
1

Lecture 7
Page 1CS 239, Spring 2007

Gathering Measurements
CS 239

Experimental Methodologies for 
System Software

Peter Reiher
April 26, 2007

Lecture 7
Page 2CS 239, Spring 2007

Outline

• Monitors
• Tools for measurement
• Applying workloads to systems
• Common mistakes in benchmarking

Lecture 7
Page 3CS 239, Spring 2007

Monitors

• A monitor is a tool used to observe 
system activity

• Proper use of monitors is key to 
performance analysis

• Also useful for other system 
observation purposes

Lecture 7
Page 4CS 239, Spring 2007

Classifications of Monitors

• Hardware vs. software monitors
• Event-driven vs. sampling monitors
• On-line vs. batch monitors

Lecture 7
Page 5CS 239, Spring 2007

Hardware Vs. Software Monitors

• Hardware monitors used primarily by 
hardware designers
– Requires substantial knowledge of 

hardware details
– VLSI limits monitoring possibilities

• Software monitors used (mostly) by 
everyone else

Lecture 7
Page 6CS 239, Spring 2007

Event-Driven Vs. Sampling 
Monitors

• Event-driven monitors notice every time a 
particular type of event occurs
– Ideal for rare events
– Require low per-invocation overheads

• Sampling monitors check the state of the 
system periodically
– Good for frequent events
– Can afford higher overheads



2

Lecture 7
Page 7CS 239, Spring 2007

On-Line Vs. Batch Monitors

• On-line monitors can display their 
information continuously
– Or, at least, frequently

• Batch monitors save it for later
– Usually using separate analysis 

procedures

Lecture 7
Page 8CS 239, Spring 2007

Issues in Monitor Design

• Activation mechanism
• Buffer issues
• Data compression/analysis
• Enabling/disabling monitors
• Priority issues
• Abnormal events monitoring

Lecture 7
Page 9CS 239, Spring 2007

Activation Mechanism

• When do you collect the data?
– When an interesting event occurs, trap 

to data collection routine
– Analyze every step taken by system
– Go to data collection routine when 

timer expires

Lecture 7
Page 10CS 239, Spring 2007

Buffer Issues
• Buffer size 

– Big enough to avoid frequent disk writes
– Small enough to make disk writes cheap

• Number of buffers
– At least two, typically
– One to fill up, one to record

• Buffer overflow
– Overwrite old data you haven’t recorded
– Or lose new data you don’t have room for 

Lecture 7
Page 11CS 239, Spring 2007

Data Compression or Analysis

• Data can be literally compressed
• Or can be reduced to a summary form
• Both methods save space for holding data
• But at the cost of extra overhead in 

gathering it
• Sometimes can use idle time for this

– But might be better spent dumping data 
to disk

Lecture 7
Page 12CS 239, Spring 2007

Enabling/Disabling Monitors

• Most system monitors have some overhead
• So users should be able to turn them off, if 

high performance is required
• Not necessary if overhead is truly trivial
• Or if purpose of system is primarily 

gathering data
– As is case with many research systems



3

Lecture 7
Page 13CS 239, Spring 2007

Priority of Monitor

• How high a priority should the 
monitor’s operations have?

• Again, trading off performance impact 
against timely and complete data 
gathering

• Not always a simple question

Lecture 7
Page 14CS 239, Spring 2007

Monitoring Abnormal Events

• Sometimes, failures and errors are 
most important thing to observe

• Can requires special attention
– System may not be operating very 

well at the time of the failure

Lecture 7
Page 15CS 239, Spring 2007

Monitoring Distributed Systems

• Monitoring a distributed system is like 
designing a distributed system

• Must deal with
– Distributed state
– Unsynchronized clocks
– Partial failures 

Lecture 7
Page 16CS 239, Spring 2007

Layered View of Distributed 
Monitor

Management

Console

Interpretation

Presentation

Analysis

Collection

Observation Watch what happens

Store what you’ve seen for later

Analyze what you’ve stored

Present your results

Decide what the results mean

Control the overall system

Make system changes, as necessary

Lecture 7
Page 17CS 239, Spring 2007

The Observation Layer

• Layer that actually gathers the data
• Implicit spying - watching what other 

sites do without disturbing the activity
• Explicit instrumentation - inserting 

code to monitor activities
• Probing - making feeler requests into 

system to discover what’s happening
Lecture 7
Page 18CS 239, Spring 2007

The Collection Layer
• Data can be collected at one or several 

points in the distributed system
• How does the data get from observer to 

collector (if not co-located)?
– Advertising - observers send it out, 

collectors listen and grab it
– Soliciting - collectors ask observers to 

send it
• Clock issues can be key, here



4

Lecture 7
Page 19CS 239, Spring 2007

The Analysis Layer

• In distributed system, may be more 
feasible to analyze on the fly

• Can sometimes dedicate one (or more) 
machines to analysis

• Often requires gathering all data to one 
point, though

Lecture 7
Page 20CS 239, Spring 2007

Tools and Methods For 
Software Measurement

• OK, so how do I actually measure a 
piece of software?

• What are the practical tools and 
methods available to me?

• How do I get my damn project done?

Lecture 7
Page 21CS 239, Spring 2007

Tools For Software Measurement

• Code instrumentation
• Tracing packages
• System-provided metrics and utilities
• Profiling

Lecture 7
Page 22CS 239, Spring 2007

Code Instrumentation

• Adding monitoring code to the system 
under study

• Basically, just add the code that does 
what you want

Lecture 7
Page 23CS 239, Spring 2007

Advantages of Code 
Instrumentation

+ Usually the most direct way to gather 
data

+ Complete flexibility of where to insert 
monitoring code

+ Strong control over costs of monitoring
+ Resulting measurements always 

available
Lecture 7
Page 24CS 239, Spring 2007

Disadvantages of Instrumenting
the Code

– Requires access to the source
– Requires strong knowledge of the 

design and many details of the code
– Requires recompilation to change 

monitoring facility
– If overdone, strong potential to affect 

performance



5

Lecture 7
Page 25CS 239, Spring 2007

Typical Types of Instrumentation
• Counters and accumulators

– Cheap and fast
– But low level of detail

• Logs
– More detail
– But more costly
– Require occasional dumping or digesting

• Timers
– To determine elapsed time for operations
– Typically using OS-provided system calls

Lecture 7
Page 26CS 239, Spring 2007

Counters

• Useful if number of times an event 
occurs is of interest

• Can be used to accumulate totals
– E.g., total bytes read by file system

• In modern systems, make them wide 
enough so they won’t overflow

Lecture 7
Page 27CS 239, Spring 2007

Examples of Counters 

• Count number of times a network 
protocol transmits packets

• Count number of times programs are 
swapped out due to exceeding their 
time slices

• Count number of incoming requests to 
a Web server

Lecture 7
Page 28CS 239, Spring 2007

Logs

• Can log arbitrarily complex data about an 
event

• But more complex data takes more space
• Typically, log data into a reserved buffer
• When full, request for buffer to be written 

to disk
– Often want a second buffer to gather data 

while awaiting disk write

Lecture 7
Page 29CS 239, Spring 2007

Designing a Log Entry
• What form should a log entry take?
• Designing for compactness vs. human 

readability
– Former better for most purposes
– Latter useful for system debugging
– Make sure no important information 

is lost in compacting the log entry
Lecture 7
Page 30CS 239, Spring 2007

Timers

• Many OSs provide system calls that start 
and stop timers

• Allowing you to time how long things took
• Usually, only elapsed time measurable

– Not necessarily time spent running 
particular process

• So care required to capture real meaning of 
timings



6

Lecture 7
Page 31CS 239, Spring 2007

Tracing Packages

• Allow dynamic monitoring of code 
that doesn’t have built-in monitors

• Basically, augment the code to call 
monitoring routines when desired

• Akin to debuggers
• Typically allow counters and some 

forms of logging
Lecture 7
Page 32CS 239, Spring 2007

How Do Tracing Packages 
Work?

• Much like debuggers -
– Attach them to running programs
– Use commands in the tracing packages to 

associate data gathering with particular 
points in the programs

– Replace normal code at that point in 
program with preliminary calls to data 
gathering code

Lecture 7
Page 33CS 239, Spring 2007

Advantages of Tracing Packages
+ Allows pretty arbitrary insertion of 

monitoring code
+ Doesn’t require recompilation in order 

to instrument code
+ Tremendous flexibility at measurement 

time
+ No instrumentation overhead when 

you’re not using it
Lecture 7
Page 34CS 239, Spring 2007

Disadvantages of Tracing 
Packages

– Somewhat higher overheads than building 
instrumentation into code

– Really requires access to source for 
effective use

– And requires deep understanding of the 
internals of the code

– Only produces data when special package is 
used

– Usually specific to particular systems

Lecture 7
Page 35CS 239, Spring 2007

System Provided Metrics 
and Utilities

• Many operating systems provide users 
access to some metrics

• Most operating systems also keep 
some form of accounting logs

• Lots of information can be gathered 
this way

Lecture 7
Page 36CS 239, Spring 2007

What a Typical System Provides

• Timing tools
• Process state tools
• System state tools
• OS accounting logs
• Logs for important systems programs



7

Lecture 7
Page 37CS 239, Spring 2007

Timing Tools

• Tools that time the execution of a process
• Often several different times are provided
• E.g., Unix time command provides system 

time, user time, and elapsed time
• Various components of the times provided 

may depend on other system activities
– So just calling time on a command may 

not tell the whole story
Lecture 7
Page 38CS 239, Spring 2007

Process State Tools
• Many systems have ways for users to find out 

about the state of their processes
– E.g., ps in Unix/Linux systems

• Typically provide information about:
– Time spent running process so far
– Size of process
– Status of process
– Priority of process
– I/O history of process

Lecture 7
Page 39CS 239, Spring 2007

Using Process State Tools

• Typically, you can’t monitor process 
state continuously
– Updates not provided every time 

things change
• You get snapshots on demand

– So most useful for sampling 
monitors

Lecture 7
Page 40CS 239, Spring 2007

System State Tools
• Many systems allow some users to examine 

their internal state
– E.g., virtual memory statistics
– Or length of various queues

• Often available only to privileged users
• Typically, understanding them requires 

substantial expertise 
– And they are only useful for specific 

purposes

Lecture 7
Page 41CS 239, Spring 2007

OS Accounting Logs

• Many operating systems maintain logs of 
significant events
– Based either on event-driven or sampling 

monitors
• Examples:

– logins
– full file systems
– device failures

Lecture 7
Page 42CS 239, Spring 2007

System Accounting Logs
• Often, non-OS systems programs keep logs
• E.g., mail programs
• Usually only useful for monitoring those 

programs
• But sometimes can provide indirect 

information
– E.g., notice of failure to open connection 

to name server suggests machine failure



8

Lecture 7
Page 43CS 239, Spring 2007

Applying Test Loads 
to Systems

• Designing test loads
• Tools for applying test loads

Lecture 7
Page 44CS 239, Spring 2007

Test Load Design

• As discussed earlier, most experiments 
require applying test loads to the 
system

• General characteristics of test loads 
already discussed

• How do we design test loads?

Lecture 7
Page 45CS 239, Spring 2007

Types of Test Loads

• Real users
• Traces
• Load generation programs

Lecture 7
Page 46CS 239, Spring 2007

Loads Caused by Real Users
• Put real people in front of your system
• Two choices:

– Have them run pre-arranged set of tasks
– Have them do what they’d normally do

• Always difficult to test this way
– Labor-intensive
– Impossible to reproduce a given load
– Load is subject to many external 

influences
• Highly realistic, though

Lecture 7
Page 47CS 239, Spring 2007

Traces

• Collect a set of commands/accesses issued 
to the system under test (or a similar 
system)

• Replay them against your system
• Some traces of common activities are 

available from others (e.g., file accesses)
– But often don’t contain everything you 

need
Lecture 7
Page 48CS 239, Spring 2007

Running Traces

• Need process that:
– reads trace
– keeps track of progress through trace
– issues commands from the trace when 

appropriate
• Process must be reasonably accurate in timing

– But must also have little performance impact
• If trace is large, can’t keep it all in main memory

– But be careful of disk overheads



9

Lecture 7
Page 49CS 239, Spring 2007

Load Generation Programs
• Create a model for the load that you want to 

apply
• Write a program implementing that model
• The program also issues 

commands/requests synthesized from the 
model
– E.g., if the model says open a file, the 

program builds the appropriate open() 
command Lecture 7

Page 50CS 239, Spring 2007

Using the Model

• May require creation of test files or 
processes or network connections
– Include how they should be created 

in the model
• Again, shoot for minimum 

performance impact of program 
running the model

Lecture 7
Page 51CS 239, Spring 2007

Applying Test Loads

• Most experiments will need multiple 
repetitions

• Most accurate results are gotten if each 
repetition runs in identical conditions

• So your test software should work hard 
to duplicate conditions on each run

Lecture 7
Page 52CS 239, Spring 2007

Example of Applying Test Loads

• For the Ficus experiments actually 
conducted
– To examine performance impact of 

update propagation for multiple replicas
• Test load is a set of benchmarks

– Involving file access, among other 
activities

• Must apply test load for varying numbers of 
replicas

Lecture 7
Page 53CS 239, Spring 2007

Factors in Designing This 
Experiment

• Setting up volumes and replicas
• Network traffic
• Other load on the test machines
• Caching effects
• Automation of the experiment

– Very painful to have to start each run 
by hand Lecture 7

Page 54CS 239, Spring 2007

Experiment Setup

• In this case, we need volumes to read 
and write

• And replicas of each volume on 
various machines

• Must be certain that our setup 
completes before we start running the 
experiment



10

Lecture 7
Page 55CS 239, Spring 2007

Network Traffic Issues

• If your experiment is distributed (as ours is), 
how is it affected by other traffic on the 
network?

• Is the traffic you see on the network used in 
the test like the traffic you expect on the 
network you would actually use?

• If not, do you need to run on an isolated 
network?

• And/or generate appropriate network load?
Lecture 7
Page 56CS 239, Spring 2007

Controlling Other Load
• Generally, you want to have as much 

control over other processes running 
on the test machines as possible

• Ideally, use dedicated machines
• But also be careful about background 

and periodic jobs
– In Unix context, check carefully on 

cron and network-related daemons

Lecture 7
Page 57CS 239, Spring 2007

Caching Effects
• Many types of jobs run much faster if things 

are in the cache
– Other things also change

• Is the caching effect part of what you’re 
measuring?
– If not, do something to clean out caches 

between runs
– Or arrange experiment so caching doesn’t 

help
• But sometimes you should measure caching Lecture 7

Page 58CS 239, Spring 2007

Automating Experiment
• For all but very small experiments, it pays 

to automate
– So you don’t have to start each run by 

hand
• But automation must be done with care

– Make sure previous run is really complete
– Make sure you completely reset your 

state
– Make sure that the data is really collected

Lecture 7
Page 59CS 239, Spring 2007

Common Mistakes in 
Benchmarking

• Many people have made these
• You will make some of them, too
• But watch for them, so you don’t make 

too many

Lecture 7
Page 60CS 239, Spring 2007

Only Testing Average Behavior
• Test workload should usually include 

divergence from average workload
• Since few workloads always remain at 

their average
• And behavior at extreme points is often 

very different
• Particularly bad if only average 

behavior is used



11

Lecture 7
Page 61CS 239, Spring 2007

Ignoring Skewness

• Generally not including skewness of 
any component
– E.g., distribution of file accesses 

among a set of users
• Leads to unrealistic conclusions about 

how system behaves

Lecture 7
Page 62CS 239, Spring 2007

Loading Levels Controlled 
Inappropriately

• Not all methods of controlling the load 
are equivalent

• Choose methods that capture the effect 
you are testing for

• Prefer methods allowing more 
flexibility in control over those 
allowing less

Lecture 7
Page 63CS 239, Spring 2007

Caching Effects Ignored
• Caching occurs many places in modern 

systems
• Performance on a given request usually 

very different depending on cache hit 
or miss

• Must understand how the cache works
• And design experiment to use it 

realistically Lecture 7
Page 64CS 239, Spring 2007

Sampling Inaccuracies Ignored

• Remember your samples are random 
events

• Use statistical methods to analyze them
• Beware of sampling techniques whose 

periodicity interacts with what you’re 
looking for

Lecture 7
Page 65CS 239, Spring 2007

Ignoring Monitoring Overhead

• Primarily important in the design phase
– Must minimize overhead to the point 

where it is not relevant, if possible
• But also important to consider it in the 

analysis

Lecture 7
Page 66CS 239, Spring 2007

Not Validating Measurements

• Just because your measurement says 
something is so isn’t necessarily true

• Extremely easy to make mistakes in 
experimentation

• So check whatever you can
• And treat surprising measurements 

especially carefully



12

Lecture 7
Page 67CS 239, Spring 2007

Not Ensuring Constant Initial 
Conditions

• Repeated runs are only comparable if the 
initial conditions are the same

• Not always easy to undo everything the 
previous run did
– E.g., same state of disk fragmentation as 

before
• But do your best

– And understand where you don’t have 
control in important cases Lecture 7

Page 68CS 239, Spring 2007

Not Measuring Transient 
Performance

• Many systems behave differently at steady 
state than at startup (or shutdown)

• That’s not always everything we care about
• Understand whether you should care
• If you should, measure the transients, too
• Not all transients due to startup or shutdown

Lecture 7
Page 69CS 239, Spring 2007

Performance Comparison Using 
Device Utilizations

• Sometimes this is the right thing to do
• But only if device utilization is the 

metric of interest
• Remember, faster processors will have 

a lower utilization on the same load
– And that isn’t bad

Lecture 7
Page 70CS 239, Spring 2007

Lots of Data, Little Analysis

• The data isn’t the product!
• The analysis is!
• So design experiment to leave time for 

sufficient analysis
• If things go wrong, alter experiments 

to still leave analysis time


