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¢ Summarizing variability in a data set
 Estimating variability in sample data
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* A single number rarely tells the entire
story of a data set

 Usually, you need to know how much
the rest of the data set varies from that
index of central tendency

Ssummarizing Variability |

.
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Why Is Variability Important?

 Consider two Web servers-
» Server A servicesal requestsin 1 second

e Server B services 90% of all requestsin.5
seconds

. But 10% in 55 seconds
Both have mean servicetimes of 1 second
But which would you prefer to use?
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Indices of Dispersion

» Measures of how much a data set
varies
—Range
—Variance and standard deviation
—Percentiles
—Semi-interquartile range

\ —Mean absolute deviation
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¢ Minimum and maximum valuesin dataset
» Can bekept track of asdatavauesarrive

 Variability characterized by difference
between minimum and maximum

» Often not useful, dueto outliers
* Minimumtendsto goto zero
¢ Maximum tendsto increase over time

Q Not useful for unbounded variables
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* For data set:
2,5.4,-17, 2056, 445, -4.8, 84.3, 92,
27,-10
e Maximum is 2056
e Minimum is-17
» Rangeis 2073
k While arithmetic mean is 268
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Example of Range

——— e e e =

N —_—_—— e — =

* Samplevarianceis
n
? % ? X7
n?1 i?17x'
» Varianceisexpressed in units of the
measured quantity squared
—Which isn’t always easy to understand

» Standard deviation and the coefficient of
variation are derived from variance

22
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Variance Example

* For data set

2,5.4,-17, 2056, 445, -4.8, 84.3, 92,
27, -10

* Variance is 413746.6

» Given a mean of 268, what does that
variance indicate?

\ Lecture3
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Standard Deviation

» The square root of the variance

* |n the same units as the units of the
metric

¢ SO easier to compare to the metric

Lecture3
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Standard Deviation Example

* For data set
2,5.4,-17, 2056, 445, -4.8, 84.3, 92,
27, -10

» Standard deviation is 643

» Given amean of 268, clearly the

standard deviation shows a lot of
variability from the mean

\ Lecue3
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Coefficient of Variation

 Theratio of the mean and standard
deviation

« Normalizes the units of these quantities
into a ratio or percentage

» Often abbreviated C.O.V.

Lecture3
Page 12

CS239, Spring 2007




Coefficient of Variation Example

» For data set

2,5.4,-17, 2056, 445, -4.8, 84.3, 92,
27,-10

» Standard deviation is 643
» The mean of 268
e Sothe C.0.V.is643/268 = 2.4

\ Lecture3
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| Percentiles |

« Specification of how observations fal
into buckets

 E.g., the 5-percentile is the observation
that is at the lower 5% of the set

« The 95-percentile is the observation at
the 95% boundary of the set

» Useful even for unbounded variables
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Relatives of Percentiles
 Quantiles - fraction between 0O and 1
—Instead of percentage
—Also calledfractiles
* Deciles- percentilesat the 10% boundaries
—First is 10-percentile, second is 20-
percentile, etc.
* Quartiles - divide data set into four parts
—25% of samplebelow first quartile, etc.
\ — Second quartileis also the median o
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Calculating Quantiles

» The? -quantile is estimated by sorting
the set
 Then take the [(n-1)? +1]t" element

—Rounding to the nearest integer
index
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Quartile Example

 For dataset

2,54, -17, 2056, 445, -4.8, 84.3, 92, 27,
-10

— (10 observations)
» Sortit:

-17,-10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056
» Thefirst quartile Q, is-4.8
* Thethird quartile Q;is92

\ Lecure3
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Interquartile Range
* Yet another measure of dispersion
¢ The difference between Q3 and Q1
* Semi-interquartile range -
Q%?Q

SQR? =——=
Q 2

« Often interesting measure of what's
going on in the middle of the range
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/ Semi-Interquartile Range \

Example
* For data set
-17,-10, -4.8, 2, 5.4, 27, 84.3, 92, 445,
2056
« Q,is 92
* Q,is-4.8
qor? 27, 922748, 4

2
k So outliers cause much of variability

Lecture3
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e =

|
)

¢ Another measure of variability

+ Mean absolute deviation = = 5 % 2 x|
niz

« Doesn't require multiplication or

sguare roots

Lecture3
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/ Mean Absolute Deviation \
Example

* For data set

-17,-10, -4.8, 2, 5.4, 27, 84.3, 92, 445,
2056

- 110
* Mean absolute deviation = — 2 |x; ? x|
10i=

* Or 393
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Sensitivity To Outliers

» From most to least,
—Range
—Variance
—Mean absolute deviation
—Semi-interquartile range

Lecture3
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/S0, Which Index of Dispersion "\
Should | Use?

<o s e

No

Unimodal Yes
coV
‘No
Percentilesor SIQR

KBut aways remember what you’ re looking fo[em i
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/ Determining Distributions for \
Datasets

« |f adata set has a common distribution,
that’ s the best way to summarize it

» Saying adata set is uniformly
distributed is more informative than
just giving its mean and standard
deviation

Lecture3
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Some Commonly Used Distributions

Uniform distribution
Normal distribution
Exponentia distribution
 There are many others

\ Lecture3
PageZ
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Uniform Distribution

» All valuesin agiven range are equally likely

¢ Often normalized to arange from zero to one

« Suggests randomness in phenomenon being tested
—Pdf: f(x)?

B? A
—CDF: f(x)?x

e Assuming 0? x?1

Lecture3
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CDF for Uniform Distribution

E R

\ Lecture3
Page 2]

-

. ls_géne value of random variable is most
ikay
— Declining probabilities of valuesas one
moves away from thisvalue

- Eglual ly on either side of most probable
vaue

e Extremely widely used
» Generally sort of a“default distributior”
—Whichisn't alwaysright . . .

Normal Distribution

Lecture3
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/ PDF and CDF for Normal \
Distribution

» PDF expressed interms of
— Location parameter U (the popular value)
— Scale parameter s (how much spread)
—PDFis ORI

f(x)? g
—CDF doesn’t exist in closed form
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PDF for Normal Distribution

Lecture3
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Exponential Distribution

» Describes value that declines over time
— E.g., failure probabilities
— Described in terms of location parameter 4
— And scale parameter 3
— Standard exponential when p=0and =1
« PDF: 1
f(x) 25777

« CDF:

\ f (21767

f(x) 2€™ forp=0andR=1
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PDF of Exponential Distribution

[l
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aDistribution
» So how do we determine if a data set
matches a distribution?
—Plot a histogram
—Quantile-quantile plot
—Statistical methods (not covered in
this class)

.
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/ Methods of Determining \
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Plotting a Histogram
 Suitableif you have ardatively large
number of data points
1. Determine range of observations
2. Dividerangeinto buckets

3.Count number of observationsin each
bucket

4. Divide by total number of observationsand
plot it as column chart

Lecture3
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Approach
* Determining cell size

—If too small, too few observations per
cell

—If too large, no useful detailsin plot

« |f fewer than five observationsin a
cell, cel sizeistoo smal
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/ Problem With Histogram \
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Quantile-Quantile Plots
* More suitable for small data sets
 Basically, guess a distribution

 Plot where quantiles of data
theoretically should fall in that
distribution

—Against where they actually fall

« If plotiscloseto linear, data closely
matches that distribution L
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Obtaining Theoretical Quantiles

* Must determine where the quantiles
should fal for a particular distribution

* Requires inverting distribution’s CDF
—Then determining quantiles for
observed points
—Then plugging in quantiles to
\ inverted CDF
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Inverting a Distribution

¢ Many common distributions have
aready been inverted

—How convenient

« For others that are hard to invert, tables
and approximations are often available

—Nearly as convenient
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ﬁs Our Sample Data Set Normal Iy\
Distributed?
Our data set was

-17,-10, -4.8, 2, 5.4, 27, 84.3, 92, 445,
2056
» Doesthismatch the normal distribution?
The normal digtribution doesn’t invert
nicey
But there is an approximation:
\ X, ? 4.9159°% 2172 g,
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Data For Example Normal
Quantile-Quantile Plot

/ Example Normal Quantile- \
Quantile Plot

2500

2000+

1500+

1000+

o n 1 [}

-1l65 -1.03 -067 -038 -0.13 013 038 0.67 1.03 1.5

Lecture3
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i G Yi X

1 005 17 -1.64684

2 015 -10 -1.03481

3 025 -48 -0.67234

4 035 2 -0.38375

5 045 5.4 -0.1251

6 055 27 0.1251

7 065 84.3 0.383753

8 075 92 0.672345

9 085 445 1.034812
\10 0.95 2056 1.646839
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Analysis

* Wdll, it ain’t normal
—Because it isn't linear
—Tail a high end istoo long for
normal

 But perhaps the lower part of the graph
is normal?

CS239, Spring 2007
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7 QuantileQuantile Plot
of Partia Data

- T T

-40
Lecture3
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Partial Data Plot Analysis
* Doesn't look particularly good at this
scale, either
« OK for first five points
* Not so OK for later ones

Lecture3
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» How tall isahuman?
—Could measure every personintheworld

—Or could measure every person in this
room

* Population hasparameters
—Red and meaningful

e Sample hasstatistics
— Drawn from population
—Inherently erroneous
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Sample Statistics
* How tdl is a human?
—People in Haines A82 have a mean
height
—People in BH 3564 have a different
mean

« Sample mean isitself arandom
variable

\ —Has own distribution

5239, Spring 2007
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/ Estimating Population from \
Samples
* How tdl is a human?
—Measure everybody in this room
—Cdculate sample mean x
—Assume population mean ? equals x

* But we didn’t test everyone, so that's
probably not quite right

\- What is the error in our estimate?

Lecture3
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Estimating Error

» Sample mean is arandom variable
? Sample mean has some distribution

? Multiple sample means have “mean
of means”

« Knowing distribution of means can
estimate error

Lecture3
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/ Estimating Value of a Random \
Variable
» How tal is Fred?

* Suppose average human height is 170
cm

? Fredis170 cm tall
—Yeah, right
 Safer to assume arange

\ Lecture3
Pageo
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* How tdl is Fred?

—Suppose 90% of humans are between
155 and 190 cm

? Fred is between 155 and 190 cm

* We are 90% confident that Fred is
between 155 and 190 cm

~

[Confidence Intervals

Lecture3
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/ Confidence Interval of Sample \
Mean
» Knowing where 90% of sample meansfall
we can state a 90% confidence interval
» Key isCentral Limit Theorem:
— Sample means are normally distributed
—Only if independent
—Mean of sample meansis population
mean ?
\— Standard deviation (standard error) is 7/

CS239, Spring 2007
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Estimating Confidence Intervals

» Two formulasfor confidenceintervals
—Over 30 samplesfrom any distribution: z-
distribution
—Small sample from normally distributed
population: t-distribution
« Common error: using t-distribution for non-
normal population

Lecture3
Pages2
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The z Distribution

* Interval on either side of mean:
x22.,,53.3
/2 2
« Significance level ? issmdll for large
confidencelevels

» Tablesaretricky: be careful!

\ Lecue3
Page
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/ Example of z Distribution \
» 35samples:

101647487430814257 677 1356 44 54 17
6032 452833 60 36 59 7346 10 40 3565 34
25184863

» Samplemeanx =42.1
Standard deviations=20.1
e n=35

90% confidence interval:

4217 (1645)% 2 (365, 47.7)
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/ Graph of \

z Distribution Example

100 T
80 +
60
- - /

20 +

0

\ Lecture3
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Thet Distribution

¢ Formulaisalmost the same:

X2t 5S 3

X?t 5, A—="

Z?A,n.l??ﬁ?

» Usable only for normaly distributed
populations!

» But workswith small samples

Lecture3
©5239, Spring 2007 Pages

/ Example of t Distribution
* 10 height samples: 148 166 170 191 187
114168 180 177 204
» Samplemeanx = 170.5, standard deviation
s=251,n=10
* 90% confidenceinterval is

170.57? (].833)3% ? (156.0,185.0)

. 99%interval is (144.7, 196.3)

Lecture3
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/ Graph of \

t Distribution Example

250 T+

200 T -
[E—— :7/.-7.-& .............. e
B e S ———
100 1+
50 +
0
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Getting More Confidence \
» Asking for ahigher confidence level widens
the confidence interval
» How tall isFred?
—90% sure he's between 155 and 190 cm
—Wewant to be 99% surewe’ reright

— So we need more room: 99% sure he's
between 145 and 200 cm

\ Lecure3
Page®

CS239, Spring 2007

-

(Making Decisions|

* Why do we use confidence intervals?
— Summarizes error in sample mean

— Givesway to decide if measurement is
meaningful

— Allows comparisonsin face of error
» But remember: at 90% confidence, 10% of sample
means do not include population mean
« And confidence intervals apply to means, not
\ individual datareadings
Lecture3
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Testing for Zero Mean

* |spopulation mean significantly nonzero?
« If confidence interval includes O, answer is
no

Cantest for any value (mean of sumsissum
of means)

» Example: our height samples are consistent
with average height of 170 cm

\ —Also consistent with 160 and 180!

€239, Spring 2007
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Comparing Alternatives

 Often need to find better system
— Choose fastest computer to buy
—Prove our agorithm runsfaster

« Different methods for paired/unpaired
observations

—Paired if ith test on each system was
same

—Unpaired otherwise

©5239, Spring 2007 Page &2

Comparing Paired Observations

* For each test calculate performance
difference

» Calculate confidence interval for mean
of differences

* If interval includes zero, systems aren’t
different

\ —If not, sign indicates which is better

CS239, Spring 2007
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/ Example: Comparing Paired \
Observations
* Do home baseball teams outscore visitors?
¢ Sample from 4-7-07:
-H 1 8 555731
-V 7 5 36152414
-H-V-6 3 2 -1421-3
» Assume anormal population for the moment
—n=38, Mean = .25, s= 3.37, 90% interval (-2,
2.5)
— Can't tell from this data

5239, Spring 2007
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Was the Data Normally Distributed?

 Check by plotting
quantile-quantile
chart

* Pretty good fit to
theline

» Sothenormd
assumption is T
plausble L

\ Lecure3
Pages
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Quantile-quantile chart of baseball data

4 -
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/ Comparing Unpaired \
Observations

« Start with confidence intervals for each sample
—If nooverlap:

« Systems are different and higher mean is
better (for HB metrics)

— If overlap and each CI contains other mean:
* Systems are not different at thislevel
« If close call, could lower confidence level
— If overlap and onemeanisn’t in other Cl

¢ Must do t-test Lecture3
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4 Thet-test (1) A 4 A

Thet-test (2)
_ _ 5. Compute effective degrees of
1. Compute sample means xaand X» freedom: ro . 2 /n?
2. Compute sample standard deviations 27— naz' My =22
1 2872, 1 282
s ands 229 ? 229
3. Compute mean difference = Xa ? Xo M, 21,7 1, 7170,
' b T 6. Compute the confidence interval:
4. Compute standard deviation of —
difference: & Xa? Xo il Tagn 208
\ S?W/n_?n_ 7. If interval includes zero, no difference
a b
Comparing Proportions Special Considerations]

* If k of ntrials give a certain result, then
confidence interval is

k Vk?2k’/n
n

=0 Zl’??/Z
n

 Selecting a confidence level
« Hypothesis testing
¢ One-sided confidence intervals

« Estimating required sample size
« If interval includes 0.5, can’t say which

outcome is statistically meaningful
Q Must have k>10 to get valid results

CS239, Spring 2007
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Selecting a Confidence Level Hypothesis Testing

* The null hypothesis (H,) is common in
statistics
—Confusing due to double negative

—Gives less information than
confidence interval

—Often harder to compute

 Depends on cost of being wrong

* 90%, 95% are common values for
scientific papers

* Generaly, use highest value that lets
you make afirm statement

—But it’s better to be consistent « Should understand that rejecting nul
\ throughout a given paper " \ hypothesis implies result is meaningful _

we3
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One-Sided Confidence Intervals Sample Sizes

* Bigger sample sizes give narrower
intervals

—Smaller values of t, v as n increases
—4/n informulas
« But sample collection is often

* Two-sided intervals test for mean
being outside a certain range (see
“error bands” in previous graphs)

» One-sided tests useful if only
interested in one limit

. expensive
* Use 2,00, instead of z, ,,0r t;_ \?Vhar[' the mini o
272 iN formulas - is the minimum we can g
\ . ’ Lecture3 \ a/vay Wlth’? Lecure3
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How To Estimate Sample Size Choosing a Sample Size
» Takeasmall number of measurements e To ge‘[ a g|ven percent&ge error +r%:
» Usedtatistical properties of the small set to )
estimaterequired size n? EEQZEE
« Based on desired confidence of being R
within some percent of true mean * Here, zrepresents either zor tas
» Givesyou aconfidenceinterval of acertain appropriate
Sze
— At acertain confidence that you’ re right
\ C©S239, Spring 2007 :;SE“’;S:" \ CS239, Spring 2007 \5;3:;%3

Example of Choosing Sample :
/ P : g P \ /What Does Thisrealy Mean? \
Size
* Five runs of a compilation took 22.5,  After running five tests

* How many runs to get +5% confidence + My confidence intervals will be within
interval at 90% confidence level? 5% of the mean

* X =221,5=28, tyq,= 2132 « At a90% cnfidencelevel

2

2200721327287 _ 2
n?2 2 75477292

\_ 7 ®mr ? : :
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