
1

Lecture 11
Page 1CS 239, Winter 2005

Operating System Security,
Continued

CS 239
Computer Security
February 23, 2005

Lecture 11
Page 2CS 239, Winter 2005

Outline

• Buffer overflows
• Designing secure operating systems
• Assuring OS security
• Logging and auditing

Lecture 11
Page 3CS 239, Winter 2005

Buffer Overflows

• One of the most common causes for
compromises of operating systems

• Due to a flaw in how operating
systems handle process inputs
– Or a flaw in programming languages
– Or a flaw in programmer training
– Depending on how you look at it

Lecture 11
Page 4CS 239, Winter 2005

What Is a Buffer Overflow?

• A program requests input from a user
• It allocates a temporary buffer to hold

the input data
• It then reads all the data the user

provides into the buffer, but . . .
• It doesn’t check how much was

provided

Lecture 11
Page 5CS 239, Winter 2005

For Example,
int main(){
char name[31];
printf(“Please type your name: “);
gets(name);
printf(“Hello, %s”, name);
return (0);

}

• What if the user enters more than 32 characters?

Lecture 11
Page 6CS 239, Winter 2005

Well, What If the User Does?

• The code continues reading data into
memory
– That’s how gets() works

• The first 32 bytes go into name
• Where do the remaining bytes go?
• Onto the stack

2

Lecture 11
Page 7CS 239, Winter 2005

Munging the Stack

• The temporary variable name is allocated
on the stack
– Close to the record of the function

currently being run
• The overflow will spill into whatever’s next

on the stack
• Commonly, that’s effectively going to

overwrite the instruction pointer

Lecture 11
Page 8CS 239, Winter 2005

Using Buffer Overflows to
Compromise Security

• Carefully choose what gets written into
the instruction pointer

• So that the program jumps to
something you want to do
– Under the identity of the program

that’s running
• Such as, execute a command shell

Lecture 11
Page 9CS 239, Winter 2005

Effects of Buffer Overflows

• Remote or unprivileged local user gets
to run a program with greater
privileges

• If buffer overflow is in a root program,
gets all privileges, essentially

• Common mechanism to allow attackers
to break into machines

Lecture 11
Page 10CS 239, Winter 2005

Are Buffer Overflows Common?

• You bet!
• Weekly occurrences in major

systems/applications
• Probably one of the most common

security bugs

Lecture 11
Page 11CS 239, Winter 2005

Fixing Buffer Overflows

• Check the length of the input
• Use programming languages that prevent

them
• Put in OS controls that prevent overwriting

the stack
• Why aren’t these things commonly done?
• Presumably because programmers and

designers neither know nor care about
security

Lecture 11
Page 12CS 239, Winter 2005

Desired Security Features of a
Normal OS

• Authentication of users
• Memory protection
• File and I/O access control
• General object access control
• Enforcement of sharing
• Fairness guarantees
• Secure IPC and synchronization
• Security of OS protection mechanisms

3

Lecture 11
Page 13CS 239, Winter 2005

Extra Features for a Trusted OS

• Mandatory and discretionary access
control

• Object reuse protection
• Complete mediation
• Audit capabilities
• Intruder detection capabilities

Lecture 11
Page 14CS 239, Winter 2005

How To Achieve OS Security

• Kernelized design
• Separation and isolation mechanisms
• Virtualization
• Layered design

Lecture 11
Page 15CS 239, Winter 2005

Advantages of Kernelization

• Smaller amount of trusted code
• Easier to check every access
• Separation from other complex pieces

of the system
• Easier to maintain and modify security

features

Lecture 11
Page 16CS 239, Winter 2005

Reference Monitors

• An important security concept for OS
design

• A reference monitor is a subsystem
that controls access to objects
– It provides (potentially) complete

mediation
• Very important to get this part right

Lecture 11
Page 17CS 239, Winter 2005

Assurance of Trusted Operating
Systems

• How do I know that I should trust
someone’s operating system?

• What methods can I use to achieve the
level of trust I require?

Lecture 11
Page 18CS 239, Winter 2005

Assurance Methods

• Testing
• Formal verification
• Validation

4

Lecture 11
Page 19CS 239, Winter 2005

Secure Operating System
Standards

• If I want to buy a secure operating
system, how do I compare options?

• Use established standards for OS
security

• Several standards exist

Lecture 11
Page 20CS 239, Winter 2005

Some Security Standards

• U.S. Orange Book
• European ITSEC
• U.S. Combined Federal Criteria
• Common Criteria for Information

Technology Security Evaluation

Lecture 11
Page 21CS 239, Winter 2005

The U.S. Orange Book

• The earliest evaluation standard for
trusted operating systems

• Defined by the Department of Defense
in the late 1970s

• Now largely a historical artifact

Lecture 11
Page 22CS 239, Winter 2005

Purpose of the Orange Book

• To set standards by which OS security
could be evaluated

• Fairly strong definitions of what features
and capabilities an OS had to have to
achieve certain levels

• Allowing “head-to-head” evaluation of
security of systems
– And specification of requirements

Lecture 11
Page 23CS 239, Winter 2005

Orange Book Security Divisions

• A, B, C, and D
– In decreasing order of degree of security

• Important subdivisions within some of the
divisions

• Requires formal certification from the
government (NCSC)
– Except for the D level

Lecture 11
Page 24CS 239, Winter 2005

Some Important Orange Book
Divisions and Subdivisions

• C2 - Controlled Access Protection
• B1 - Labeled Security Protection
• B2 - Structured Protection

5

Lecture 11
Page 25CS 239, Winter 2005

The C2 Security Class

• Discretionary access
– At fairly low granularity

• Requires auditing of accesses
• And password authentication and

protection of reused objects
• Windows NT has been certified to this

class
Lecture 11
Page 26CS 239, Winter 2005

The B1 Security Class

• Includes mandatory access control
– Using Bell-La Padula model
– Each subject and object is assigned a

security level
• Requires both hierarchical and non-

hierarchical access controls

Lecture 11
Page 27CS 239, Winter 2005

The B3 Security Class

• Requires careful security design
– With some level of verification

• And extensive testing
• Doesn’t require formal verification

– But does require “a convincing
argument”

• Trusted Mach is in this class
Lecture 11
Page 28CS 239, Winter 2005

The Common Criteria

• Modern international standards for
computer systems security

• Covers more than just operating systems
• Design based on lessons learned from

earlier security standards
• Lengthy documents describe the Common

Criteria

Lecture 11
Page 29CS 239, Winter 2005

Basics of Common Criteria
Approach

• Something of an alphabet soup –
• The CC documents describe

– The Evaluation Assurance Levels
(EAL)

• The Common Evaluation Methodology
(CEM) details guidelines for
evaluating systems

Lecture 11
Page 30CS 239, Winter 2005

Another Bowl of Common
Criteria Alphabet Soup

• TOE – Target of Evaluation
• TSP – TOE Security Policy

– Security policy of system being evaluated
• TSF – TOE Security Functions

– HW, SW used to enforce TSP
• PP – Protection Profile

– Implementation-dependent set of security
requirements

• ST – Security Target
– Predefined sets of security requirements

6

Lecture 11
Page 31CS 239, Winter 2005

What’s This All Mean?

• Highly detailed methodology for
specifying :

1. What security goals a system has
2. What environment it operates in
3. What mechanisms it uses to achieve its

security goals
4. Why anyone should believe it does so

Lecture 11
Page 32CS 239, Winter 2005

Logging and Auditing

• An important part of a complete
security solution

• Practical security depends on knowing
what is happening in your system

• Logging and auditing is required for
that purpose

Lecture 11
Page 33CS 239, Winter 2005

Logging

• No security system will stop all attacks
– Logging what has happened is vital

to dealing with the holes
• Logging also tells you when someone

is trying to break in
– Perhaps giving you a chance to close

possible holes
Lecture 11
Page 34CS 239, Winter 2005

Access Logs

• One example of what might be logged
for security purposes

• Listing of which users accessed which
objects
– And when and for how long

• Especially important to log failures

Lecture 11
Page 35CS 239, Winter 2005

Other Typical Logging Actions

• Logging failed login attempts
– Can help detect intrusions or password

crackers
• Logging changes in program permissions

– Often done by intruders
• Logging scans of ports known to be

dangerous

Lecture 11
Page 36CS 239, Winter 2005

Problems With Logging

• Dealing with large volumes of data
• Separating the wheat from the chaff

– Unless the log is very short, auditing
it can be laborious

• System overheads and costs

7

Lecture 11
Page 37CS 239, Winter 2005

Log Security

• If you use logs to detect intruders, smart
intruders will try to attack logs
– Concealing their traces by erasing or

modifying the log entries
• Append-only access control helps a lot here
• Or logging to hard copy
• Or logging to a remote machine

Lecture 11
Page 38CS 239, Winter 2005

Local Logging vs. Remote Logging

• Should you log just on the machine
where the event occurs?

• Or log it just at a central site?
• Or both?

Lecture 11
Page 39CS 239, Winter 2005

Local Logging

• Only gives you the local picture
• More likely to be compromised by attacker
• Must share resources with everything else

machine does
• Inherently distributed

– Which has its good points and bad points

Lecture 11
Page 40CS 239, Winter 2005

Remote Logging

• On centralized machine or through some
hierarchical arrangement

• Can give combined view of what’s
happening in entire installation

• Machine storing logs can be specialized for
that purpose

• But what if it’s down or unreachable?
• A goldmine for an attacker, if he can break

in

Lecture 11
Page 41CS 239, Winter 2005

Desirable Characteristics of a
Logging Machine

• Devoted to that purpose
– Don’t run anything else on it

• Highly secure
– Control logins
– Limit all other forms of access

• Reasonably well provisioned
– Especially with disk

Lecture 11
Page 42CS 239, Winter 2005

Auditing

• Security mechanisms are great
– If you have proper policies to use them

• Security policies are great
– If you follow them

• For practical systems, proper policies and
consistent use are a major security problem

`

8

Lecture 11
Page 43CS 239, Winter 2005

Auditing

• A formal (or semi-formal) process of
verifying system security

• “You may not do what I expect, but
you will do what I inspect.”

• A requirement if you really want your
systems to run securely

Lecture 11
Page 44CS 239, Winter 2005

Auditing Requirements

• Knowledge
– Of the installation and general

security issues
• Independence
• Trustworthiness
• Ideally, big organizations should have

their own auditors

Lecture 11
Page 45CS 239, Winter 2005

When Should You Audit?

• Periodically
• Shortly after making major system

changes
– Especially those with security

implications
• When problems arise

– Internally or externally
Lecture 11
Page 46CS 239, Winter 2005

Auditing and Logs

• Logs are a major audit tool
• Some examination can be done

automatically
• But part of the purpose is to detect

things that automatic methods miss
– So some logs should be audited by

hand

Lecture 11
Page 47CS 239, Winter 2005

A Typical Set of Audit Criteria

• For a Unix system
• Some sample criteria:

– All accounts have passwords
– Limited use of setuid root
– Display last login date on login
– Limited write access to system files
– No “.” in PATH variables

Lecture 11
Page 48CS 239, Winter 2005

What Does an Audit Cover?

• Conformance to policy
• Review of control structures
• Examination of audit trail (logs)
• User awareness of security
• Physical controls
• Software licensing and intellectual

property issues

