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Outline

• Buffer overflows
• Designing secure operating systems
• Assuring OS security
• Logging and auditing
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Buffer Overflows

• One of the most common causes for 
compromises of operating systems

• Due to a flaw in how operating 
systems handle process inputs
– Or a flaw in programming languages
– Or a flaw in programmer training
– Depending on how you look at it
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What Is a Buffer Overflow?

• A program requests input from a user
• It allocates a temporary buffer to hold 

the input data
• It then reads all the data the user 

provides into the buffer, but . . .
• It doesn’t check how much was 

provided
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For Example, 
int main(){
char name[31];
printf(“Please type your name:  “);
gets(name);
printf(“Hello, %s”, name);
return (0);

}

• What if the user enters more than 32 characters?
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Well, What If the User Does?

• The code continues reading data into 
memory
– That’s how gets() works

• The first 32 bytes go into name
• Where do the remaining bytes go?
• Onto the stack
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Munging the Stack

• The temporary variable name is allocated 
on the stack
– Close to the record of the function 

currently being run
• The overflow will spill into whatever’s next 

on the stack
• Commonly, that’s effectively going to 

overwrite the instruction pointer
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Using Buffer Overflows to 
Compromise Security

• Carefully choose what gets written into 
the instruction pointer

• So that the program jumps to 
something you want to do
– Under the identity of the program 

that’s running
• Such as, execute a command shell
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Effects of Buffer Overflows

• Remote or unprivileged local user gets 
to run a program with greater 
privileges

• If buffer overflow is in a root program, 
gets all privileges, essentially

• Common mechanism to allow attackers 
to break into machines
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Are Buffer Overflows Common?

• You bet!
• Weekly occurrences in major 

systems/applications
• Probably one of the most common 

security bugs
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Fixing Buffer Overflows

• Check the length of the input
• Use programming languages that prevent 

them
• Put in OS controls that prevent overwriting 

the stack
• Why aren’t these things commonly done?
• Presumably because programmers and 

designers neither know nor care about 
security
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Desired Security Features of a 
Normal OS 

• Authentication of users
• Memory protection
• File and I/O access control
• General object access control
• Enforcement of sharing
• Fairness guarantees
• Secure IPC and synchronization
• Security of OS protection mechanisms
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Extra Features for a Trusted OS

• Mandatory and discretionary access 
control

• Object reuse protection
• Complete mediation
• Audit capabilities
• Intruder detection capabilities
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How To Achieve OS Security

• Kernelized design  
• Separation and isolation mechanisms
• Virtualization
• Layered design
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Advantages of Kernelization

• Smaller amount of trusted code
• Easier to check every access
• Separation from other complex pieces 

of the system
• Easier to maintain and modify security 

features
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Reference Monitors

• An important security concept for OS 
design

• A reference monitor is a subsystem 
that controls access to objects
– It provides (potentially) complete 

mediation
• Very important to get this part right
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Assurance of Trusted Operating 
Systems 

• How do I know that I should trust 
someone’s operating system?

• What methods can I use to achieve the 
level of trust I require?
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Assurance Methods

• Testing
• Formal verification
• Validation
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Secure Operating System 
Standards

• If I want to buy a secure operating 
system, how do I compare options?

• Use established standards for OS 
security

• Several standards exist
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Some Security Standards

• U.S. Orange Book
• European ITSEC
• U.S. Combined Federal Criteria
• Common Criteria for Information 

Technology Security Evaluation
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The U.S. Orange Book

• The earliest evaluation standard for 
trusted operating systems

• Defined by the Department of Defense 
in the late 1970s

• Now largely a historical artifact
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Purpose of the Orange Book

• To set standards by which OS security 
could be evaluated

• Fairly strong definitions of what features 
and capabilities an OS had to have to 
achieve certain levels 

• Allowing “head-to-head” evaluation of 
security of systems
– And specification of requirements
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Orange Book Security Divisions

• A, B, C, and D
– In decreasing order of degree of security

• Important subdivisions within some of the 
divisions

• Requires formal certification from the 
government (NCSC)
– Except for the D level
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Some Important Orange Book 
Divisions and Subdivisions

• C2 - Controlled Access Protection
• B1 - Labeled Security Protection
• B2 - Structured Protection
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The C2 Security Class

• Discretionary access
– At fairly low granularity

• Requires auditing of accesses
• And password authentication and 

protection of reused objects
• Windows NT has been certified to this 

class
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The B1 Security Class

• Includes mandatory access control
– Using Bell-La Padula model
– Each subject and object is assigned a 

security level
• Requires both hierarchical and non-

hierarchical access controls
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The B3 Security Class

• Requires careful security design
– With some level of verification

• And extensive testing
• Doesn’t require formal verification

– But does require “a convincing 
argument”

• Trusted Mach is in this class
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The Common Criteria

• Modern international standards for 
computer systems security

• Covers more than just operating systems
• Design based on lessons learned from 

earlier security standards
• Lengthy documents describe the Common 

Criteria
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Basics of Common Criteria 
Approach

• Something of an alphabet soup –
• The CC documents describe

– The Evaluation Assurance Levels 
(EAL)

• The Common Evaluation Methodology 
(CEM) details guidelines for 
evaluating systems
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Another Bowl of Common 
Criteria Alphabet Soup

• TOE – Target of Evaluation
• TSP – TOE Security Policy

– Security policy of system being evaluated
• TSF – TOE Security Functions

– HW, SW used to enforce TSP
• PP – Protection Profile

– Implementation-dependent set of security 
requirements

• ST – Security Target
– Predefined sets of security requirements
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What’s This All Mean?

• Highly detailed methodology for 
specifying :

1. What security goals a system has
2. What environment it operates in
3. What mechanisms it uses to achieve its 

security goals
4. Why anyone should believe it does so
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Logging and Auditing

• An important part of a complete 
security solution

• Practical security depends on knowing 
what is happening in your system

• Logging and auditing is required for 
that purpose
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Logging

• No security system will stop all attacks
– Logging what has happened is vital 

to dealing with the holes
• Logging also tells you when someone 

is trying to break in
– Perhaps giving you a chance to close 

possible holes
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Access Logs

• One example of what might be logged 
for security purposes

• Listing of which users accessed which 
objects
– And when and for how long

• Especially important to log failures
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Other Typical Logging Actions

• Logging failed login attempts
– Can help detect intrusions or password 

crackers
• Logging changes in program permissions

– Often done by intruders
• Logging scans of ports known to be 

dangerous
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Problems With Logging

• Dealing with large volumes of data
• Separating the wheat from the chaff

– Unless the log is very short, auditing 
it can be laborious

• System overheads and costs
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Log Security

• If you use logs to detect intruders, smart 
intruders will try to attack logs
– Concealing their traces by erasing or 

modifying the log entries
• Append-only access control helps a lot here
• Or logging to hard copy
• Or logging to a remote machine
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Local Logging vs. Remote Logging

• Should you log just on the machine 
where the event occurs?

• Or log it just at a central site?
• Or both?
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Local Logging

• Only gives you the local picture
• More likely to be compromised by attacker
• Must share resources with everything else 

machine does
• Inherently distributed

– Which has its good points and bad points
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Remote Logging

• On centralized machine or through some 
hierarchical arrangement

• Can give combined view of what’s 
happening in entire installation

• Machine storing logs can be specialized for 
that purpose

• But what if it’s down or unreachable?
• A goldmine for an attacker, if he can break 

in
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Desirable Characteristics of a 
Logging Machine

• Devoted to that purpose
– Don’t run anything else on it

• Highly secure
– Control logins
– Limit all other forms of access

• Reasonably well provisioned
– Especially with disk
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Auditing

• Security mechanisms are great
– If you have proper policies to use them

• Security policies are great
– If you follow them

• For practical systems, proper policies and 
consistent use are a major security problem

`
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Auditing

• A formal (or semi-formal) process of 
verifying system security

• “You may not do what I expect, but 
you will do what I inspect.”

• A requirement if you really want your 
systems to run securely
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Auditing Requirements

• Knowledge
– Of the installation and general 

security issues
• Independence
• Trustworthiness
• Ideally, big organizations should have 

their own auditors
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When Should You Audit?

• Periodically
• Shortly after making major system 

changes
– Especially those with security 

implications
• When problems arise

– Internally or externally
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Auditing and Logs

• Logs are a major audit tool
• Some examination can be done 

automatically
• But part of the purpose is to detect 

things that automatic methods miss
– So some logs should be audited by 

hand
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A Typical Set of Audit Criteria

• For a Unix system
• Some sample criteria:

– All accounts have passwords
– Limited use of setuid root
– Display last login date on login
– Limited write access to system files
– No “.” in PATH variables
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What Does an Audit Cover?

• Conformance to policy
• Review of control structures
• Examination of audit trail (logs)
• User awareness of security
• Physical controls
• Software licensing and intellectual 

property issues


