
1

Lecture 8
Page 1CS 239, Winter 2005

Key Management
CS 239

Computer Security
February 7, 2005

Lecture 8
Page 2CS 239, Winter 2005

Outline

• Properties of keys
• Key management
• Key servers

– Kerberos
• Certificates

Lecture 8
Page 3CS 239, Winter 2005

Introduction

• It doesn’t matter how strong your
encryption algorithm is

• Or how secure your protocol is
• If the opponents can get hold of your

keys, your security is gone
• Proper use of keys is crucial to security

in computing systems
Lecture 8
Page 4CS 239, Winter 2005

Properties of Keys

• Length
• Randomness
• Lifetime

Lecture 8
Page 5CS 239, Winter 2005

Key Length

• If your cryptographic algorithm is
otherwise perfect, its strength depends
on key length

• Since the only attack is a brute force
attempt to discover the key

• The longer the key, the more brute
force required

Lecture 8
Page 6CS 239, Winter 2005

Are There Real Costs for Key
Length?

• Clearly, more bits is more secure
• Why not a whole lot of key bits, then?
• Much encryption done in hardware

– More bits in hardware costs more
• Software encryption slows down as you add

more bits, too
– Public key cryptography costs are highly

dependent on key length

2

Lecture 8
Page 7CS 239, Winter 2005

Key Randomness

• Brute force attacks assume you chose your
key at random

• If the attacker can get any knowledge about
your mechanism of choosing a key, he can
substantially reduce brute force costs

• How good is your random number
generator?

Lecture 8
Page 8CS 239, Winter 2005

Generating Random Keys

• Well, don’t use rand()
• The closer the method chosen approaches

true randomness, the better
• But, generally, don’t want to rely on exotic

hardware
• True randomness is not essential

– Need same statistical properties
– And non-reproducibility

Lecture 8
Page 9CS 239, Winter 2005

Cryptographic Methods

• Start with a random number
• Use a cryptographic hash on it
• If the cryptographic hash is a good one, the

new number looks pretty random
• Produce new keys by hashing old ones
• Depends on strength of hash algorithm
• Falls apart if any key is ever broken

– Doesn’t have perfect forward secrecy
Lecture 8
Page 10CS 239, Winter 2005

Random Noise

• Observe an event that is likely to be random
• Assign bit values to possible outcomes
• Record or generate them as needed
• Sources:

– Physical processes (cosmic rays, etc.)
– Real world processes (variations in disk

drive delay, keystroke delays, etc.)

Lecture 8
Page 11CS 239, Winter 2005

Don’t Go Crazy on Randomness

• Make sure it’s non-reproducible
– So attackers can’t play it back

• Make sure there aren’t obvious patterns
• Attacking truly unknown patterns in fairly

random numbers is extremely challenging
– They’ll probably mug you, instead

Lecture 8
Page 12CS 239, Winter 2005

Key Lifetime

• If a good key’s so hard to find,
– Why every change it?

• How long should one keep using a
given key?

3

Lecture 8
Page 13CS 239, Winter 2005

Why Change Keys?

• Long-lived keys more likely to be compromised
• The longer a key lives, the more data is exposed if

it’s compromised
• The longer a key lives, the more resources

opponents can (and will) devote to breaking it
• The more a key is used, the easier the

cryptanalysis on it
• A secret that cannot be readily changed should be

regarded as a vulnerability

Lecture 8
Page 14CS 239, Winter 2005

Practicalities of Key Lifetimes

• In some cases, changing keys is
inconvenient
– E.g., encryption of data files

• Keys used for specific communications
sessions should be changed often
– E.g., new key for each phone call

• Keys used for key distribution can’t be
changed too often

Lecture 8
Page 15CS 239, Winter 2005

Destroying Old Keys

• Never keep a key around longer than
necessary
– Gives opponents more opportunities

• Destroy keys securely
– For computers, remember that

information may be in multiple places
• Caches, virtual memory pages, freed

file blocks, stack frames, etc.
Lecture 8
Page 16CS 239, Winter 2005

Key Management

• Choosing long, random keys doesn’t
do you any good if your clerk is selling
them for $10 a pop at the back door

• Or if you keep a plaintext list of them
on a computer on the net whose root
password is “root”

• Proper key management is crucial

Lecture 8
Page 17CS 239, Winter 2005

Desirable Properties in a Key
Management System

• Secure
• Fast
• Low overhead for users
• Scaleable
• Adaptable

– Encryption algorithms
– Applications
– Key lengths

Lecture 8
Page 18CS 239, Winter 2005

Users and Keys

• Where are a user’s keys kept?
• Permanently on the user’s machine?

– What happens if the machine is cracked?
• But people can’t remember random(ish)

keys
– Hash keys from passwords/passphrases?

• Keep keys on smart cards?
• Get them from key servers?

4

Lecture 8
Page 19CS 239, Winter 2005

Security of Key Servers

• The key server is the cracker’s holy
grail
– If they break the key server,

everything else goes with it
• What can you do to protect it?

Lecture 8
Page 20CS 239, Winter 2005

Security Measures for Key
Servers

• Don’t run anything else on the machine
• Use extraordinary care in setting it up and

administering it
• Watch it carefully
• Use a key server that stores as few keys

permanently as possible
• Use a key server that handles revocation

and security problems well

Lecture 8
Page 21CS 239, Winter 2005

Kerberos

• Probably the most widely used and
well-known key server

• Originally developed at MIT
– As part of Project Athena

• Uses trusted third parties
– And symmetric cryptography

• Provides authentication in key service
Lecture 8
Page 22CS 239, Winter 2005

The Kerberos Model

• Clients and servers sit on the network
• Clients want to interact securely with

servers
– Using a fresh key for each session

• Kerberos’ job is to distribute keys to
ensure that security

• Scalability is a concern

Lecture 8
Page 23CS 239, Winter 2005

Obtaining a Key Through
Kerberos

• The client needs to get a key to give to the
server and use himself

• He obtains the key from a ticket-granting
server
– Essentially, a server who hands out keys

to talk to other servers
• But the ticket-granting server needs

authentication of the client
• Which is obtained from the Kerberos server

Lecture 8
Page 24CS 239, Winter 2005

What’s the Point of the Ticket-
Granting Server?

• Scalability
– Most requests for keys for servers go to

ticket-granting server
– There can be lots of them

• And issues of trust
– Different ticket-granting servers can work

with different servers and clients
– So not everyone needs to trust one ticket-

granting server

5

Lecture 8
Page 25CS 239, Winter 2005

Players in the Kerberos Protocol

• The client
• The server
• The Ticket-Granting Service -

someone the server trusts to
authenticate the clients

• The Kerberos Server - someone
everyone trusts

Lecture 8
Page 26CS 239, Winter 2005

Kerberos Participants

Client

Server

Kerberos

Ticket-Granting
Server

Lecture 8
Page 27CS 239, Winter 2005

Client Requests a Ticket-
Granting Ticket From Kerberos

Client

Server

Kerberos

I need to talk to the
Ticket-Granting Server

Ticket-Granting
Server Lecture 8

Page 28CS 239, Winter 2005

Kerberos Sends the Client a
Ticket-Granting Ticket

Client

Server

Kerberos

Ticket-Granting
Server

Lecture 8
Page 29CS 239, Winter 2005

Client Asks TGS for a Server
Ticket

Client

Server

Kerberos

Ticket-Granting
Server

Ticket-Granting
Server checks
ticket validity

Lecture 8
Page 30CS 239, Winter 2005

TGS Sends Ticket to Client

Client

Server

Kerberos

Ticket-Granting
Server

6

Lecture 8
Page 31CS 239, Winter 2005

Client Requests Service

Client

Server

Kerberos

Ticket-Granting
Server

Server
checks ticket

Lecture 8
Page 32CS 239, Winter 2005

Tickets and Authenticators

• A Kerberos ticket is used to pass
information to a server securely

• An authenticator is an additional
credential passed along with the ticket
– Used to pass timestamp information

about lifetime of a key

Lecture 8
Page 33CS 239, Winter 2005

What’s In a Ticket

• TC,S = s, {c,a,v,KC,S}KS

• s is the server
• c is the client
• a is the client’s network address
• v is a timestamp
• KC,S is a session key
• KS is the server’s key

Lecture 8
Page 34CS 239, Winter 2005

Kerberos in More Detail: Step 1

Client

Server

Kerberos

Ticket-Granting
Server

Alice, Tracy

Alice

Tracy Sidney

Lecture 8
Page 35CS 239, Winter 2005

Kerberos Sends Client Ticket-
Granting Ticket

Alice

Sidney

Kerberos

Tracy

{KAlice,Tracy}KAlice,

What’s in
the ticket?

TAlice,Tracy = Tracy,
{Alice,xxx.xxx.xxx.xxx,TNow,
KAlice,Tracy}KTracy

Lecture 8
Page 36CS 239, Winter 2005

So What Has the Client Got?

• KAlice is derived from her password
• Which gets a session key allowing her to

communicate securely with the TGS
– KAlice,Tracy

• And she has a ticket for the TGS
– Not directly usable by Alice
– But the TGS (Tracy) can use it to

authenticate Alice

7

Lecture 8
Page 37CS 239, Winter 2005

Client Asks TGS for a Server
Ticket

Alice

Sidney

Kerberos

Tracy

{AAlice,Tracy}KAlice,Tracy
Tracy,

An authenticator

Lecture 8
Page 38CS 239, Winter 2005

What Has the TGS Got?

• It can decrypt the ticket created by the
Kerberos server
– Obtaining KAlice,Tracy and other

information
– Authenticating that the transmission

went through Kerberos server
• And it’s got the authenticator

Lecture 8
Page 39CS 239, Winter 2005

Why the Authenticator?

• We want to avoid involving the Kerberos
server every time a client needs a ticket

• So the ticket-granting ticket will be used
multiple times

• Authenticator protects against replay attacks
involving the multi-use ticket-granting
ticket

Lecture 8
Page 40CS 239, Winter 2005

TGS Sends Ticket to Client

Alice

Sidney

Kerberos

Tracy

{KAlice,Sidney}KAlice,Tracy

What’s in
the ticket?

TAlice,Sidney = Sidney,
{Alice,xxx.xxx.xxx.xxx,TNow1,
KAlice,Sidney}KSidney

Lecture 8
Page 41CS 239, Winter 2005

Now What Has the Client Got?

• She can decrypt the part of the message
containing the new session key
– So she’s ready to communicate

• She can’t decrypt the ticket
– That’s in a key only the server Sidney

knows
– But Sidney can use it

Lecture 8
Page 42CS 239, Winter 2005

Client Requests Service

Alice

Sidney

Kerberos

Tracy

{AAlice,Sidney}KAlice,Sidney

Alice creates
a new

authenticator
to show

freshness

8

Lecture 8
Page 43CS 239, Winter 2005

What Does the Server Have?

• He can decrypt the ticket from the TGS
– Since it’s in his key

• The ticket contains the session key
– And authentication information

• He can then decrypt the authenticator
– Which ensures a session isn’t being

replayed (by timestamp)
Lecture 8
Page 44CS 239, Winter 2005

Why Is There Both a Kerberos
Server and a TGS?

• The TGS handles normal interactions
between clients and servers

• The Kerberos server bootstraps interactions
with the TGS
– A ticket-granting ticket can be reused

with a TGS over some time
• Compromise of the TGS has limited effects

Lecture 8
Page 45CS 239, Winter 2005

Why Is There Both a Ticket and
An Authenticator?

• The ticket is reusable
– It has a timespan

• Typically 8 hours
• The authenticator is one-use-only

– Supposedly
– And its timestamp must be within

the ticket’s timespan
Lecture 8
Page 46CS 239, Winter 2005

Potential Weaknesses in
Kerberos

• Timestamp-based attacks
• Password-guessing attacks
• Replacement of Kerberos software

– The server is probably well protected
– But are the clients?
– Not unique to Kerberos

Lecture 8
Page 47CS 239, Winter 2005

Certificates

• An increasingly popular form of
authentication

• Generally used with public key
cryptography

• A signed electronic document proving
you are who you claim to be

Lecture 8
Page 48CS 239, Winter 2005

Public Key Certificates

• The most common kind of certificate
• Addresses the biggest challenge in

widespread use of public keys
• Essentially, a copy of your public key

signed by a trusted authority
• Presentation of the certificate alone serves

as authentication of your public key

9

Lecture 8
Page 49CS 239, Winter 2005

Implementation of Public Key
Certificates

• Set up a universally trusted authority
• Every user presents his public key to

the authority
• The authority returns a certificate

– Containing the user’s public key
signed by the authority’s private key

Lecture 8
Page 50CS 239, Winter 2005

Checking a Certificate

• Every user keeps a copy of the authority’s
public key

• When a new user wants to talk to you, he
gives you his certificate

• Decrypt the certificate using the authority’s
public key

• You now have an authenticated public key
for the new user

• Authority need not be checked on-line

Lecture 8
Page 51CS 239, Winter 2005

Scaling Issues of Certificates

• If there are ~800 million Internet users
needing certificates, can one authority
serve them all?

• Probably not
• So you need multiple authorities
• Does that mean everyone needs to

store the public keys of all authorities?
Lecture 8
Page 52CS 239, Winter 2005

Certification Hierarchies

• Arrange certification authorities
hierarchically

• The single authority at the top
produces certificates for the next layer
down

• And so on, recursively

Lecture 8
Page 53CS 239, Winter 2005

Using Certificates From
Hierarchies

• I get a new certificate
• I don’t know the signing authority
• But the certificate also contains that

authority’s certificate
• Perhaps I know the authority who

signed this authority’s certificate

Lecture 8
Page 54CS 239, Winter 2005

Extracting the Authentication

• Using the public key of the higher level
authority, extract the public key of the
signing authority from the certificate

• Now I know his public key, and it’s
authenticated

• I can now extract the user’s key and
authenticate it

10

Lecture 8
Page 55CS 239, Winter 2005

A Example

Give me a
certificate
saying that
I’m

Should Alice
believe that
he’s really
?

Alice has never
heard of
But she has
heard of

So she uses
to check

How can
prove who
he is?

Alice gets a
message with
a certificate

Then she uses
to check

Lecture 8
Page 56CS 239, Winter 2005

Certificates and Trust

• Ultimately, the point of a certificate is to
determine if something is trusted
– Do I trust the request to perform some

financial transaction?
• So, Trustysign.com signed this certificate
• How much confidence should I have in the

certificate?

Lecture 8
Page 57CS 239, Winter 2005

Potential Problems in the
Certification Process

• What measures did Trustysign.com use
before issuing the certificate?

• Is the certificate itself still valid?
• Is Trustysign.com’s

signature/certificate still valid?
• Who is trustworthy enough to be at the

top of the hierarchy?
Lecture 8
Page 58CS 239, Winter 2005

Trustworthiness of Certificate
Authority

• How did Trustysign.com issue the
certificate?

• Did it get an in-person sworn affidavit from
the certificate’s owner?

• Did it phone up the owner to verify it was
him?

• Did it just accept the word of the requestor
that he was who he claimed to be?

Lecture 8
Page 59CS 239, Winter 2005

What Does a Certificate Really
Tell Me?

• That the certificate authority (CA) tied
a public/private key pair to
identification information

• Generally doesn’t tell me why the CA
thought the binding was proper

• I may have different standards than
that CA

Lecture 8
Page 60CS 239, Winter 2005

Showing a Problem Using
the Example

Alice likes how
verifies identity

But is she equally
happy with how
verifies identity?

Does she even
know how
verifies identity?

What if
uses ‘s lax
policies to
pretend to be

?

11

Lecture 8
Page 61CS 239, Winter 2005

Another Big Problem

• Things change
• One result of change is that what used

to be safe or trusted isn’t any more
• If there is trust-related information out

in the network, what will happen when
things change?

Lecture 8
Page 62CS 239, Winter 2005

Revocation

• A general problem for keys,
certificates, access control lists, etc.

• How does the system revoke
something related to trust?

• In a network environment
• Safely, efficiently, etc.

Lecture 8
Page 63CS 239, Winter 2005

Revisiting Our Example
Someone discovers
that has obtained
a false certificate for

How does Alice make sure
that she’s not accepting ‘s
false certificate?

Lecture 8
Page 64CS 239, Winter 2005

The Web of Trust Model

• Public keys are still passed around signed
by others

• But your trust in others is based on your
personal trust of them
– Not on a formal certification hierarchy
– “I work in the office next to Bob, so I

trust Bob’s certifications”

Lecture 8
Page 65CS 239, Winter 2005

Certificates in the Web of Trust

• Any user can sign any other user’s
public key

• When a new user presents me his
public key, he gives me one or more
certificates signed by others

• If I trust any of those others, I trust the
new user’s public key

Lecture 8
Page 66CS 239, Winter 2005

Limitations on the Web of Trust

• The web tends to grow
– “I trust Alice, who trusts Bob, who trusts

Carol, who trusts Dave, . . ., who trusts
Lisa, who trusts Mallory”

– Just because Lisa trusts Mallory doesn’t
mean I should

• Working system needs concept of degrees
of trust

12

Lecture 8
Page 67CS 239, Winter 2005

Advantages and Disadvantages of
Web of Trust Model

+ Scales very well
+ No central authority
+ Very flexible
– May be hard to assign degrees of trust
– Revocation may be difficult
– May be hard to tell who you will and

won’t trust

