Authentication CS 239 Computer Security February 15, 2006

inter 2006

Outline

- Introduction
- Basic authentication mechanisms
- Authentication on a single machine
- Authentication across a network

- Page 2

Introduction

- Much of security is based on good access control
- Access control only works if you have good authentication
- What is authentication?

nter 2006

Authentication

- Determining the identity of some entity
 - -Process
 - -Machine
 - -Human user
- Requires notion of identity
- And some degree of proof of identity

CS 239, Winter 2006

Lecture Pogo 4

Proving Identity in the Physical World

- Most frequently done by physical recognition
 - I recognize your face, your voice, your body
- What about identifying those we don't already know?

More 2006

Other Physical World Methods of Identification

- Identification by recommendation
 - You introduce me to someone
- Identification by credentials
 - You show me your driver's license
- Identification by knowledge
 - You tell me something only you know
- Identification by location
 - You're behind the counter at the DMV
- These all have cyber analogs

Lecture 10 Page 6

Differences in Cyber Identification

- Usually the identifying entity isn't human
- Often the identified entity isn't human, either
- Often no physical presence required
- Often no later rechecks of identity

CS 239, Winter 2006

Lecture 1

Identifying With a Computer

- Not as smart as a human
 - Steps to prove identity must be well defined
- Can't do certain things as well
 - E.g., face recognition
- But lightning fast on computations and less prone to simple errors
 - Mathematical methods are acceptable

CS 230 Winter 2006

Lecture 10 Page 8

Identifying Computers and Programs

- No physical characteristics
 - -Faces, fingerprints, voices, etc.
- Generally easy to duplicate programs
- Not smart enough to be flexible
 - -Must use methods they will understand
- Again, good at computations

CS 239, Winter 2006

Lecture 1

Physical Presence Optional

- Often must be identified over a network or cable
- Even if the party to be identified is human
- So authentication mechanism must work in face of network characteristics
 - −E.g., active wiretapping

CS 239, Winter 2006

Lecture 10

Identity Might Not Be Rechecked

- Human beings can make identification mistakes
- But they often recover from them
 - Often quite easily
- Based on observing behavior that suggests identification was wrong
- Computers and programs rarely have that capability
 - If they identify something, they believe it

× 2006

Authentication Mechanisms

- Something you know
 - E.g., passwords
- Something you have
 - E.g., smart cards or tokens
- Something you are
 - Biometrics
- Somewhere you are
 - Usually identifying a role

CS 239, Winter 2006

Lecture 10 Page 12

Passwords

- Authentication by what you know
- One of the oldest and most commonly used security mechanisms
- Authenticate the user by requiring him to produce a secret
 - Known only to him and to the authenticator
 - Or, if one-way encryption used, known only to him

CS 239, Winter 2006

Lecture 10 Page 13

Problems With Passwords

- They have to be unguessable
 - Yet easy for people to remember
- If networks connect terminals to computers, susceptible to password sniffers
- Unless fairly long, brute force attacks often work on them

CS 239, Winter 2006

Lecture 10 Page 14

Proper Use of Passwords

- Passwords should be sufficiently long
- Passwords should contain non-alphabetic characters
- Passwords should be unguessable
- Passwords should be changed often
- Passwords should never be written down
- Passwords should never be shared

CS 239, Winter 2006

Page 15

Passwords and Single Sign-On

- Many systems ask for password once
 - -Resulting authentication lasts for an entire "session"
- Unless other mechanisms in place, complete mediation definitely not achieved
- Trading security for convenience

CS 239, Winter 2006

Lecture Page 16

Handling Passwords

- The OS must be able to check passwords when users log in
- So must the OS store passwords?
- Not really
 - It can store an encrypted version
- Encrypt the offered password
 - Using a one-way function
- And compare it to the stored version

CS 239, Winter 2006

Lecture 10 Page 17

Is Encrypting the Password File Enough?

- What if an attacker gets a copy of your password file?
- No problem, the passwords are encrypted
 - -Right?
- Yes, but . . .

CS 239. Winter 2006

A Serious Issue

- All Linux machines use the same oneway function to encrypt passwords
- If someone runs the entire dictionary through that function,
 - -Will they have a complete list of all encrypted dictionary passwords?

CS 239, Winter 2006

The Real Problem

- Not that Darwin and Marx chose the same password
- But that <u>anyone</u> who chose that password got the same encrypted result
- So the attacker need only encrypt every possible password once
- And then she has a complete dictionary usable against anyone

C\$ 239. Winter 2006

Salted Passwords

- Combine the plaintext password with a random number
 - -Then run it through the one-way function
- The random number need not be secret
- It just has to be different for different users

CS 220 Winter 2006

- Page 24

What Is This Salt, Really?

- An integer that is combined with the password before hashing
- How will you be able to check passwords by hashing them, then?
- By storing the salt integer with the password
 - Generally in plaintext
- Why is it OK (or OK-ish) to leave this important information in plaintext?

Lecture 10 Page 26

Protecting the Password File

- So it's OK to leave the encrypted version of the password file around?
- No, it isn't
- Why make it easy for attackers?
- Dictionary attacks against single accounts can still work
- Generally, don't give access to the encrypted file, either

CS 239, Winter 2006

Challenge/Response Authentication

- Authentication by what questions you can answer correctly
 - -Again, by what you know
- The system asks the user to provide some information
- If it's provided correctly, the user is authenticated

CS 239, Winter 2006

Lecture

Differences From Passwords

- Challenge/response systems ask for different information every time
- Or at least the questions come from a large set
- Best security achieved by requiring what amounts to encryption of the challenge
 - But that requires special hardware
 - Essentially, a smart card

CS 239. Winter 2006

Problems With Authentication Through Challenge/Response

- Either the question is too hard to answer without special hardware
- Or the question is too easy for intruders to spoof the answer
- Still, commonly used in real-world situations
 - E.g., authenticating you by asking your childhood pet's name

CS 239, Winter 2006

Page 30

A Short Digression on "Security Questions"

- Common in web sites
- If you forget your password, answer a "security question"
- Answering that properly gets you access
- Which means knowing the security question's answer is as good as knowing the password
- How secure are these "security questions?"
- How could the concept be improved?

CS 239, Winter 2006

Lecture 10 Page 31

Identification Devices

- Authentication by what you have
- A smart card or other hardware device that is readable by the computer
- Authenticate by providing the device to the computer

CS 239, Winter 2006

Lecture 10 Page 32

Simple Use of Authentication Tokens

- If you have the token, you are identified
- Generally requires connecting the authentication device to computer
 - -Unless done via wireless
- Weak, because it's subject to theft and spoofing

nter 2006

Authentication With Smart Cards Authentication verified! E(challenge) How can the server be sure of the remote user's identity? Learne 10 Figs. 34

Some Details on Smart Cards

- Cryptography performed only on smart card
 - So compromised client machine can't steal keys
- Likely to use PK cryptography
- Often user must enter password to activate card
 - Should it be entered to the card or the computer?

CS 239, Winter 2006

Lecture 10 Page 35

Problems With Identification Devices

- If lost or stolen, you can't authenticate yourself
 - And maybe someone else can
 - Often combined with passwords to avoid this problem
- Unless cleverly done, susceptible to sniffing attacks
- Requires special hardware

CS 239, Winter 2006

Lecture 1 Page 36

Authentication Through Biometrics

- Authentication based on who you are
- Things like fingerprints, voice patterns, retinal patterns, etc.
- To authenticate to the system, allow system to measure the appropriate physical characteristics

nter 2006

Problems With Biometric Authentication

- Requires very special hardware
 - Possibly excepting systems that examine typing patterns
- May not be as foolproof as you think
- Many physical characteristics vary too much for practical use
- Generally not helpful for authenticating programs or roles
- What happens when it's cracked?
 - You only have two retinas, after all

.

Lecture 10 Page 38

When Do Biometrics (Maybe) Work Well?

- When you use them for authentication
 - Carefully obtain clean readings from legitimate users
 - Compare those to attempts to authenticate
- When biometric readers are themselves
- In conjunction with other authentication

CS 239, Winter 2006

Page 39

When Do Biometrics (Definitely) Work Poorly?

- Finding "needles in haystacks"
 - Face recognition of terrorists in airports
- When working off low-quality readings
- When the biometric reader is easy to bypass or spoof
 - Anything across a network is suspect
- When the biometric is "noisy"
 - Too many false negatives

CS 239, Winter 2006

Lecture

Authentication by Where You Are

- Sometimes useful in ubiquitous computing
- The issue is whether the message in question is coming from the machine that's nearby
- Less important who owns that machine
- Requires sufficient proof of physical location
- And ability to tie a device at that location to its messages

CS 220 Winter 2006

Lecture 10 Page 41

Authentication on Physical Machines

- Generally controlled by the operating system
- Sometimes at application level
- At OS level, most frequently done at login time
- How does the OS authenticate later requests?

CS 239, Winter 2006

Lecture 1 Page 42

Process Authentication

- Memory protection is based on process identity
 - Only the owning process can name its own virtual memory pages
- Because VM is completely in OS control, pretty easy to ensure that processes can't fake identities

39 Winter 2006

Lecture 10 Page 43

How the OS Authenticates Processes

- System calls are issued by a particular process
- The OS securely ties a process control block to the process
 - -Not under user control
- Thus, the ID in the process control block can be trusted

CS 239, Winter 2006

Lecture 10 Page 44

How Do Processes Originally Obtain Access Permission?

- Most OS resources need access control based on user identity or role
 - Other than virtual memory pages and other transient resources
- How does a process get properly tagged with its owning user or role?
- Security is worthless if OS carefully controls access on a bogus user ID

CS 239, Winter 2006

Page 45

Users and Roles

- In most systems, OS assigns each potential user an ID
- More sophisticated systems recognize that the same user works in different *roles*
 - Effectively, each role requires its own ID
 - And secure methods of setting roles

CS 239, Winter 2006

Lecture 2

Securely Identifying Users and Roles

- Passwords
- · Identification devices
- Challenge/response systems
- Physical verification of the user

CS 220 Winter 2006

ecture 10 age 47

Authenticating Across the Network

- What new challenges does this add?
- You don't know what's at the other end of the wire
- So, when does that cause a problem?
- And how can you solve it?

CS 239, Winter 2006

Lecture Page 48