
1

Lecture 11
Page 1CS 239, Winter 2006

Operating System Security
CS 239

Computer Security
February 22, 2006

Lecture 11
Page 2CS 239, Winter 2006

Outline

• Introduction
• Memory protection
• Interprocess communications protection
• File protection

Lecture 11
Page 3CS 239, Winter 2006

Introduction

• Operating systems provide the lowest layer
of software visible to users

• Operating systems are close to the hardware
– Often have complete hardware access

• If the operating system isn’t protected, the
machine isn’t protected

• Flaws in the OS generally compromise all
security at higher levels

Lecture 11
Page 4CS 239, Winter 2006

Why Is OS Security So Important?

• The OS controls access to application
memory

• The OS controls scheduling of the processor
• The OS ensures that users receive the

resources they ask for
• If the OS isn’t doing these things securely,

practically anything can go wrong
• So almost all other security systems must

assume a secure OS at the bottom

Lecture 11
Page 5CS 239, Winter 2006

Single User Vs. Multiple User
Machines

• The majority of today’s computers usually
support a single user
– Sometimes one at a time, sometimes only

one ever
• Some computers are still multi-user

– Mainframes
– Servers
– Network-of-workstation machines

• Single user machines often run multiple
processes, though

Lecture 11
Page 6CS 239, Winter 2006

Server Machines Vs. General
Purpose Machines

• Most server machines provide only limited
services
– Web page access
– File access
– DNS lookup

• Security problems are simpler for them
• Some machines still provide completely

general service, though
• And many server machines can run general

services . . .

2

Lecture 11
Page 7CS 239, Winter 2006

Downloadable Code and Single
User Machines

• Applets and other downloaded code
should run in a constrained mode

• Using access control on a finer
granularity than the user

• Essentially the same protection
problem as multiple users

Lecture 11
Page 8CS 239, Winter 2006

Mechanisms for Secure
Operating Systems

• Most operating system security is
based on separation
– Keep the bad guys away from the

good stuff
– Since you don’t know who’s bad,

separate most things

Lecture 11
Page 9CS 239, Winter 2006

Separation Methods

• Physical separation
– Different machines

• Temporal separation
– Same machine, different times

• Logical separation
– HW/software enforcement

• Cryptographic separation
Lecture 11
Page 10CS 239, Winter 2006

The Problem of Sharing

• Separating stuff is actually pretty easy
• The hard problem is allowing

controlled sharing
• How can the OS allow users to share

exactly what they intend to share?
– In exactly the ways they intend

Lecture 11
Page 11CS 239, Winter 2006

Levels of Sharing Protection

• None
• Isolation
• All or nothing
• Access limitations
• Limited use of an object

Lecture 11
Page 12CS 239, Winter 2006

Protecting Memory

• Most general purpose systems provide some
memory protection
– Logical separation of processes that run

concurrently
• Usually through virtual memory methods
• Originally arose mostly for error

containment, not security

3

Lecture 11
Page 13CS 239, Winter 2006

Security Aspects of Paging

• Main memory is divided into page frames
• Every process has an address space divided

into logical pages
• For a process to use a page, it must reside in

a page frame
• If multiple processes are running, how do

we protect their frames?

Lecture 11
Page 14CS 239, Winter 2006

Protection of Pages

• Each process is given a page table
– Translation of logical addresses into

physical locations
• All addressing goes through page table

– At unavoidable hardware level
• If the OS is careful about filling in the page

tables, a process can’t even name other
processes ’ pages

Lecture 11
Page 15CS 239, Winter 2006

Security Issues of Page Frame
Reuse

• A common set of page frames is shared by
all processes

• The OS switches ownership of page frames
as necessary

• When a process acquires a new page frame,
it used to belong to another process
– Can the new process read the old data?

Lecture 11
Page 16CS 239, Winter 2006

Special Interfaces to Memory

• Some systems provide a special interface to
memory

• If the interface accesses physical memory,
– And doesn’t go through page table

protections,
– Attackers can read the physical memory
– Then figure out what’s there and find

what they’re looking for

Lecture 11
Page 17CS 239, Winter 2006

Protecting Interprocess
Communications

• Operating systems provide various kinds of
interprocess communications
– Messages
– Semaphores
– Shared memory
– Sockets

• How can we be sure they’re used properly?
Lecture 11
Page 18CS 239, Winter 2006

IPC Protection Issues

• How hard it is depends on what you’re
worried about

• For the moment, let’s say we’re worried
about one process improperly using IPC to
get info from another
– Process A wants to steal information

from process B
• How would process A do that?

4

Lecture 11
Page 19CS 239, Winter 2006

Message Security
Process A Process B

Can process B use message-
based IPC to steal the secret?

Gimme your
secret

That’s probably
not going to work

Lecture 11
Page 20CS 239, Winter 2006

How Can B Get the Secret?
• He can convince the system he’s A

– A problem for authentication
• He can break into A ’s memory

– That doesn’t use message IPC
– And is handled by page tables

• He can forge a message from someone else
to get the secret

• He can “eavesdrop” on someone else who
gets the secret

Lecture 11
Page 21CS 239, Winter 2006

Forging An Identity
Process A Process B

Process C

I’m C, gimme
your secret

Will A
know B is

lying?

Lecture 11
Page 22CS 239, Winter 2006

Operating System Protections

• The operating system knows who each
process belongs to

• It can tag the message with the identity
of the sender

• If the receiver cares, he can know the
identity

Lecture 11
Page 23CS 239, Winter 2006

How About Eavesdropping?
Process A Process B

Process C

I’m C, gimme
your secret

Can process B
“listen in” on
this message?

Lecture 11
Page 24CS 239, Winter 2006

What’s Really Going on Here?

• On a single machine, what is a message
send, really?

• A message is copied from a process buffer
to an OS buffer
– Then from the OS buffer to another

process’ buffer
• If attacker can’t get at processes ’ internal

buffers and can’t get at OS buffers, he can’t
“eavesdrop”

5

Lecture 11
Page 25CS 239, Winter 2006

Other Forms of IPC

• Semaphores, sockets, shared memory, RPC
• Pretty much all the same

– Use system calls for access
– Which belong to some process
– Which belongs to some principal
– OS can check principal against access

control permissions at syscall time
Lecture 11
Page 26CS 239, Winter 2006

So When Is It Hard?

• Always possible that there’s a bug in the
operating system
– Allowing masquerading, eavesdropping,

etc.
– Or, if the OS itself is compromised, all

bets are off
• What if the OS has to prevent cooperating

processes from sharing information?

Lecture 11
Page 27CS 239, Winter 2006

The Hard Case
Process A Process B

Process A wants to tell the secret to process B
But the OS has been instructed to prevent that
Can the OS prevent A and B from colluding

to get the secret to B?
Lecture 11
Page 28CS 239, Winter 2006

Dangers for Operating System
Security

• Bugs in the OS
– Not checking security, allowing

access to protected resources, etc.
• Privileged users and roles

– Superusers often can do anything
• Untrusted applications and overly

broad security domains

Lecture 11
Page 29CS 239, Winter 2006

File Protection

• How do we apply these access protection
mechanisms to a real system resource?

• Files are a common example of a typically
shared resource

• If an OS supports multiple users, it needs to
address the question of file protection

Lecture 11
Page 30CS 239, Winter 2006

Unix File Protection

• A model for protecting files developed
in the 1970s

• Still in very wide use today
– With relatively few modifications

• But not very flexible

6

Lecture 11
Page 31CS 239, Winter 2006

Unix File Protection Philosophy

• Essentially, Unix uses a limited ACL
• Only three subjects per file

– Owner
– Group
– Other

• Limited set of rights specifiable
– Read, write, execute
– Special meanings for some file types

Lecture 11
Page 32CS 239, Winter 2006

Unix Groups

• A set of Unix users can be joined into a
group

• All users in that group receive common
privileges
– Except file owners always get the owner

privileges
• A user can be in multiple groups
• But a file has only one group

Lecture 11
Page 33CS 239, Winter 2006

Setuid and Setgid

• Unix mechanisms for changing your user
identity and group identity

• Either indefinitely or for the run of a single
program

• Created to deal with inflexibilities of the
Unix access control model

• But the source of endless security problems

Lecture 11
Page 34CS 239, Winter 2006

Why Are Setuid Programs
Necessary?

• The print queue is essentially a file
• Someone must own that file
• How will other people put stuff in the print

queue?
– Without making the print queue writeable

for all purposes
• Typical Unix answer is run the printing

program setuid
– To the owner of the print queue

Lecture 11
Page 35CS 239, Winter 2006

Why Are Setuid Programs
Dangerous?

• Essentially, setuid programs expand a
user’s security domain

• In an encapsulated way
– Abilities of the program limit the

operations in that domain
• Need to be damn sure that the

program’s abilities are limited

Lecture 11
Page 36CS 239, Winter 2006

Some Examples of Setuid
Dangers

• Setuid programs that allow forking of a new
shell

• Setuid programs with powerful debugging
modes

• Setuid programs with “interesting” side
effects
– E.g., lpr options that allow file deletion

7

Lecture 11
Page 37CS 239, Winter 2006

Domain and Type Enforcement

• A limited version of capabilities
• Meant to address the dangers of setuid
• Allows system to specify security

domains
– E.g., the printing domain

• And to specify data types
– E.g., the printer type

Lecture 11
Page 38CS 239, Winter 2006

Using DTE

• Processes belong to some domain
– Can change domains, under careful

restrictions
• Only types available to that domain are

accessible
– And only in ways specified for that

domain

Lecture 11
Page 39CS 239, Winter 2006

A DTE Example

• Protecting the FTP daemon from buffer
overflow attacks

• Create an FTP domain
• Only the FTP daemon and files in the FTP

directory can be executed in this domain
– And these executables may not be written

within this domain
• Executing the FTP daemon program

automatically enters this domain
Lecture 11
Page 40CS 239, Winter 2006

What Happens On Buffer Overflow?

• The buffer overflow attack allows the attacker to
request execution of an arbitrary program
– Say, /bin/sh

• But the overflowed FTP daemon program was in
the FTP domain
– And still is

• /bin/sh is of a type not executable from this
domain
– So the buffer overflow can’t fork a shell

Lecture 11
Page 41CS 239, Winter 2006

Access Control Lists for File
Systems

• The file system access control
mechanism of choice in modern
operating systems

• Used in many systems -
– Andrew
– Windows NT/2000/XP
– Solaris 2.5 and higher

Lecture 11
Page 42CS 239, Winter 2006

Windows NT ACLs for Files

• Integrated into the overall NT access
control mechanism

• Uses NT concept of security
descriptors
– Specifying objects

• And security IDs
– Specifying subjects

8

Lecture 11
Page 43CS 239, Winter 2006

More On Windows NT File
ACLs

• The NT model also allows creation of
groups
– With their own security IDs

• The security model is object-based
– So the types of permissions that can

be granted are flexible and extensible

Lecture 11
Page 44CS 239, Winter 2006

Encrypted File Systems

• Data stored on disk is subject to many risks
– Improper access through OS flaws
– But also somehow directly accessing the

disk
• If the OS protections are bypassed, how can

we protect data?
• How about if we store it in encrypted form?

Lecture 11
Page 45CS 239, Winter 2006

An Example of an Encrypted File
System

Sqzmredq
#099 sn
lx
rzuhmfr
zbbntms

Ks

Transfer
$100 to
my
savings
account

Issues for
encrypted file

systems:

When does the
cryptography occur?

Where does the
key come from?

What is the
granularity of
cryptography?

Lecture 11
Page 46CS 239, Winter 2006

When Does Cryptography Occur?

• Transparently when user opens file?
• By explicit user command?

– Inside OS?
– Outside OS, by application?
– On another machine?

• How long is the data decrypted?
• Where does it exist in decrypted form?

Lecture 11
Page 47CS 239, Winter 2006

Where Does the Key Come From?

• Provided by human user?
• Stored somewhere in file system?
• Stored on a smart card?
• Stored on another computer?
• Where and for how long do we store

the key?

Lecture 11
Page 48CS 239, Winter 2006

What Is the Granularity of
Cryptography?

• An entire file system?
• Per file?
• Per block?
• Consider both in terms of:

– How many keys?
– When is a crypto operation applied?

9

Lecture 11
Page 49CS 239, Winter 2006

What Are You Trying to Protect
Against With Crypto File Systems?

• Unauthorized access by improper users?
– Why not just access control?

• The operating system itself?
– What protection are you really getting?

• Someone who accesses the device not using the
OS?
– A realistic threat in your environment?

• Data transfers across a network?
– Why not just encrypt while in transit?

