to throttle uncooperative parties very well
- All-inclusive nature of the Internet makes basic access trivial
- Universality of IP makes reaching most of the network easy

CS 239, Winter 2004

Lecture 12 Page 23

Some Sample Attacks

- Smurf attacks
- SYN flood
- Ping of Death

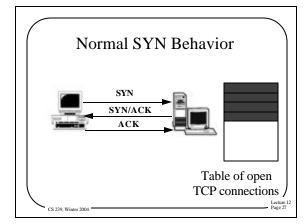
CS 239, Winter 2004

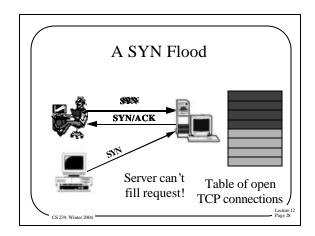
Page 24

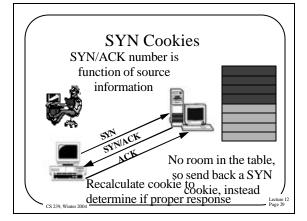
Smurf Attacks

- Attack on vulnerability in IP broadcasting
- Send a ping packet to IP broadcast address
 - With forged "from" header of your target
- Resulting in a flood of replies from the sources to the target
- Easy to fix at the intermediary
 - Don't allow IP broadcasts to originate outside your network
- No good solutions for victim

CS 239, Winter 2004


ecture 12


SYN Flood


- · Based on vulnerability in TCP
- Attacker uses initial request/response to start TCP session to fill a table at the server
- Preventing new real TCP sessions
- SYN cookies and firewalls with massive tables are possible defenses

CS 239, Winter 2004

Lecture 12 Page 26

The Ping of Death

- IP packets are supposed to be no longer than 65,535 bytes long
- Can improperly send longer IP packets
- Some OS networking software wasn't prepared for that
 - Resulting in buffer overflows and crashes
- Can filter out pings, but other IP packets can also cause problem
- OS patches really solve the problem

CS 239, Winter 2004

Network Security Mechanisms

- Again, the usual suspects -
 - -Encryption
 - Authentication
 - -Access control
 - -Data integrity mechanisms
 - Traffic control

CS 239 Winter 2004

Lecture 12

Encryption for Network Security

- Relies on the kinds of encryption algorithms and protocols discussed previously
- But network security tends to only worry about the data transport issues
- Which leads to an important question -

CS 239 Winter 2004

Lecture 12 Page 32

Authentication for Network Security

- Various entities need to be authenticated
 - -Hosts to hosts
 - -Users to hosts
 - -Hosts to users
- Because of inherent insecurities of networks, cryptographic methods used

CS 239, Winter 2004

Lecture 1

Access Control

- When a node is put on a network, potentially all its resources become available over the network
- How do we control who can access resources?
- And how?

CS 239, Winter 2004

Lecture Page 34

Data Integrity Mechanisms

- Bad things can happen if attackers can change data values
 - -Either while in transit in the net
 - -Or by remotely accessing a machine
- How do we keep our data intact?

CS 220 Winter 2004

Lecture 12 Page 35

Checksums, Secure Hashes, and Digital Signatures

- Checksums can tell us if the data has changed
- If the checksum hasn't been altered
- Secure hashes use cryptographic techniques

 If the hash is protected
- Digital signatures provide full protection
 - At full cryptographic costs

CS 239, Winter 2004

Traffic Control Mechanisms

- Filtering
 - Ingress filtering
 - Egress filtering
- Protection against traffic analysis
 - Padding
 - Routing control
- Rate Limits

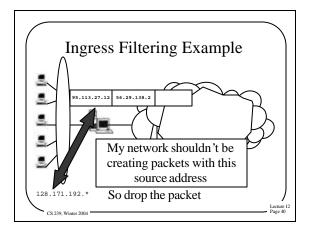
CS 239. Winter 2004

Lecture 1

Ingress Filtering

- Different definitions apply
- Most common one is that ingress filtering is done as packets leave local networks and enter the Internet
- Can be filtered in various ways

CS 239 Winter 2004


Page 38

Ingress Filtering for Address Assurance

- Router "knows" what network it sits in front of
 - In particular, knows IP addresses of machines there
- Filter packets with "from" addresses not in that range
- Prevents your users from spoofing other nodes' addresses
 - But not from spoofing each other's

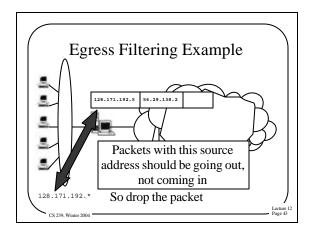
CS 239, Winter 2004

Lecture Page 30

Egress Filtering

- Again, definitions vary
- Most common definition is that egress filtering occurs as packets leave the Internet and enter a border router
 - On way to that router's network
- Again, can filter on multiple criteria

CS 220 Winter 2004


Lecture 12

Egress Filtering for Address Assurance

- Packets coming from outside your router shouldn't have source addresses of your local network
- Filter any that do
- If local network performs some access control based on IP address, very important

CS 239, Winter 2004

Page 42

Padding

- Sometimes you don't want intruders to know what your traffic characteristics are
- Padding adds extra traffic to hide the real stuff
- Requires that fake traffic is not differentiable from real
- Usually means encrypt it all
- Must be done carefully, or clever attackers can tell the good stuff from the noise

CS 239 Winter 2004 -

Lecture 12 Page 44

Routing Control

- Use ability to control message routing to conceal the traffic in the network
- Especially important when trying to handle **covert channels**
 - Encapsulated users or programs trying to leak information out

Vinter 2004

Rate Limits

- Many routers can place limits on the traffic they send to a destination
- Ensuring that the destination isn't overloaded
- Limits can be defined somewhat flexibly
- But often not enough flexibility to let the good traffic through and stop the bad

CS 239, Winter 2004