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Introduction

• Summarizing variability in a data set
• Estimating variability in sample data
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Summarizing Variability

• A single number rarely tells the entire 
story of a data set

• Usually, you need to know how much 
the rest of the data set varies from that 
index of central tendency
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Why Is Variability Important?

• Consider two Web servers -
• Server A services all requests in 1 second
• Server B services 90% of all requests in .5 

seconds
• But 10% in 55 seconds
• Both have mean service times of 1 second
• But which would you prefer to use?
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Indices of Dispersion

• Measures of how much a data set 
varies
– Range
– Variance and standard deviation
– Percentiles
– Semi-interquartile range
– Mean absolute deviation
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Range
• Minimum and maximum values in data set
• Can be kept track of as data values arrive
• Variability characterized by difference 

between minimum and maximum
• Often not useful, due to outliers
• Minimum tends to go to zero
• Maximum tends to increase over time
• Not useful for unbounded variables
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Example of Range

• For data set:
2, 5.4, -17, 2056, 445, -4.8, 84.3, 92, 
27, -10

• Maximum is 2056
• Minimum is -17
• Range is 2073
• While arithmetic mean is 268
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Variance (and Its Cousins)
• Sample variance is 

• Variance is expressed in units of the 
measured quantity squared
– Which isn’t always easy to understand

• Standard deviation and the coefficient of 
variation are derived from variance
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Variance Example

• For data set
2, 5.4, -17, 2056, 445, -4.8, 84.3, 92, 
27, -10

• Variance is 413746.6
• Given a mean of 268, what does that 

variance indicate?
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Standard Deviation

• The square root of the variance
• In the same units as the units of the 

metric
• So easier to compare to the metric
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Standard Deviation Example

• For data set
2, 5.4, -17, 2056, 445, -4.8, 84.3, 92, 
27, -10

• Standard deviation is 643
• Given a mean of 268, clearly the 

standard deviation shows a lot of 
variability from the mean
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Coefficient of Variation

• The ratio of the mean and standard 
deviation

• Normalizes the units of these quantities 
into a ratio or percentage

• Often abbreviated C.O.V.
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Coefficient of Variation Example

• For data set
2, 5.4, -17, 2056, 445, -4.8, 84.3, 92, 
27, -10

• Standard deviation is 643
• The mean of 268
• So the C.O.V. is 643/268 =  2.4
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Percentiles

• Specification of how observations fall 
into buckets

• E.g., the 5-percentile is the observation 
that is at the lower 5% of the set

• The 95-percentile is the observation at 
the 95% boundary of the set

• Useful even for unbounded variables
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Relatives of Percentiles
• Quantiles - fraction between 0 and 1

– Instead of percentage
– Also called fractiles

• Deciles - percentiles at the 10% boundaries
– First is 10-percentile, second is 20-

percentile, etc.
• Quartiles - divide data set into four parts

– 25% of sample below first quartile, etc.
– Second quartile is also the median
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Calculating Quantiles

• The ? -quantile is estimated by sorting 
the set

• Then take the [(n-1)? +1]th element
– Rounding to the nearest integer 

index
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Quartile Example
• For data set

2, 5.4, -17, 2056, 445, -4.8, 84.3, 92, 27,     
-10

– (10 observations)
• Sort it:

-17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056
• The first quartile Q1 is -4.8
• The third quartile Q3 is 92
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Interquartile Range
• Yet another measure of dispersion
• The difference between Q3 and Q1
• Semi-interquartile range -

• Often interesting measure of what’s 
going on in the middle of the range
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Semi-Interquartile Range 
Example

• For data set

-17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 
2056

• Q3 is  92

• Q1 is -4.8

• So outliers cause much of variability
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Mean Absolute Deviation

• Another measure of variability

• Mean absolute deviation =

• Doesn’t require multiplication or 
square roots
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Mean Absolute Deviation 
Example

• For data set
-17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 

2056

• Mean absolute deviation = 

• Or 393
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Sensitivity To Outliers

• From most to least,
– Range
– Variance
– Mean absolute deviation
– Semi-interquartile range
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So, Which Index of Dispersion 
Should I Use?

Bounded?

Unimodal
symmetrical?

Range

C.O.V

Percentiles or SIQR
• But always remember what you’re looking for

Yes

Yes

No

No
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Determining Distributions for 
Datasets

• If a data set has a common distribution, 
that’s the best way to summarize it

• Saying a data set is uniformly 
distributed is more informative than 
just giving its mean and standard 
deviation
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Some Commonly Used Distributions

• Uniform distribution
• Normal distribution
• Exponential distribution
• There are many others
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Uniform Distribution

• All values in a given range are equally likely
• Often normalized to a range from zero to one
• Suggests randomness in phenomenon being tested

– Pdf:

– CDF:

• Assuming 
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CDF for Uniform Distribution
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Normal Distribution

• Some value of random variable is most 
likely
– Declining probabilities of values as one 

moves away from this value
– Equally on either side of most probable 

value
• Extremely widely used
• Generally sort of a “default distribution”

– Which isn’t always right . . .
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PDF and CDF for Normal 
Distribution

• PDF expressed in terms of 
– Location parameter µ (the popular value)
– Scale parameter s (how much spread)
– PDF is

– CDF doesn’t exist in closed form 
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PDF for Normal Distribution
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Exponential Distribution

• Describes value that declines over time
– E.g., failure probabilities
– Described in terms of location parameter µ
– And scale parameter ß
– Standard exponential when µ= 0 and ß=1

• PDF: 

• CDF:

??

?
/)(1

)( ??? xexf

?/1)( xexf ???

xexf ??)( for µ= 0 and ß=1

Lecture 3
Page 32CS 239, Spring 2007

PDF of Exponential Distribution
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Methods of Determining
a Distribution

• So how do we determine if a data set 
matches a distribution?
– Plot a histogram
– Quantile-quantile plot
– Statistical methods (not covered in 

this class)
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Plotting a Histogram
• Suitable if you have a relatively large 

number of data points
1. Determine range of observations
2. Divide range into buckets
3.Count number of observations in each 

bucket
4. Divide by total number of observations and 

plot it as column chart
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Problem With Histogram 
Approach

• Determining cell size
– If too small, too few observations per 

cell
– If too large, no useful details in plot

• If fewer than five observations in a 
cell, cell size is too small
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Quantile-Quantile Plots
• More suitable for small data sets
• Basically, guess a distribution
• Plot where quantiles of data 

theoretically should fall in that 
distribution
– Against where they actually fall

• If plot is close to linear, data closely 
matches that distribution
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Obtaining Theoretical Quantiles

• Must determine where the quantiles
should fall for a particular distribution

• Requires inverting distribution’s CDF
– Then determining quantiles for 

observed points
– Then plugging in quantiles to 

inverted CDF
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Inverting a Distribution

• Many common distributions have 
already been inverted
– How convenient

• For others that are hard to invert, tables 
and approximations are often available
– Nearly as convenient
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Is Our Sample Data Set Normally 
Distributed?

• Our data set was
-17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 

2056
• Does this match the normal distribution?
• The normal distribution doesn’t invert 

nicely
• But there is an approximation:

? ?? ?x q qi i i? ? ?4 91 10 14 0 14. . .
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Data For Example Normal 
Quantile-Quantile Plot

i qi yi xi

1 0.05 -17 -1.64684
2 0.15 -10 -1.03481
3 0.25 -4.8 -0.67234
4 0.35 2 -0.38375
5 0.45 5.4 -0.1251
6 0.55 27 0.1251
7 0.65 84.3 0.383753
8 0.75 92 0.672345
9 0.85 445 1.034812
10 0.95 2056 1.646839
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Example Normal Quantile-
Quantile Plotyi
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Analysis

• Well, it ain’t normal
– Because it isn’t linear
– Tail at high end is too long for 

normal
• But perhaps the lower part of the graph 

is normal?



8

Lecture 3
Page 43CS 239, Spring 2007

Quantile-Quantile Plot
of Partial Data

-40

-20

0

20

40

60

80

100

-2 -1.5 -1 -0.5 0 0.5 1

Lecture 3
Page 44CS 239, Spring 2007

Partial Data Plot Analysis
• Doesn’t look particularly good at this 

scale, either
• OK for first five points
• Not so OK for later ones
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• How tall is a human?
– Could measure every person in the world
– Or could measure every person in this 

room
• Population has parameters

– Real and meaningful
• Sample has statistics

– Drawn from population
– Inherently erroneous

Samples
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Sample Statistics
• How tall is a human?

– People in Haines A82 have a mean 
height

– People in BH 3564 have a different 
mean

• Sample mean is itself a random 
variable
– Has own distribution
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Estimating Population from 
Samples

• How tall is a human?
– Measure everybody in this room
– Calculate sample mean 
– Assume population mean ? equals

• But we didn’t test everyone, so that’s 
probably not quite right

• What is the error in our estimate?

x
x
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Estimating Error

• Sample mean is a random variable
? Sample mean has some distribution
? Multiple sample means have “mean 

of means”
• Knowing distribution of means can 

estimate error
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Estimating Value of a Random 
Variable

• How tall is Fred?
• Suppose average human height is 170 

cm
? Fred is 170 cm tall
– Yeah, right

• Safer to assume a range
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• How tall is Fred?
– Suppose 90% of humans are between 

155 and 190 cm
? Fred is between 155 and 190 cm

• We are 90% confident that Fred is 
between 155 and 190 cm

Confidence Intervals
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Confidence Interval of Sample 
Mean

• Knowing where 90% of sample means fall 
we can state a 90% confidence interval

• Key is Central Limit Theorem:
– Sample means are normally distributed
– Only if independent
– Mean of sample means is population 

mean ?
– Standard deviation (standard error) is ?
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Estimating Confidence Intervals

• Two formulas for confidence intervals
– Over 30 samples from any distribution: z-

distribution
– Small sample from normally distributed 

population: t-distribution
• Common error: using t-distribution for non-

normal population
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The z Distribution

• Interval on either side of mean:

• Significance level ? is small for large 
confidence levels

• Tables are tricky: be careful!

?
?
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? n
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Example of z Distribution
• 35 samples: 

10 16 47 48 74 30 81 42 57 67 7 13 56 44 54 17 
60 32 45 28 33 60 36 59 73 46 10 40 35 65 34 
25 18 48 63

• Sample mean    = 42.1
• Standard deviation s = 20.1 
• n = 35
• 90% confidence interval:

x

42 1 1645
20 1

35
36 5 47 7. ( . )

.
( . , . )? ?
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Graph of 
z Distribution Example
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The t Distribution

• Formula is almost the same:

• Usable only for normally distributed 
populations!

• But works with small samples

? ? ?
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Example of t Distribution
• 10 height samples: 148 166 170 191 187 

114 168 180 177 204
• Sample mean    = 170.5,  standard deviation 

s = 25.1, n = 10
• 90% confidence interval is

• 99% interval is (144.7, 196.3)

x

170 5 1833
25 1

10
156 0 185 0. ( . )

.
( . , . )? ?
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Graph of 
t Distribution Example
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Getting More Confidence
• Asking for a higher confidence level widens 

the confidence interval
• How tall is Fred?

– 90% sure he’s between 155 and 190 cm
– We want to be 99% sure we’re right
– So we need more room: 99% sure he’s 

between 145 and 200 cm
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• Why do we use confidence intervals?
– Summarizes error in sample mean
– Gives way to decide if measurement is 

meaningful
– Allows comparisons in face of error

• But remember: at 90% confidence, 10% of sample 
means do not include population mean

• And confidence intervals apply to means, not 
individual data readings

Making Decisions
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Testing for Zero Mean

• Is population mean significantly nonzero?
• If confidence interval includes 0, answer is 

no
• Can test for any value (mean of sums is sum 

of means)
• Example: our height samples are consistent 

with average height of 170 cm
– Also consistent with 160 and 180!

Lecture 3
Page 62CS 239, Spring 2007

Comparing Alternatives

• Often need to find better system
– Choose fastest computer to buy
– Prove our algorithm runs faster

• Different methods for paired/unpaired 
observations
– Paired if ith test on each system was 

same
– Unpaired otherwise
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Comparing Paired Observations

• For each test calculate performance 
difference

• Calculate confidence interval for mean 
of differences

• If interval includes zero, systems aren’t 
different
– If not, sign indicates which is better
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Example: Comparing Paired 
Observations

• Do home baseball teams outscore visitors?
• Sample from 4-7-07:

– H      1     8    5   5   5   7   3   1
– V      7     5    3   6   1   5   2   4
– H-V -6    3    2    -1  4  2  1  -3

• Assume a normal population for the moment
– n = 8, Mean = .25, s= 3.37, 90% interval (-2, 

2.5)
– Can’t tell from this data
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Was the Data Normally Distributed?

• Check by plotting 
quantile-quantile
chart

• Pretty good fit to 
the line

• So the normal 
assumption is 
plausible

Quantile-quantile chart of baseball data
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Comparing Unpaired 
Observations

• Start with confidence intervals for each sample
– If no overlap:

• Systems are different and higher mean is 
better (for HB metrics)

– If overlap and each CI contains other mean:
• Systems are not different at this level
• If close call, could lower confidence level

– If overlap and one mean isn’t in other CI
• Must do t-test
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The t-test (1)

1. Compute sample means     and
2. Compute sample standard deviations 

sa and sb

3. Compute mean difference =
4. Compute standard deviation of 

difference:

x a x b

x xa b?

s
s
n

s
n

a

a

b

b

? ?
2 2
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The t-test (2)
5. Compute effective degrees of 

freedom:

6. Compute the confidence interval:

7. If interval includes zero, no difference

? ?
? ?

?

?
?
?
?

?
?
? ?

?
?
?
?

?
?
?

?
s n s n

n
s
n n

s
n

a a b b
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1
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Comparing Proportions

• If k of n trials give a certain result, then 
confidence interval is

• If interval includes 0.5, can’t say which 
outcome is statistically meaningful

• Must have k>10 to get valid results

k
n

z k k n
n

? 1 2

2

?
?

? /
/
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• Selecting a confidence level
• Hypothesis testing
• One-sided confidence intervals
• Estimating required sample size

Special Considerations

Lecture 3
Page 71CS 239, Spring 2007

Selecting a Confidence Level

• Depends on cost of being wrong
• 90%, 95% are common values for 

scientific papers
• Generally, use highest value that lets 

you make a firm statement
– But it’s better to be consistent 

throughout a given paper
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Hypothesis Testing
• The null hypothesis (H0) is common in 

statistics
– Confusing due to double negative
– Gives less information than 

confidence interval
– Often harder to compute

• Should understand that rejecting null 
hypothesis implies result is meaningful
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One-Sided Confidence Intervals

• Two-sided intervals test for mean 
being outside a certain range (see 
“error bands” in previous graphs)

• One-sided tests useful if only 
interested in one limit

• Use z1-? or t1-? ;n instead of z1-? /2 or t1-

? /2;n in formulas
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• Bigger sample sizes give narrower 
intervals
– Smaller values of t, v as n increases
– in formulas

• But sample collection is often 
expensive
– What is the minimum we can get 

away with?

n

Sample Sizes
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How To Estimate Sample Size

• Take a small number of measurements
• Use statistical properties of the small set to 

estimate required size
• Based on desired confidence of being 

within some percent of true mean
• Gives you a confidence interval of a certain 

size
– At a certain confidence that you’re right
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Choosing a Sample Size

• To get a given percentage error ±r%:

• Here, z represents either z or t as 
appropriate

2100
?
?
??

?
??

xr
zsn
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Example of Choosing Sample 
Size

• Five runs of a compilation took 22.5, 
19.8, 21.1, 26.7, 20.2 seconds

• How many runs to get ±5% confidence 
interval at 90% confidence level?

• = 22.1, s = 2.8, t0.95;4 = 2.132x

? ?? ?? ?
? ?? ?

n ?
?
??

?
??

? ?
100 2 132 2 8

5 22 1
5 4 29 2

2
2. .

.
. .
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What Does This really Mean?

• After running five tests
• If I run a total of 30 tests
• My confidence intervals will be within 

5% of the mean
• At a 90% cnfidence level


