
1

Lecture 9
Page 1CS 239, Winter 2006

Key Management
CS 239

Computer Security
February 13, 2006

Lecture 9
Page 2CS 239, Winter 2006

Outline

• Properties of keys
• Key management
• Key servers

– Kerberos
• Certificates

Lecture 9
Page 3CS 239, Winter 2006

Introduction

• It doesn’t matter how strong your
encryption algorithm is

• Or how secure your protocol is
• If the opponents can get hold of your

keys, your security is gone
• Proper use of keys is crucial to security

in computing systems

Lecture 9
Page 4CS 239, Winter 2006

Properties of Keys

• Length
• Randomness
• Lifetime

Lecture 9
Page 5CS 239, Winter 2006

Key Length

• If your cryptographic algorithm is
otherwise perfect, its strength depends
on key length

• Since the only attack is a brute force
attempt to discover the key

• The longer the key, the more brute
force required

Lecture 9
Page 6CS 239, Winter 2006

Are There Real Costs for Key
Length?

• Clearly, more bits is more secure
• Why not a whole lot of key bits, then?
• Much encryption done in hardware

– More bits in hardware costs more
• Software encryption slows down as you add

more bits, too
– Public key cryptography costs are highly

dependent on key length

2

Lecture 9
Page 7CS 239, Winter 2006

Key Randomness

• Brute force attacks assume you chose your
key at random

• If the attacker can get any knowledge about
your mechanism of choosing a key, he can
substantially reduce brute force costs

• How good is your random number
generator?

Lecture 9
Page 8CS 239, Winter 2006

Generating Random Keys

• Well, don’t use rand()
• The closer the method chosen approaches

true randomness, the better
• But, generally, don’t want to rely on exotic

hardware
• True randomness is not essential

– Need same statistical properties
– And non-reproducibility

Lecture 9
Page 9CS 239, Winter 2006

Cryptographic Methods

• Start with a random number
• Use a cryptographic hash on it
• If the cryptographic hash is a good one, the

new number looks pretty random
• Produce new keys by hashing old ones
• Depends on strength of hash algorithm
• Falls apart if any key is ever broken

– Doesn’t have perfect forward secrecy
Lecture 9
Page 10CS 239, Winter 2006

Random Noise

• Observe an event that is likely to be random
• Assign bit values to possible outcomes
• Record or generate them as needed
• Sources:

– Physical processes (cosmic rays, etc.)
– Real world processes (variations in disk

drive delay, keystroke delays, etc.)

Lecture 9
Page 11CS 239, Winter 2006

Don’t Go Crazy on Randomness

• Make sure it’s non-reproducible
– So attackers can’t play it back

• Make sure there aren’t obvious patterns
• Attacking truly unknown patterns in fairly

random numbers is extremely challenging
– They’ll probably mug you, instead

Lecture 9
Page 12CS 239, Winter 2006

Key Lifetime

• If a good key’s so hard to find,
– Why every change it?

• How long should one keep using a
given key?

3

Lecture 9
Page 13CS 239, Winter 2006

Why Change Keys?

• Long-lived keys more likely to be compromised
• The longer a key lives, the more data is exposed if

it’s compromised
• The longer a key lives, the more resources

opponents can (and will) devote to breaking it
• The more a key is used, the easier the

cryptanalysis on it
• A secret that cannot be readily changed should be

regarded as a vulnerability

Lecture 9
Page 14CS 239, Winter 2006

Practicalities of Key Lifetimes

• In some cases, changing keys is
inconvenient
– E.g., encryption of data files

• Keys used for specific communications
sessions should be changed often
– E.g., new key for each phone call

• Keys used for key distribution can’t be
changed too often

Lecture 9
Page 15CS 239, Winter 2006

Destroying Old Keys

• Never keep a key around longer than
necessary
– Gives opponents more opportunities

• Destroy keys securely
– For computers, remember that

information may be in multiple places
• Caches, virtual memory pages, freed

file blocks, stack frames, etc.
Lecture 9
Page 16CS 239, Winter 2006

Key Management

• Choosing long, random keys doesn’t
do you any good if your clerk is selling
them for $10 a pop at the back door

• Or if you keep a plaintext list of them
on a computer on the net whose root
password is “root”

• Proper key management is crucial

Lecture 9
Page 17CS 239, Winter 2006

Desirable Properties in a Key
Management System

• Secure
• Fast
• Low overhead for users
• Scaleable
• Adaptable

– Encryption algorithms
– Applications
– Key lengths

Lecture 9
Page 18CS 239, Winter 2006

Users and Keys

• Where are a user’s keys kept?
• Permanently on the user’s machine?

– What happens if the machine is cracked?
• But people can’t remember random(ish)

keys
– Hash keys from passwords/passphrases?

• Keep keys on smart cards?
• Get them from key servers?

4

Lecture 9
Page 19CS 239, Winter 2006

Security of Key Servers

• The key server is the cracker ’s holy
grail
– If they break the key server,

everything else goes with it
• What can you do to protect it?

Lecture 9
Page 20CS 239, Winter 2006

Security Measures for Key
Servers

• Don’t run anything else on the machine
• Use extraordinary care in setting it up and

administering it
• Watch it carefully
• Use a key server that stores as few keys

permanently as possible
• Use a key server that handles revocation

and security problems well

Lecture 9
Page 21CS 239, Winter 2006

Kerberos

• Probably the most widely used and
well-known key server

• Originally developed at MIT
– As part of Project Athena

• Uses trusted third parties
– And symmetric cryptography

• Provides authentication in key service
Lecture 9
Page 22CS 239, Winter 2006

The Kerberos Model

• Clients and servers sit on the network
• Clients want to interact securely with

servers
– Using a fresh key for each session

• Kerberos’ job is to distribute keys to
ensure that security

• Scalability is a concern

Lecture 9
Page 23CS 239, Winter 2006

Obtaining a Key Through
Kerberos

• The client needs to get a key to give to the
server and use himself

• He obtains the key from a ticket-granting
server
– Essentially, a server who hands out keys

to talk to other servers
• But the ticket-granting server needs

authentication of the client
• Which is obtained from the Kerberos server

Lecture 9
Page 24CS 239, Winter 2006

What’s the Point of the Ticket-
Granting Server?

• Scalability
– Most requests for keys for servers go to

ticket-granting server
– There can be lots of them

• And issues of trust
– Different ticket-granting servers can work

with different servers and clients
– So not everyone needs to trust one ticket-

granting server

5

Lecture 9
Page 25CS 239, Winter 2006

Players in the Kerberos Protocol

• The client
• The server
• The Ticket-Granting Service -

someone the server trusts to
authenticate the clients

• The Kerberos Server - someone
everyone trusts

Lecture 9
Page 26CS 239, Winter 2006

Kerberos Participants

Client

Server

Kerberos

Ticket-Granting
Server

Lecture 9
Page 27CS 239, Winter 2006

Client Requests a Ticket-
Granting Ticket From Kerberos

Client

Server

Kerberos

I need to talk to the
Ticket-Granting Server

Ticket-Granting
Server Lecture 9

Page 28CS 239, Winter 2006

Kerberos Sends the Client a
Ticket-Granting Ticket

Client

Server

Kerberos

Ticket-Granting
Server

Lecture 9
Page 29CS 239, Winter 2006

Client Asks TGS for a Server
Ticket

Client

Server

Kerberos

Ticket-Granting
Server

Ticket-Granting
Server checks
ticket validity

Lecture 9
Page 30CS 239, Winter 2006

TGS Sends Ticket to Client

Client

Server

Kerberos

Ticket-Granting
Server

6

Lecture 9
Page 31CS 239, Winter 2006

Client Requests Service

Client

Server

Kerberos

Ticket-Granting
Server

Server
checks ticket

Lecture 9
Page 32CS 239, Winter 2006

Tickets and Authenticators

• A Kerberos ticket is used to pass
information to a server securely

• An authenticator is an additional
credential passed along with the ticket
– Used to pass timestamp information

about lifetime of a key

Lecture 9
Page 33CS 239, Winter 2006

What’s In a Ticket

• TC,S = s, {c,a,v,K C,S}KS

• s is the server
• c is the client
• a is the client’s network address
• v is a timestamp
• KC,S is a session key
• KS is the server’s key

Lecture 9
Page 34CS 239, Winter 2006

Kerberos in More Detail: Step 1

Client

Server

Kerberos

Ticket-Granting
Server

Alice, Tracy

Alice

Tracy Sidney

Lecture 9
Page 35CS 239, Winter 2006

Kerberos Sends Client Ticket-
Granting Ticket

Alice

Sidney

Kerberos

Tracy

{KAlice,Tracy}KAlice,

What’s in
the ticket?

TAlice,Tracy = Tracy,
{Alice,xxx.xxx.xxx.xxx,TNow,
KAlice,Tracy}KTracy

Lecture 9
Page 36CS 239, Winter 2006

So What Has the Client Got?

• KAlice is derived from her password
• Which gets a session key allowing her to

communicate securely with the TGS
– KAlice,Tracy

• And she has a ticket for the TGS
– Not directly usable by Alice
– But the TGS (Tracy) can use it to

authenticate Alice

7

Lecture 9
Page 37CS 239, Winter 2006

Client Asks TGS for a Server
Ticket

Alice

Sidney

Kerberos

Tracy

{AAlice,Tracy}KAlice,Tracy
Tracy,

An authenticator

Lecture 9
Page 38CS 239, Winter 2006

What Has the TGS Got?

• It can decrypt the ticket created by the
Kerberos server
– Obtaining KAlice,Tracy and other

information
– Authenticating that the transmission

went through Kerberos server
• And it’s got the authenticator

Lecture 9
Page 39CS 239, Winter 2006

Why the Authenticator?

• We want to avoid involving the Kerberos
server every time a client needs a ticket

• So the ticket-granting ticket will be used
multiple times

• Authenticator protects against replay attacks
involving the multi-use ticket-granting
ticket

Lecture 9
Page 40CS 239, Winter 2006

TGS Sends Ticket to Client

Alice

Sidney

Kerberos

Tracy

{KAlice,Sidney}KAlice,Tracy

What’s in
the ticket?

TAlice,Sidney = Sidney,
{Alice,xxx.xxx.xxx.xxx,TNow1,
KAlice,Sidney}KSidney

Lecture 9
Page 41CS 239, Winter 2006

Now What Has the Client Got?

• She can decrypt the part of the message
containing the new session key
– So she’s ready to communicate

• She can’t decrypt the ticket
– That’s in a key only the server Sidney

knows
– But Sidney can use it

Lecture 9
Page 42CS 239, Winter 2006

Client Requests Service

Alice

Sidney

Kerberos

Tracy

{AAlice,Sidney}KAlice,Sidney

Alice creates
a new

authenticator
to show

freshness

8

Lecture 9
Page 43CS 239, Winter 2006

What Does the Server Have?

• He can decrypt the ticket from the TGS
– Since it’s in his key

• The ticket contains the session key
– And authentication information

• He can then decrypt the authenticator
– Which ensures a session isn’t being

replayed (by timestamp)
Lecture 9
Page 44CS 239, Winter 2006

Why Is There Both a Kerberos
Server and a TGS?

• The TGS handles normal interactions
between clients and servers

• The Kerberos server bootstraps interactions
with the TGS
– A ticket-granting ticket can be reused

with a TGS over some time
• Compromise of the TGS has limited effects

Lecture 9
Page 45CS 239, Winter 2006

Why Is There Both a Ticket and
An Authenticator?

• The ticket is reusable
– It has a timespan

• Typically 8 hours
• The authenticator is one-use-only

– Supposedly
– And its timestamp must be within

the ticket’s timespan
Lecture 9
Page 46CS 239, Winter 2006

Potential Weaknesses in
Kerberos

• Timestamp-based attacks
• Password-guessing attacks
• Replacement of Kerberos software

– The server is probably well protected
– But are the clients?
– Not unique to Kerberos

Lecture 9
Page 47CS 239, Winter 2006

Certificates

• An increasingly popular form of
authentication

• Generally used with public key
cryptography

• A signed electronic document proving
you are who you claim to be

Lecture 9
Page 48CS 239, Winter 2006

Public Key Certificates

• The most common kind of certificate
• Addresses the biggest challenge in

widespread use of public keys
• Essentially, a copy of your public key

signed by a trusted authority
• Presentation of the certificate alone serves

as authentication of your public key

9

Lecture 9
Page 49CS 239, Winter 2006

Implementation of Public Key
Certificates

• Set up a universally trusted authority
• Every user presents his public key to

the authority
• The authority returns a certificate

– Containing the user’s public key
signed by the authority’s private key

Lecture 9
Page 50CS 239, Winter 2006

Checking a Certificate

• Every user keeps a copy of the authority’s
public key

• When a new user wants to talk to you, he
gives you his certificate

• Decrypt the certificate using the authority’s
public key

• You now have an authenticated public key
for the new user

• Authority need not be checked on-line

Lecture 9
Page 51CS 239, Winter 2006

Scaling Issues of Certificates

• If there are ~600 million Internet users
needing certificates, can one authority
serve them all?

• Probably not
• So you need multiple authorities
• Does that mean everyone needs to

store the public keys of all authorities?

Lecture 9
Page 52CS 239, Winter 2006

Certification Hierarchies

• Arrange certification authorities
hierarchically

• The single authority at the top
produces certificates for the next layer
down

• And so on, recursively

Lecture 9
Page 53CS 239, Winter 2006

Using Certificates From
Hierarchies

• I get a new certificate
• I don’t know the signing authority
• But the certificate also contains that

authority’s certificate
• Perhaps I know the authority who

signed this authority’s certificate

Lecture 9
Page 54CS 239, Winter 2006

Extracting the Authentication

• Using the public key of the higher level
authority, extract the public key of the
signing authority from the certificate

• Now I know his public key, and it’s
authenticated

• I can now extract the user’s key and
authenticate it

10

Lecture 9
Page 55CS 239, Winter 2006

A Example

Give me a
certificate
saying that
I’m

Should Alice
believe that
he’s really
?

Alice has never
heard of
But she has
heard of

So she uses
to check

How can
prove who
he is?

Alice gets a
message with
a certificate

Then she uses
to check

Lecture 9
Page 56CS 239, Winter 2006

Certificates and Trust

• Ultimately, the point of a certificate is to
determine if something is trusted
– Do I trust the request to perform some

financial transaction?
• So, Trustysign.comsigned this certificate
• How much confidence should I have in the

certificate?

Lecture 9
Page 57CS 239, Winter 2006

Potential Problems in the
Certification Process

• What measures did Trustysign.com use
before issuing the certificate?

• Is the certificate itself still valid?
• Is Trustysign.com’s

signature/certificate still valid?
• Who is trustworthy enough to be at the

top of the hierarchy?

Lecture 9
Page 58CS 239, Winter 2006

Trustworthiness of Certificate
Authority

• How did Trustysign.comissue the
certificate?

• Did it get an in-person sworn affidavit from
the certificate’s owner?

• Did it phone up the owner to verify it was
him?

• Did it just accept the word of the requestor
that he was who he claimed to be?

Lecture 9
Page 59CS 239, Winter 2006

What Does a Certificate Really
Tell Me?

• That the certificate authority (CA) tied
a public/private key pair to
identification information

• Generally doesn’t tell me why the CA
thought the binding was proper

• I may have different standards than
that CA

Lecture 9
Page 60CS 239, Winter 2006

Showing a Problem Using
the Example

Alice likes how
verifies identity

But is she equally
happy with how
verifies identity?

Does she even
know how
verifies identity?

What if
uses ‘ s lax
policies to
pretend to be

?

11

Lecture 9
Page 61CS 239, Winter 2006

Another Big Problem

• Things change
• One result of change is that what used

to be safe or trusted isn’t any more
• If there is trust-related information out

in the network, what will happen when
things change?

Lecture 9
Page 62CS 239, Winter 2006

Revocation

• A general problem for keys,
certificates, access control lists, etc.

• How does the system revoke
something related to trust?

• In a network environment
• Safely, efficiently, etc.

Lecture 9
Page 63CS 239, Winter 2006

Revisiting Our Example
Someone discovers
that has obtained
a false certificate for

How does Alice make sure
that she’s not accepting ‘ s
false certificate?

Lecture 9
Page 64CS 239, Winter 2006

The Web of Trust Model

• Public keys are still passed around signed
by others

• But your trust in others is based on your
personal trust of them
– Not on a formal certification hierarchy
– “I work in the office next to Bob, so I

trust Bob’s certifications”

Lecture 9
Page 65CS 239, Winter 2006

Certificates in the Web of Trust

• Any user can sign any other user’s
public key

• When a new user presents me his
public key, he gives me one or more
certificates signed by others

• If I trust any of those others, I trust the
new user’s public key

Lecture 9
Page 66CS 239, Winter 2006

Limitations on the Web of Trust

• The web tends to grow
– “I trust Alice, who trusts Bob, who trusts

Carol, who trusts Dave, . . ., who trusts
Lisa, who trusts Mallory ”

– Just because Lisa trusts Mallory doesn’t
mean I should

• Working system needs concept of degrees
of trust

12

Lecture 9
Page 67CS 239, Winter 2006

Advantages and Disadvantages of
Web of Trust Model

+ Scales very well
+ No central authority
+ Very flexible
– May be hard to assign degrees of trust
– Revocation may be difficult
– May be hard to tell who you will and

won’t trust

