Testbeds
CS 239
Experimental Methodologies for
System Software
Peter Reiher
May 15, 2007

ing 2007

Outline

- What is a testbed?
- Important shared testbeds
- Setting up your own testbed

- -----

Page 2

What is a Testbed?

- A facility specifically devoted to running experiments
- Almost always with dedicated hardware
- Often with special software support

Spring 2007

Lecture 1

Components of a Testbed

- Computers
- A network
 - -In most cases
 - -Usually wired
 - -Unless a specifically wireless testbed
- Supporting software

CS 239, Spring 2007

Lecture Page 4

Purpose of a Testbed

- To set aside dedicated machines for testing
- Over a long period of time
- Often set up for a particular company or lab
- Recently, shared testbeds have become popular
 - Allows much larger testbeds
 - By sharing costs

CS 239, Spring 2007

Lecture 11 Page 5

Desirable Properties of a Testbed

- Sufficiently large
- Sufficiently modern hardware
- Flexibility in its use and control
- Ease of use in experiments
- Evolvable
- Sharable, at least at some level

CS 239, Spring 2007

[Important Testbeds]

- Emulab
- Planetlab
- Deter
- GENI

S 239, Spring 2007

ecture 11

Emulab

- Large testbed located at University of Utah
- Funded initially by NSF and DARPA
- Designed to support experiments by researchers worldwide
- Probably the first really successful Internetwide testbed
- http://www.emulab.net

CS 239 Spring 2007 -

Lecture 1
Page 8

Basic Philosophy of Emulab

- Provide large pool of machines to entire Internet community
- Almost all testing will be done remotely
- Almost all testing must be done without intervention by testbed admins
- Handle the widest possible kinds of experiments and testing situations

CS 239, Spring 2007

Page 9

Basic Emulab Approach

- Emulab indeed provides large numbers of machines
 - Around 450 total nodes
- But also provides a rich, powerful testing environment
- Completely configurable remotely
- Designed for simultaneous sharing by many users

CS 239, Spring 2007

Page 10

Core Emulab Characteristics

- Highly configurable
 - -System software
 - -Application software
 - -Network topology and characteristics
- Controllable, predictable, repeatable
- Good guarantees of isolation from other experiments

CS 239, Spring 2007

Lecture 11 Page 11

Emulab Use Policy

- Public resource open to most researchers
- Including commercial researchers
- And those in other countries
- Rules about abuse of system
- And priorities when overloaded
- But otherwise, anyone can run any experiment they want

CS 239, Spring 2007

Page 12

Using Emulab

- Start an Emulab project
 - -Using on-line web form
 - -Requires some description of what you'll be doing
 - -Can also join existing project
- Log in to Emulab
- Set up and run an experiment

CS 239 Spring 2007

Lecture 1 Page 13

Running Emulab Experiments

- · Must specify a network topology
 - Using NS-2 syntax
 - Includes specification of how many nodes you want, software used, etc.
- · Use interface to start experiment
- Emulab automatically configures nodes as specified
- · Experiment starts running
 - You can poke into your nodes during run
- When done, terminate the experiment

CS 239, Spring 2007

Lecture 11 Page 14

Simple Emulab Example

- Nodes B, C, and D are connected via a 100 Mb LAN
- Node A connects to node B by a 30 Mb link

- Page

What 's Really Going On Important to understand difference between real node names and your experiment node names Experiment node names CS 239. Sorine 2007

Emulab and Operating Systems

- Emulab configures each node with the OS you choose
 - Supported choices are FreeBSD, multiple Linux variants, Windows XP
 - Can also run OSKit kernels on some Emulab nodes
- · Fresh instantiation of OS on each machine
- Don't get root password, but full sudo root access
- Allowed to customize pretty much any way you like
- Specified in the NS-2 config file

CS 239, Spring 2007

Lecture 11 Page 17

Emulab and Network Issues

- You can set up whatever network bandwidth you want
 - Up to 100 Mbps
- Can specify the network delays you want
- Can specify network queueing disciplines
- Multiple routing options for the network

CS 239, Spring 2007

Page 18

Wireless in Emulab

- Some Emulab nodes have 802.11 cards
 - -Some also have GNU Software Radio hardware
- More wireless nodes are set to be added soon
- Also a dense array of wireless nodes
 - -For studying interference effects

CS 239, Spring 2007

Lecture 1 Page 19

Emulab and Internet Experiments

- Emulab has ability to link to Planetlab
 - -Which is on the real Internet
- Use from within Emulab somewhat different than normal Planetlab use

CS 239 Spring 2007

Lecture 11 Page 20

Other Emulab Facilities

- Small sensor network (25 Mica nodes)
- Robotic-based testbed for mobile wireless experiments
 - Small number of robots with attached wireless
 - Controllable movement in a small space
 - Predecessor of larger testbed of this type
- Hybrid simulation capabilities

CS 239, Spring 2007

Lecture

Other Emulabs

- The basic hardware and software has been adapted to build other testbeds
 - -Mostly much smaller
- Some are for public use, others for private use
- Some are for specialized purposes

CS 239, Spring 2007

Lecture Page 22

Emulab and Network Topologies

- Can specify any topology expressible in NS-2 language
- But where do they come from?
- Generally, network topology generation programs
 - Emulab recommends BRITE
- We'll discuss topology generation in more detail later

CS 220 Spring 2007

Lecture 11 Page 23

Sample Uses of Emulab

- Testing RON
- D-Ward, DefCOM, and other DDoS defenses
- Benchmarking CORBA tools
- Testing collaborative cache consistency
- Testing Internet game systems
- Active network testing

CS 239, Spring 2007

Planetlab

- · A testbed designed to test Internet services
- · Using nodes deployed widely around the Internet
- And software to support safe and controlled sharing of the nodes
- · Run primarily by Princeton, Berkeley, and Washington
- · Funding seeded by NSF and DARPA
- · Strong Intel participation
 - Other industry involvement, as well
- http://www.planet-lab.org
 - www.planetlab.org was taken

CS 239, Spring 2007

Lecture 1

Basic Planetlab Concept

- Deploy testbed nodes at many locations throughout Internet
 - -Standardized hardware and software
- Allow those who deploy nodes to use the testbed facility
- Provide virtual machines to each tester using a node

CS 239, Spring 2007

Page 26

Planetlab Nodes

- Hardware deploying the Planetlab software package
- Which support cheap virtual machines
- Otherwise, provides a typical Linux environment
- Pretty complete control of virtual machine
- But node-based mechanisms to ensure fair and safe sharing of hardware

CS 239, Spring 2007

Lecture Page 27

Planetlab Locations

Usually two machines per location 788 nodes at 382 sites (as of 5/12/07)

CS 239, Spring 2007

Lecture Pogo 29

Planetlab Experiments

- Usually run on many Planetlab nodes
- By one controlling researcher
- The collection of resources across all nodes supporting the experiment is called a Planetlab slice
 - A multimachine environment for the experiment
 - Also an organization for cooperating researchers to use
- · Services run in slices

CS 239, Spring 2007

ecture 11 Page 29

More On Slices

- Slices have computing resources associated with them
 - Processing, memory, storage, network bandwidth
 - On each participating node
- Networks of virtual machines
- In this sense, Planetlab is an overlay testbed

CS 239, Spring 2007

Planetlab Virtual Machines

- Multiple slices can co-exist on the same virtual machine.
- Uses Linux VServers to create virtual kernels
 - Virtualization at system call level
 - Harder to ensure real separation than true virtual machines, like VMWare
 - But cheaper to run
- Semi-copy-on-write techniques used to limit disk storage required for each kernel

ng 2007

Privileged Access in Planetlab

- Slice owner has root-like privileges on his node
- But not all root services
 - E.g., not raw device control or rebooting
- Root services only applied to the virtual machine in his slice
 - Can modify root file system, e.g.
- Separate sets of password files per slice

CS 239 Spring 2007 -

Page 32

Networking in Planetlab

- · Basically uses variant of sockets
- Can only get get sockets bound to particular UDP or TCP ports
- Incoming packets delivered only to service that created the socket
- Outgoing packets filtered for "well-formedness"
 - E.g., no IP spoofing allowed
- · Internode communication uses standard Internet
- Planetlab has no special network or privileges

CS 239, Spring 2007

Lecture Page 3

Planetlab and Deployment

- Planetlab was designed to allow eventually deployment of real services
- By running them in a slice
- Reasonable to run experiments for a long time over Planetlab, today

CS 239, Spring 2007

Lecture

A Key Issue in Planetlab

- Traffic between nodes crosses the Internet
- No guarantees about state of that communications medium
- Makes reproducibility of results and control of experiments challenging
- But experiment experiences realities of Internet communications

Lecture 11 Page 35

Planetlab Administration

- Overall administration handled by testbed leaders and steering committee
 - Software releases, overall policies, handling requests to join
- Distributed administration at each site
- Site's Planetlab PI approves users and slice requests
- · Less centralized than Emulab
 - But also less open

CS 239, Spring 2007

Some Sample Uses of Planetlab

- Testing DHT concepts
- Anycast and multicast projects
- Measurement of Internet behavior and topology
- Video streaming research
- Protocol resiliency and survivability
- Lots of P2P work

CS 239, Spring 2007

Lecture 1

Core Differences Between Emulab and Planetlab

- · Emulab is centralized
- · Planetlab is distributed
- Emulab is highly controllable
- Planetlab has highly uncontrollable elements
- Emulab gives exclusive access to nodes for short periods
- Planetlab gives shared access to nodes for long periods

CS 239, Spring 2007

Lecture 1

More Differences

- Emulab gives total control of a node
- Planetlab gives limited control of a virtual node
- Emulab is a totally artificial environment
- Planetlab is a partially natural environment

CS 239, Spring 2007

Lecture 1

So, What Do I Test Where?

- Anything requiring really controlled and reproducable testing should go on Emulab
- Anything that requires realistic Internet traffic/topology should go on Planetlab
- Most things involving security issues should go on Emulab
- Anything about observing long-term behaviors is better for Planetlab
- Anything requiring control of topologies should go on Emulab
- Anything to be opened to real users should go on Planetlab

CS 239, Spring 2007

Lecture 11

Deter

- Some experiments are risky
 - In their potential to do unintentional harm
- Worm experiments are a classic example
 - Worms try to spread as far as possible
 - How sure are you that your testbed really constrains them?
 - Even one major Internet worm incident from an escaped experiment would be a disaster

CS 239, Spring 2007

Lecture 11 Page 41

Confining Risky Experiments

- That's the point of the Deter testbed
- Builds on functionality from Emulab
- But adds extra precautions to keep bad stuff from escaping the testbed
- Also includes set of tools speficially useful for these kinds of experiments

CS 239, Spring 2007

Why Do We Need More Isolation?

- DDoS experiments have been run on Emulab
 - With no known problems
- Why not just be careful?
- Question is, how careful?
- Especially if you're running real malicious code
 - Do you really understand it as well as you think?

ne 2007

What Is Deter For?

- Security testing, especially of risky code
 - Worms
 - DDoS attacks
 - Botnets
 - Attacks on routing protocols
- Other important element is network scale
 - Meant for problems of Internet scale
 - Or at least really big networks

CS 239 Spring 2007

Lecture Page 44

Status of Deter

- · Working testbed
- · Similar model to Emulab
- · Two clusters of nodes
- At ISI and UC Berkeley
- · Connected via high speed link
- Has over 300 nodes
- http://www.isi.deterlab.net
 - http://www.isi.edu/deter gets you to a lot of information about the testbed
- Funded by NSF and HSARPA

CS 239, Spring 2007

Lecture

Security Issues for Deter

- Containment
 - Of both code and bad side effects
- Intrusion prevention
 - Bad guys might want to mess with it
- Confidentiality
 - Results of sensitive experiments shouldn't be leaked
- Isolation
 - Both during experiments
 - And from effects of previous experiments

CS 239, Spring 2007

Lecture Page 46

Administration of Deter

- Run jointly by ISI and Berkeley
- Not as open as Emulab or Planetlab
- Must submit a project proposal to use the testbed
- Administration reviews it and approves or disapproves
 - -Only approved users get access

CS 239, Spring 200

Lecture 1 Page 47

What's Been Done on Deter?

- Lots of worm testing
- DDoS defense (including DefCOM)
- Analysis of malware
- Intrusion prevention research
- Attack traceback tools
- Network security model validation

CS 239, Spring 2007

- A new testbed for networks
 - Not yet built
- Specifically to support highly innovative network research
- Using ideas of virtualization to allow easy sharing of testbed resources
- Funded primarily by NSF
- http://www.geni.net

CS 239 Spring 2007

Lecture 1 Page 49

The Idea Behind GENI

- Owes a lot to Planetlab
 - Ideas of overlay and shared infrastructure
- Collection of physical resources (links, routers, etc.) will make up the GENI substrate
- Software management framework will overlay experiments on substrate

CS 239. Spring 2007

Page 50

Key Ideas of GENI Architecture

- 1. Substrate components will be programmable
- 2. Substrate components will be virtualizable
- 3. Seamless opt-in mechanisms to allow users to access services
- 4. Modular, to allow addition of new network components in future

CS 239, Spring 2007

Lecture 1

The GENI Slice

- Similar idea to Planetlab slice
- A set of resources across the testbed devoted to single use
- Virtualized into its own network
- Unlike Planetlab slices, need better ability for slices to interact
 - -Not entirely separate in all cases

CS 239, Spring 2007

Lecture Page 52

Challenges in Building GENI

- · Security and robustness
 - Especially in times of crisis
 - Embracing unforeseen technologies
 - Networking, end system, applications
- Network management must be improved
- Need a design that conforms to economic rules and realities
 - Ultimately, it can only work if someone is eager to pay for it

CS 239, Spring 2007

Lecture 11 Page 53

Status of GENI

- First discussed in detail at workshop in 2005
- Current development guided by planning and working groups
 - Composed of well-known networking researchers
 - Larry Peterson (Princeton) is key figure
 - As he was for Planetlab
- Various GENI Design Documents (GDDs) have come out

CS 239, Spring 2007

Page 54

Some Current Elements of GENI Plans

- Many link and node technologies will be incorporated
 - Including wireless and sensor networks
 - Support of mobility very important
- Optical networking seen as huge opportunity
- · Possible to connect arbitrary networks to the edges
- Goal is to get actual useful stuff running over GENI
- To attract users and validate ideas
- Heavily instrumented
 - To allow better testing
 - But also because we've learned from the first Internet

CS 239 Spring 2007

Lecture 1

Some Other Testbeds

- Multi-antenna wireless testbed at UCLA
- Chiba City scalable cluster computing testbed at Argonne Nat'l Labs
- City Sense wireless sensor network testbed being set up by Harvard
- Open Network Laboratory for educational purposes related to networks, at Wisconsin
- Many others out there

CS 239 Spring 2007

Lecture I
 Page 56

Learning More About Testbeds

- Tridentcom is a relatively new conference devoted to testbeds
- Publishes papers about new testbeds
- And about technology that supports testbeds

CS 239, Spring 2007

Lecture 1

Setting Up Your Own Testbed

- What if you want to set up your own testbed?
- Why would you do it?
- How would you go about it?
- What issues should you be aware of?

CS 239, Spring 2007

Lecture

Why Build Your Own?

- Shared testbeds have limited resources
 - Particularly close to due dates of major conferences
- If secrecy is important . . .
 - -Particularly the case for companies
- Complete control and full customizability

CS 239, Spring 2007

Lecture 11 Page 59

How To Build Your Own Testbed

- Depends on exactly what kind of testbed you want
- Wireless mobile testbeds are a lot different than Internet protocol testbeds
- Assume a simple case:
 - Testbed to support typical
 OS/networks/distributed systems research

CS 239, Spring 2007

First Steps

- · Space and money
 - Where will you put it?
 - How much can you afford to spend?
- Will probably be around for a long time
- If it's not tiny, it will take up significant space
- Options dwindle as dollars available become less

CS 239, Spring 2007

Lecture 1

Space Issues

- · Rack-mounted or desktop machines
- You often get more for your money with desktop machines
- But rack-mounted machines are much more compact
- Remember to consider issues of heat dissipation
 - If you are talking about more than a few machines
- Probably need a space where you can somewhat control access

CS 239 Spring 2007

Page 62

Hardware Issues

- · Generally want homogeneous hardware
 - Buy a bunch of identical machines
 - Eases administration and testing
- · Probably important to consider size and power
 - Especially if you're buying a lot of them
- If you have sufficient expertise, might consider buying components
 - And assembling them yourself
 - Fewer dollars spent on hardware
 - But does the people time cost use up all those dollars?

CS 239, Spring 2007

Lecture I

What Goes in the Boxes?

- Usually want machines that are light on peripherals
 - Don't buy bunches of monitors and keyboards
 - Buy one or two of each, and a switch
 - Consider tradeoff between machine power and cost
 - Testbeds are built to last, so buy as close to topof-the-line in performance as possible
- Consider devoting some hardware to mass data storage
- · Consider issues of backups
 - If you really need a testbed, you'll generate a lot of data

CS 239, Spring 2007

Lecture 1

Networks for Testbeds

- · Generally want it to be fairly isolated
- · But might be useful to allow remote access
 - At least from within your facility
- Again, build for the future
 - Go with best bandwidth possible
- · Switched solutions for testbed are generally best
 - Consider issues of degree of control of network your research requires
- Do you need real routers?

CS 220 Spring 2007

ecture 11 Page 65

Wireless Testbeds

- · Considerably harder
- If you want any control, need a clean environment
 - Not a lot of other wireless networks around
 - If not clean, you'll learn about interference
 - But not about full range of possible network conditions
 - Clean environments generally mean isolated areas
 - Hard to find in CS departments or typical modern companies

CS 239, Spring 2007

Software Issues

- Highly variable
- At least need a bootable system to start with
- What else you need depends on what you're doing
- Might be sensible to set up multiple partitions on disks
- Important to make it easy for experimenters to install new SW on testbed

239, Spring 2007

Lecture 1

Running Testbeds

- If you needed one, you've got a lot going on
- Think about issues of testbed sharing and scheduling
- Small group testbeds maybe need only a signup sheet
- Larger systems with more users might need scheduling and reservation software
- If it's informal, users need to be careful not to stomp on other people's experiments

CS 239 Spring 2007

Page 68

Testbeds and Aging

- · Hardware gets old quickly
 - Testbed machines will start to die
 - And what you bought will no longer be available
- Might need to rejuvenate your testbed
 - Probably best to consider that at design time
- Generally a good idea to replace machines in bulk
 - Rather than piecemeal

CS 239, Spring 2007

Lecture

Testbed Administration

- If it's complex, you need someone in charge
- Also need someone to deal with all the little hardware/software problems
- An ongoing cost of running a testbed
- Consider if you really need/can afford to pay that cost

CS 239, Spring 2007

Lecture 11 Page 70

Summary

- Setting up a testbed is a fair amount of work
- It's a big expense now and an ongoing expense for its lifetime
- Will Emulab/Planetlab/other public testbeds be good enough?
- Be sure they won't before you decide to build your own

CS 239, Spring 2007