
1

Lecture 5
Page 1CS 239, Spring 2007

Workloads for Experiments
CS 239

Experimental Methodologies for
System Software

Peter Reiher
April 19, 2007

Lecture 5
Page 2CS 239, Spring 2007

Introduction

• Introduction to workloads
• Workload selection
• Types of workloads
• Characterizing a workload

Lecture 5
Page 3CS 239, Spring 2007

• What is a workload?
• Real workloads
• Synthetic workloads

Introduction to Workloads

Lecture 5
Page 4CS 239, Spring 2007

What is a Workload?
• A workload is anything a computer is

asked to do
• Test workload: any workload used to

analyze performance
• Real workload: any observed during

normal operations
• Synthetic workload: workload created

for controlled testing

Lecture 5
Page 5CS 239, Spring 2007

Workloads and Systems
Experiments

• Systems do something
• Point of experiments is to find out how

well
• The workload is what the system does
• To determine true systems

performance, must apply good
workload

Lecture 5
Page 6CS 239, Spring 2007

Desirable Properties in Test
Workloads

• Realistic
• Representative of whole range of real

workloads
• Controllable
• Reproducible
• Tractable

2

Lecture 5
Page 7CS 239, Spring 2007

Some Problems in
Experimental Workloads

• What is the real workload you’d like to
match?

• How can you accurately mirror that
workload?

• How do you handle wide ranges of
workload variations?

• How do you handle predicted workloads?
• How do you scale workloads to

experimental conditions?
Lecture 5
Page 8CS 239, Spring 2007

Why Not Use the Real Workload?

• Why not just test with reality?
• Not always possible
• Generally not reproducible
• Definitely not controllable
• Sometimes legal issues
• Still, occasionally possible

– Usually after other methods show
general feasibility and properties

Lecture 5
Page 9CS 239, Spring 2007

Real Workloads
• Advantage is they represent reality
• Disadvantage is they’re uncontrolled

– Can’t be repeated
– Can’t be described simply
– Difficult to analyze

• Nevertheless, often useful for “final
analysis ” papers
– E.g., “We ran Ficus and it works well”

Lecture 5
Page 10CS 239, Spring 2007

Synthetic Workloads
• Advantages:

– Controllable
– Repeatable
– Sometimes standardizable
– Portable to other systems
– Easily modified

• Disadvantage: can never be sure real world
will match them

Lecture 5
Page 11CS 239, Spring 2007

• Services Exercised
• Level of Detail
• Representivity
• Timeliness
• Other Considerations

Workload Selection

Lecture 5
Page 12CS 239, Spring 2007

Services Exercised
• What services does system actually use?

– Faster CPU won’t speed up big “cp”
– Network performance useless for matrix

work
• What metrics measure these services?

– MIPS for CPU speed
– Bandwidth for network, I/O
– TPS for transaction processing

3

Lecture 5
Page 13CS 239, Spring 2007

Completeness

• Computer systems are complex
– Effect of interactions hard to predict
– So must be sure to test entire system

• Important to understand balance
between components
– I.e., don’t use CPU workload to

evaluate I/O-bound application
Lecture 5
Page 14CS 239, Spring 2007

Component Testing
• Sometimes only individual components are

compared
– Would a new CPU speed up our system?
– Would IPV6 affect Web server

performance?
• But component may not be directly related

to performance
– Analysis of Variation (ANOVA) test can

help here

Lecture 5
Page 15CS 239, Spring 2007

Service Testing
• May be possible to isolate interfaces to

just one component
– E.g., instruction mix for CPU

• Consider services provided and used
by that component

• System often has layers of services
– Can cut at any point and insert

workload Lecture 5
Page 16CS 239, Spring 2007

Characterizing a Service

• Identify service provided by major
subsystem

• List factors affecting performance
• List metrics that quantify demands and

performance
• Identify workload provided to that

service

Lecture 5
Page 17CS 239, Spring 2007

Example: Web Server

Web Client

Network

TCP/IP Connections

Web Server

HTTP Requests

File System

Web Page Accesses

Disk Drive

Disk Transfers

Web Page Visits

Lecture 5
Page 18CS 239, Spring 2007

Web Client Analysis

• Services: visit page, follow hyperlink,
display information

• Factors: page size, number of links, fonts
required, embedded graphics, sound

• Metrics: response time (both definitions)
• Workload: a list of pages to be visited and

links to be followed

4

Lecture 5
Page 19CS 239, Spring 2007

Network Analysis
• Services: connect to server, transmit

request, transfer data
• Factors: bandwidth, latency, protocol

used
• Metrics: connection setup time,

response latency, achieved bandwidth
• Workload: a series of connections to

one or more servers, with data transfer
Lecture 5
Page 20CS 239, Spring 2007

Web Server Analysis

• Services: accept and validate connection,
fetch HTTP data

• Factors: Network performance, CPU speed,
system load, disk subsystem performance

• Metrics: response time, connections served
• Workload: a stream of incoming HTTP

connections and requests

Lecture 5
Page 21CS 239, Spring 2007

File System Analysis
• Services: open file, read file (writing

doesn’t matter for Web server)
• Factors: disk drive characteristics, file

system software, cache size, partition
size

• Metrics: response time, transfer rate
• Workload: a series of file-transfer

requests Lecture 5
Page 22CS 239, Spring 2007

Disk Drive Analysis

• Services: read sector, write sector
• Factors: seek time, transfer rate
• Metrics: response time
• Workload: a stream of read/write

requests

Lecture 5
Page 23CS 239, Spring 2007

Level of Detail
• Detail trades off accuracy vs. cost
• Highest detail is complete trace
• Lowest is one request, usually most

common
• Intermediate approach: weight by

frequency
• We will return to this when we discuss

workload characterization Lecture 5
Page 24CS 239, Spring 2007

Representivity

• Obviously, workload should represent
desired application
– Arrival rate of requests
– Resource demands of each request
– Resource usage profile of workload over

time
• Again, accuracy and cost trade off
• Need to understand whether detail matters

5

Lecture 5
Page 25CS 239, Spring 2007

Timeliness
• Use patterns change over time

– File size grows to match disk size
– Web pages grow to match network

bandwidth
• If using “old” workloads, must be sure user

behavior hasn’t changed
• Even worse, behavior may change after test,

as result of installing new system
– “Latent demand” phenomenon Lecture 5

Page 26CS 239, Spring 2007

Types of Workloads

• Microbenchmarks
• Benchmarks
• Traces
• Generators and exercisers
• Live workloads

Lecture 5
Page 27CS 239, Spring 2007

Microbenchmarks

• A test of the performance of a very low
level operation
– CPU arithmetic operation
– Sending one message
– Allocating one buffer

Lecture 5
Page 28CS 239, Spring 2007

Purpose of Microbenchmark

• Sometimes that’s precisely what you want
to measure
– E.g., measuring an improvement in

memory allocator
• Sometimes it describes key property of

overall system
– Message send cost is crucial in

distributed system

Lecture 5
Page 29CS 239, Spring 2007

Advantages of Microbenchmarks

+ Generally simple to test
+ Pretty easy to understand
+ Limited amount of work to test
+ Can reveal most important elements of

system behavior
+ Sometimes exactly what you are

looking for
Lecture 5
Page 30CS 239, Spring 2007

Disadvantages of Microbenchmarks

- Doesn’t show interactions
- Often not relevant to the real issue
- Tend not to be considered in varying

circumstances
- Usually “best case”

- May offer little insight on how to
improve system

6

Lecture 5
Page 31CS 239, Spring 2007

Using Microbenchmarks

• Usually suitable for simple situations
– Or when minimum cost is of interest

• Generally don’t fully describe real systems
• Microbenchmarks are almost never enough

– So do them only when they provide
insight

– Be suspicious of whole systems studies
that only report microbenchmarks

Lecture 5
Page 32CS 239, Spring 2007

Benchmarks

• A standardized artificial workload
• Generally designed to test specific type of

system
– File system, database, web server, etc.

• Usually intended for wide use
– Which allows system comparisons

• In principle . . .

Lecture 5
Page 33CS 239, Spring 2007

Where Do Benchmarks Come From?

• Sometimes from standards bodies
– Or industry consortia
– Occasionally government fiat

• Sometimes proposed by leading
researchers
– Either picked up by others or not

Lecture 5
Page 34CS 239, Spring 2007

Some Types of Benchmarks

• File system benchmarks
• Processor performance benchmarks
• Database benchmarks

Lecture 5
Page 35CS 239, Spring 2007

How Do You Build a Benchmark?

• Pick a representative real-world application
• Pick sample data
• Run it on system to be tested
• Modified Andrew Benchmark, MAB, is a

real-world benchmark
• Easy to do, accurate for that sample data
• Fails to consider other applications, data

– So just how representative was your
choice?

Lecture 5
Page 36CS 239, Spring 2007

Popular Benchmarks
• Sieve
• Whetstone
• Debit/credit
• SPEC
• Modified Andrew Benchmark

7

Lecture 5
Page 37CS 239, Spring 2007

Debit/Credit Benchmark
• Developed for transaction processing

environments
– CPU processing usually trivial, but

demanding I/O, scheduling
• Models real TPS workloads

synthetically
• Modern version is TPC benchmark

– Comes in several flavors Lecture 5
Page 38CS 239, Spring 2007

SPEC Suite

• Result of multi-manufacturer consortium
• Several different benchmarks

– For CPU, graphics, mail, web servers,
etc.

• Addresses flaws in existing benchmarks
• Workloads derived from real applications
• Still supported, with new CPU version

released in 2006

Lecture 5
Page 39CS 239, Spring 2007

Modified Andrew Benchmark

• Used in research to compare file
system, operating system designs

• Based on software engineering
workload

• Exercises copying, compiling, linking
• Probably ill-designed and badly

outdated, but still widely used
Lecture 5
Page 40CS 239, Spring 2007

Advantages of Benchmarks

+ Standardized
+ Usually widely available
+ Very well understood
+ Provides a defense against “why didn’t

you test X”?
? Even if you didn’t bother to think

much

Lecture 5
Page 41CS 239, Spring 2007

Disadvantages of Benchmarks

- Not customizable
- So often not relevant to your system

- Often outdated
- Tend not to scale well
- Can be hard to interpret what they

really mean

Lecture 5
Page 42CS 239, Spring 2007

Traces

• A seductive idea
• Record live activity in a real system
• Play it back into the system under test
• Since it’s real, clearly it should tell you

the real performance of your system
– Right?

8

Lecture 5
Page 43CS 239, Spring 2007

Traces in More Detail

• Watch live system
– Of same type as system under test
– Under the conditions you consider

characteristic and important
• At suitable level of detail, record each event
• “Play back” trace into your test system
• If you measured performance while

gathering trace, can instantly compare
Lecture 5
Page 44CS 239, Spring 2007

Some Issues for Traces

• Level of detail
• Representivity of trace
• Length of trace
• Privacy issues
• Gathering data might perturb behavior
• How to properly rerun it

Lecture 5
Page 45CS 239, Spring 2007

Advantages of Traces

+ Based on real world phenomena
+ Captures many nitty-gritty details of

real use
+ Can be reused on many systems
+ Standardizable

Lecture 5
Page 46CS 239, Spring 2007

Disadvantages of Traces
- Often hard to gather
- Replay can easily become invalid

- If behavior of system changes dynamics
- E.g., dropping a packet

- Very specific to particular situations
- And can quickly be outdated

- Anonymization may wash out important details
- Many companies regard their traces as valuable

property
- Often hard to scale properly

Lecture 5
Page 47CS 239, Spring 2007

Some Trace Examples

• NLANR packet header traces
– Collection of Internet packet header traces

• U. of Oregon Routeviews traces
– Of BGP routing updates

• File system traces
– Seer traces gathered at UCLA

• Web traces
– Many are quite old

Lecture 5
Page 48CS 239, Spring 2007

Generators and Exercisers

• Create program that generates the
workload

• Run it against the system under test
• Measure performance while workload

is being generated

9

Lecture 5
Page 49CS 239, Spring 2007

Exercisers and Drivers
• For I/O, network, non-CPU

measurements
• Generate a workload, feed to internal

or external measured system
– I/O on local OS
– Network

• Sometimes uses dedicated system,
interface hardware Lecture 5

Page 50CS 239, Spring 2007

Advantages of Exercisers

+ Easy to develop, port
+ Incorporate measurement
+ Easy to parameterize, adjust
+ Good for repetitive testing of

component to see if it fails

Lecture 5
Page 51CS 239, Spring 2007

Disadvantages of Exercisers
- High cost if external
- Often too small compared to real workloads

- Thus not representative
- May use caches “incorrectly”

- Internal exercisers often don’t have real
CPU activity
- Affects overlap of CPU and I/O

- Synchronization effects caused by loops
Lecture 5
Page 52CS 239, Spring 2007

Generators

• A program that generates a workload
• Usually intended to match some

specific real-world behavior
• Hook up the generator to the testing

framework and turn it on
• Measure the result, and there you are

Lecture 5
Page 53CS 239, Spring 2007

Issues in Creating Generators

• Level of detail
• Breadth of applicability
• Scalability
• Fidelity
• Reproducibility
• Efficiency

Lecture 5
Page 54CS 239, Spring 2007

Issues in Using Generators

• Choosing the right one
• Properly setting its parameters
• Interaction with other elements of

testing framework
• Scaling

10

Lecture 5
Page 55CS 239, Spring 2007

Advantages of Generators

+ Can be quite realistic
+ Can have reproducible results
+ Usually highly parameterizable
+ More scaleable than some alternatives
+ Easy to do stress tests

Lecture 5
Page 56CS 239, Spring 2007

Disadvantages of Generators

- Hard to build good ones
- Commercial ones can be expensive

- Might be hard to find right parameters
- Not always well validated against your

reality
- Might require extra hardware

Lecture 5
Page 57CS 239, Spring 2007

An Example Generator - Harpoon

• A network traffic generator
– At flow level
– Intended to provide workloads of realistic

network traffic
• Uses network traces to determine type of

network traffic to mimic
– Gathered with other tools

• Runs on dedicated machine in test network
Lecture 5
Page 58CS 239, Spring 2007

How Harpoon Works

• Runs lots of TCP and UDP sessions to
match traffic pattern
– File transfers for TCP
– Pings for UDP
– Sets up response software on the

client machine
• Can parameterize in many ways

Lecture 5
Page 59CS 239, Spring 2007

Uses of Harpoon

• To test message handling on a client
• To test network hardware and

protocols in between clients and
servers

• To test boxes that handle traffic in
between

Lecture 5
Page 60CS 239, Spring 2007

Live Workloads

• Hook system under test up to real
world traffic
– Either in place of existing system
– Or mirror requests from existing

system
• Measure how it performs

11

Lecture 5
Page 61CS 239, Spring 2007

Advantages of Live Workloads

+ Very realistic
+ Pretty representative of your real

workload
+ Tend to exercise some “uncommon”

cases
+The ones that you didn’t think of, but

that actually occur

Lecture 5
Page 62CS 239, Spring 2007

Disadvantages of Live Workloads

- Not reproducible
- Unless mirrored, you can screw up real

work
- If mirrored, you lose fidelity
- Can’t stress test

- Beyond what really happens

Lecture 5
Page 63CS 239, Spring 2007

Live Tests and Human Experiments

• Not all live tests involve humans
• But if they do, you typically need to be

careful
• Most institutions have rules about human

tests
• US government grants do, too
• You could get in a lot of trouble if you’re

not careful
Lecture 5
Page 64CS 239, Spring 2007

• How do you characterize your workload?
• Important for:

– Creating a generator
– Understanding system behavior

• Basically, you need a model of the
workload

• How do you get one?

Workload Characterization

Lecture 5
Page 65CS 239, Spring 2007

Workload Components

• A workload component is a single “service
request”

• Selecting them vital to the model
• Most important is that components be

external: at the interface of the SUT
• Components should be homogeneous
• Should characterize activities of interest to

the study
Lecture 5
Page 66CS 239, Spring 2007

Workload Parameters

• Parameters are quantities that
characterize the workload

• Select parameters that depend only on
workload (not on SUT)

• Prefer controllable parameters
• Omit parameters that have no effect on

system, even if important in real world

12

Lecture 5
Page 67CS 239, Spring 2007

Types of Models

• Simple models
• Models based on distributions
• Markov models
• Code-based models
• Clustering and models

Lecture 5
Page 68CS 239, Spring 2007

Simple Models

• Use average value of each parameter
– Not necessarily arithmetic mean

• Good for uniform distributions or gross
studies

• Can augment with simple indices of
dispersion
– Using some method to sample parameter

values based on those

Lecture 5
Page 69CS 239, Spring 2007

Models Based on Distributions

• Determine full distribution of parameter
values
– Perhaps via histograms
– Jain (Chapter 29) discusses many

distributions
• Select test values based on that distribution
• If multiple parameters, need to account for

interactions
Lecture 5
Page 70CS 239, Spring 2007

Markov Models
• Sometimes, distribution of requests isn’t

enough
– Sequence affects performance

• Example: Modeling web browsing
– Users ask for a web page, wait for

response
– Then examine page, then ask for another
– Single user shouldn’t generate second

request while waiting for first

Lecture 5
Page 71CS 239, Spring 2007

Introduction to
Markov Models

• Represent model as state diagram
• Transitions between states are

probabilistic
• Requests generated on transitions

Network

CPU Disk

0.6

0.4

0.4

0.30.3

0.8

0.2

Lecture 5
Page 72CS 239, Spring 2007

Creating a Markov Model

• Observe long string of activity
• Use matrix to count pairs of states
• Normalize rows to sum to 1.0

CPU Network Disk
CPU 0.6 0.4
Network 0.3 0.4 0.3
Disk 0.8 0.2

13

Lecture 5
Page 73CS 239, Spring 2007

Example Markov Model

• Reference string of opens, reads,
closes:
ORORRCOORCRRRRCC

• Pairwise frequency matrix:
Open Read Close Sum

Open 1 3 4
Read 1 4 3 8
Close 1 1 1 3

Lecture 5
Page 74CS 239, Spring 2007

Markov Model
for I/O String

• Divide each row by its sum to get
transition matrix:

• Model:

Open Read Close
Open 0.25 0.75
Read 0.13 0.50 0.37
Close 0.33 0.33 0.34

Open Close

Read

0.25

0.75
0.13

0.50

0.33

0.37

0.33

0.34

Lecture 5
Page 75CS 239, Spring 2007

Code-Based Modeling

• Use simplified version of actual code to model
system

• Or of well-defined protocol
• E.g., modeling TCP behavior

– Average time between sends is bogus
– Pure distribution is bogus
– Simple Markov model might not be enough
– But you can build relatively simple generator

that “follows the rules”
• How much can you simplify . . .

Lecture 5
Page 76CS 239, Spring 2007

Clustering
• Often useful to break workload into

categories
• “Canonical example” of each category

can be used to represent all samples
• If many samples, generating categories

is difficult
• Clustering algorithms can solve this

problem

Lecture 5
Page 77CS 239, Spring 2007

Steps in Clustering
• Select sample
• Choose and transform parameters
• Drop outliers
• Scale observations
• Choose distance measure
• Do clustering
• Use results to adjust parameters, repeat
• Choose representative components

Lecture 5
Page 78CS 239, Spring 2007

Interpreting Clusters
• Art, not science
• Drop small clusters (if little impact on

performance)
• Try to find meaningful

characterizations
• Choose representative components

– Number proportional to cluster size
or to total resource demands

14

Lecture 5
Page 79CS 239, Spring 2007

Drawbacks of Clustering
• Clustering is basically an AI problem
• Humans will often see patterns where

computer sees none
• Result is extremely sensitive to:

– Choice of algorithm
– Parameters of algorithm
– Minor variations in points clustered

• Results may not have functional meaning

