Yet More On Cryptography CS 239 Computer Security January 30, 2006

nter 2006

Outline

- Symmetric cryptosystems
- Asymmetric cryptosystems
- Digital signatures
- Digital hashes
- Key recovery cryptosystems

.

Lecture 4

Symmetric and Asymmetric Cryptosystems

- Symmetric the encrypter and decrypter share a secret key
 - Used for both encrypting and decrypting
- Asymmetric encrypter has different key than decrypter

ter 2006

Description of Symmetric Systems

- C = E(K,P)
- P = D(K,C)
- *E*() and *D*() are not necessarily the same operations

CS 239, Winter 2006

Lecture

Advantages of Symmetric Key Systems

- + Encryption and authentication performed in a single operation
- + Well-known (and trusted) ones perform faster than asymmetric key systems
- + Doesn't require any centralized authority
 - Though key servers help a lot

stor 2006

Disadvantage of Symmetric Key Systems

- Encryption and authentication performed in a single operation
 - Makes signature more difficult
- Non-repudiation hard without servers
- Key distribution can be a problem
- Scaling

CS 239, Winter 2006

Sample Symmetric Key Ciphers

- The Data Encryption Standard
- The Advanced Encryption Standard
- There are many others

M 220 MF - 2004

Lecture 4

The Data Encryption Standard

- Probably the best known symmetric key cryptosystem
- Developed in 1977
- Still much used
 - Which implies breaking it isn't trivial
- But showing its age

er 2006

History of DES

- Developed in response to National Bureau of Standards studies
- · Developed by IBM
- Analyzed, altered, and approved by the National Security Agency
- · Adopted as a federal standard
- One of the most widely used encryption algorithms

CS 239, Winter 2006

Lecture Page 10

Overview of DES Algorithm

- A block encryption algorithm
 - 64 bit blocks
- Uses substitution and permutation
 - Repeated applications
 - 16 cycles worth
- 64 bit key
 - Only 56 bits really used, though

CS 239, Winter 2006

Lecture 4 Page 11

More On DES Algorithm

- Uses substitutions to provide confusion
 - To hide the set of characters sent
- Uses transpositions to provide diffusion
 - To spread the effects of one plaintext bit into other bits
- Uses only standard arithmetic and logic functions and table lookup
- Performs 16 rounds of substitutions and permutations
- Involving the key in each round

CS 239, Winter 2006

Page 12

Decrypting DES

- For DES, D() is the same as E()
- You decrypt with exactly the same algorithm
- If you feed ciphertext and the same key into DES, the original plaintext pops out

Is DES Secure?

- Apparently, reasonably
- No evidence NSA put a trapdoor in
 - Alterations believed to have increased security against differential cryptanalysis
- Some keys are known to be weak with DES
 - So good implementations reject them
- To date, only brute force attacks have publicly cracked DES

CS 239, Winter 2006

Key Length and DES

- Easiest brute force attack is to try all keys
 - Looking for a meaningful output
- Cost of attack proportional to number of possible
- Is 2^{56} enough keys?
- · Not if you seriously care
 - Cracked via brute force in 1998
 - Took lots of computers and time
 - But computers keep getting faster . . .

CS 239, Winter 2006

Does This Mean DES is Unsafe?

- Depends on what you use it for
- Takes lots of compute power to crack
- On the other hand, computers will continue to get faster
- And motivated opponents can harness vast resources
- Increasingly being replaced by AES

The Advanced Encryption Standard

- A relatively new cryptographic algorithm
- Intended to be the replacement for DES
- · Chosen by NIST
 - Through an open competition
- Chosen cipher was originally called Rijndael
 - Developed by Dutch researchers
- Uses combination of permutation and substitution
 CS 239. Winter 2004

Increased Popularity of AES

- Gradually replacing DES
 - As was intended
- Various RFCs describe using AES in **IPSEC**
- FreeS/WAN IPSEC (for Linux) includes AES
- Some commercial VPNs use AES
- Various Windows AES products available

CS 239, Winter 2006

Public Key Encryption Systems

• The encrypter and decrypter have different keys

$$C = E(K_E, P)$$

$$P = D(K_D, C)$$

• Often, works the other way, too

 $C?? E(K_D, P)$

 $P?D(K_E,C?)$

CS 239, Winter 2006

Lecture 4

History of Public Key Cryptography

- Invented by Diffie and Hellman in 1976
- Merkle and Hellman developed Knapsack algorithm in 1978
- Rivest-Shamir-Adelman developed RSA in 1978
 - Most popular public key algorithm
- Many public key cryptography advances secretly developed by British and US government cryptographers earlier

CS 239, Winter 2006

Page 20

Practical Use of Public Key Cryptography

- Keys are created in pairs
- One key is kept secret by the owner
- The other is made public to the world
- If you want to send an encrypted message to someone, encrypt with his public key
 - -Only he has private key to decrypt

CS 239, Winter 2006

Lecture 4 Page 21

Authentication With Shared Keys

- If only two people know the key, and I didn't create a properly encrypted message -
 - -The other guy must have
- But what if he claims he didn't?
- Or what if there are more than two?
- Requires authentication servers

CS 239, Winter 2006

Lecture

Authentication With Public Keys

- If I want to "sign" a message, encrypt it with my private key
- Only I know private key, so no one else could create that message
- Everyone knows my public key, so everyone can check my claim directly

CS 239, Winter 2006

Key Management Issues

- To communicate via shared key cryptography, key must be distributed
 - -In trusted fashion
- To communicate via public key cryptography, need to find out each other's public key
 - -"Simply publish public keys"

CS 239, Winter 2006

Lecture 4

Issues of Key Publication

- Security of public key cryptography depends on using the right public key
- If I am fooled into using the wrong one, that key's owner reads my message
- Need high assurance that a given key belongs to a particular person
- Which requires a key distribution infrastructure

CS 239 Winter 2006

Page 26

RSA Algorithm

- Most popular public key cryptographic algorithm
- In wide use
- Has withstood much cryptanalysis
- Based on hard problem of factoring large numbers

CS 239, Winter 2006

Lecture

RSA Keys

- Keys are functions of a pair of 100-200 digit prime numbers
- Relationship between public and private key is complex
- Recovering plaintext without private key (even knowing public key) is supposedly equivalent to factoring product of the prime numbers

CS 239, Winter 2006

Page 28

Comparison of DES and RSA

- DES is much more complex
- However, DES uses only simple arithmetic, logic, and table lookup
- RSA uses exponentiation to large powers
 - Computationally 1000 times more expensive in hardware, 100 times in software
- Key selection also more expensive

CS 239, Winter 2006

Lecture 4 Page 29

Security of RSA

- <u>Conjectured</u> that security depends on factoring large numbers
 - -But never proven
 - Some variants proven equivalent to factoring problem
- Probably the conjecture is correct

CS 239, Winter 2006

Attacks on Factoring RSA Keys

- In 2005, a 640 bit RSA key was successfully factored
 - Took 30 CPU years of 2.2 GHz machines
 - 5 months calendar time
- Research on integer factorization suggests keys up to 2048 bits may be insecure
- Size will keep increasing
- The longer the key, the more expensive the encryption and decryption

CS 239, Winter 2006

Lecture 4 Page 31

Combined Use of Symmetric and Asymmetric Cryptography

- Very common to use both in a single session
- Asymmetric cryptography essentially used to "bootstrap" symmetric crypto
- Use RSA (or another PK algorithm) to authenticate and establish a *session key*
- Use DES/Triple DES/AES using session key for the rest of the transmission

CS 239, Winter 2006

Page 32

Digital Signature Algorithms

- In some cases, secrecy isn't required
- But authentication is
- The data must be guaranteed to be that which was originally sent
- Especially important for data that is long-lived

CS 239, Winter 2006

Lecture

Desirable Properties of Digital Signatures

- Unforgeable
- Verifiable
- Non-repudiable
- Cheap to compute and verify
- Non-reusable
- No reliance on trusted authority
- Signed document is unchangeable

CS 239, Winter 2006

Page 34

Encryption and Digital Signatures

- Digital signature methods are based on encryption
- Encryption can be used as a signature

CS 239, Winter 2006

ecture 4 age 35

Signatures With Shared Key Encryption

- Requires a trusted third party
- Signer encrypts document with secret key shared with third party
- Receiver checks validity of signature by consulting with trusted third party
- Third party required so receiver can't forge the signature

CS 239, Winter 2006

Signatures With Public Key Cryptography

- Signer encrypts document with his private key
- Receiver checks validity by decrypting with signer's public key
- Only signer has the private key
 - So no trusted third party required
- But receiver must be certain that he has the right public key

Problems With Simple Encryption Approach

- Computationally expensive
 - -Especially with public key approach
- Document is encrypted
 - -Must be decrypted for use
 - If in regular use, must store encrypted and decrypted versions

CS 239, Winter 2006

Lecture 4 Page 38

Secure Hash Algorithms

- A method of protecting data from modification
- Doesn't actually prevent modification
- But gives strong evidence that modification did or didn't occur
- Typically used with digital signatures

CS 239, Winter 2006

Idea Behind Secure Hashes

- Apply a one-way cryptographic function to data in question
- Producing a much shorter result
- Attach the cryptographic hash to the data before sending
- When necessary, repeat the function on the data and compare to the hash value

CS 239, Winter 2006

Lecture Pogo 40

Secure Hash Algorithm (SHA)

- Endorsed by NIST
- Reduces input data of up to 2⁶⁴ bits to 160 bit digest
- Doesn't require secret key
- Broken in 2005

20 Winter 2006

Lecture 4 Page 41

What Does "Broken" Mean for SHA-1?

- A crypto hash matches a digest to a document
- It's bad if two documents match the same digest
- It's very bad if you can easily find a second document with a matching hash
- The crypto break finds matching hashes in 2⁶³ operations

CS 239, Winter 2006

How Bad Is That?

- We can do things in 2⁶³ operations
 - Though it's not trivial
- But the second "document" might be junk
- So relevant if that is a reasonable attack
- NIST isn't panicking
 - But is recommending phasing out SHA -1 by 2010

CS 239, Winter 2006

Use of Cryptographic Hashes

- Must assume opponent also has hashing function
- And it doesn't use secret key
- So opponent can substitute a different message with a different hash
- How to prevent this?
- And what (if anything) would secure hashes actually be useful for?

Lecture
Page 4

Hashing and Signatures

- Use a digital signature algorithm to sign the hash
- But why not just sign the whole message, instead?
- Computing the hash and signing it may be faster than signing the document
- Receiver need only store document plus hash

ter 2006

The Birthday Attack

- How many people must be in a room for the chances to be greater than even that two of them share a birthday?
- Answer is 23
- The same principle can be used to attack hash algorithms

CS 220 Winter 2006

Lecture 4 Page 47

Using the Birthday Attack on Hashes

- For a given document, find a different document that has the effect you want
- Trivially alter the second document so that it hashes to the same value as the target document
 - -Using an exhaustive attack

CS 239, Winter 2006

How Hard Is the Birthday Attack?

- Depends on the length of the hash
 - And the quality of the hashing algorithm
- Essentially, looking for hashing collisions
- So long hashes are good
 - SHA produces 280 random hashes
 - But 2005 attack finds collisions in 2⁶³ operations

CS 239, Winter 2006

Lecture Page 49

Legal and Political Issues in Cryptography

- Cryptography is meant to help keep secrets
- But should all secrets be kept?
- Many legal and moral issues

CS 239 Winter 2006

Page 50

Societal Implications of Cryptography

- Criminals can conceal communications from the police
- Citizens can conceal taxable income from the government
- Terrorists can conceal their activities from governments trying to stop them

S 239, Winter 2006

Lecture

Problems With Controlling Cryptography

- Essentially, it's mostly algorithms
- If you know the algorithm, you can have a working copy easily
- At which point, you can conceal your secrets from anybody
 - -To the strength the algorithm provides

CS 239, Winter 2006

Lecture

Governmental Responses to Cryptography

- They vary widely
- Some nations require government approval to use cryptography
- Some nations have no laws governing cryptography at all
- The US laws less restrictive than they used to be

CS 239, Winter 2006

Lecture 4 Page 53

The US Government Position on Cryptography

- All forms of cryptography are legal to use in the US
- BUT
 - Some minor restrictions on exporting cryptography to other countries
- The NSA used to try to keep a lid on cryptographic research

CS 239, Winter 2006

US Restrictions on Cryptographic Exports

- Rules changed in 2000
- Greatly liberalizing cryptographic exports
- Almost all cryptography is exportable
- Exception is for government use by a handful of countries
 - -Those the US government currently doesn't like

CS 239, Winter 2006

Lecture

Cryptographic Source Code and Free Speech

- US government took Phil Zimmermann to court over PGP
- Court ruled that he had a free-speech right to publish PGP source
- Eventually, appeals courts also found in favor of Zimmermann

CS 230 Winter 2006 -

Page 56

Other Nations and Cryptography

- Generally, most nations have few or no restrictions on cryptography
- A group of treaty signatories have export restrictions similar to US's
- Some have strong restrictions
 - China, Russia, Vietnam, a few others
- A few have laws on domestic use of crypto
 - E.g., Australia, UK, India have laws that demand decryption with court order

CS 239, Winter 2006

Lecture Page 5

Key Recovery Cryptosystems

- An attempt to balance:
 - Legitimate societal security needs
 - Which require strong encryption
 - And legitimate governmental and law enforcement needs
 - Which require access to data
- How can you have strong encryption and still satisfy governments?

CS 239, Winter 2006

Lecture Pogo 59

Idea Behind Key Recovery

- Use encryption algorithms that are highly secure against cryptanalysis
- But with mechanisms that allow legitimate law enforcement agency to:
 - Obtain any key with sufficient legal authority
 - Very, very quickly
 - Without the owner knowing

CS 239, Winter 2006

Lecture 4 Page 59

Proper Use of Data Recovery Methods

- All encrypted transmissions (or saved data) must have key recovery methods applied
- Basically, the user must cooperate
 - Or his encryption system must force him to cooperate
 - Which implies everyone must use this form of cryptosystem

CS 239, Winter 2006

Page 60

Methods to Implement Key Recovery

- Key registry method
 - -Register all keys before use
- Data field recovery method
 - -Basically, keep key in specially encrypted form in each message
 - With special mechanisms to get key out of the message

CS 239, Winter 2006

Lecture 4

Problems With Key Recovery Systems

- Requires trusted infrastructures
- Requires cooperation (forced or voluntary) of all users
- Requires more trust in authorities than many people have
- · International issues
- Performance and/or security problems with actual algorithms

CS 239. Winter 2006

Lecture Page 62

The Current Status of Key Recovery Systems

- Pretty much dead (for widespread use)
- US tried to convince everyone to use them
 - Skipjack algorithm, Clipper chip
- Very few agreed
- US is moving on to other approaches to dealing with cryptography
- Some businesses run key recovery internally
 - More to avoid losing important data when keys lost than for any other reason

CS 239, Winter 2006

Lecture 4