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Outline

• What is a testbed?
• Important shared testbeds
• Setting up your own testbed
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What is a Testbed?

• A facility specifically devoted to 
running experiments

• Almost always with dedicated 
hardware

• Often with special software support
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Components of a Testbed

• Computers
• A network

– In most cases
– Usually wired
– Unless a specifically wireless testbed

• Supporting software
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Purpose of a Testbed

• To set aside dedicated machines for testing
• Over a long period of time
• Often set up for a particular company or lab
• Recently, shared testbeds have become 

popular
– Allows much larger testbeds
– By sharing costs
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Desirable Properties of a Testbed

• Sufficiently large
• Sufficiently modern hardware
• Flexibility in its use and control
• Ease of use in experiments
• Evolvable
• Sharable, at least at some level
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Important Testbeds

• Emulab
• Planetlab
• Deter
• GENI
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Emulab

• Large testbed located at University of Utah
• Funded initially by NSF and DARPA
• Designed to support experiments by 

researchers worldwide
• Probably the first really successful Internet-

wide testbed
• http://www.emulab.net
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Basic Philosophy of Emulab

• Provide large pool of machines to entire 
Internet community

• Almost all testing will be done remotely
• Almost all testing must be done without 

intervention by testbed admins
• Handle the widest possible kinds of 

experiments and testing situations

Lecture 11
Page 10CS 239, Spring 2007

Basic Emulab Approach

• Emulab indeed provides large numbers of 
machines 
– Around 450 total nodes

• But also provides a rich, powerful testing 
environment

• Completely configurable remotely
• Designed for simultaneous sharing by many 

users
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Core Emulab Characteristics

• Highly configurable
– System software
– Application software
– Network topology and characteristics

• Controllable, predictable, repeatable
• Good guarantees of isolation from 

other experiments
Lecture 11
Page 12CS 239, Spring 2007

Emulab Use Policy

• Public resource open to most researchers
• Including commercial researchers
• And those in other countries
• Rules about abuse of system
• And priorities when overloaded
• But otherwise, anyone can run any 

experiment they want 
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Using Emulab

• Start an Emulab project
– Using on-line web form
– Requires some description of what 

you’ll be doing
– Can also join existing project

• Log in to Emulab
• Set up and run an experiment
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Running Emulab Experiments

• Must specify a network topology
– Using NS-2 syntax
– Includes specification of how many nodes you 

want, software used, etc.
• Use interface to start experiment
• Emulab automatically configures nodes as 

specified
• Experiment starts running

– You can poke into your nodes during run
• When done, terminate the experiment
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Simple Emulab Example

• Nodes B, C, and D are connected via a 100 
Mb LAN
• Node A connects to node B by a 30 Mb 
link

set ns [new Simulator] 
source tb_compat.tcl

set nodeA [$ns node] 
set nodeB [$ns node] 
set nodeC [$ns node] 
set nodeD [$ns node] 
set link0 [$ns duplex -link $nodeB
$nodeA 30Mb 50ms DropTail ] 
tb-set-link-loss $link0 0.01 set 
lan0 [$ns make-lan "$ nodeD $nodeC
$nodeB " 100Mb 0ms] 
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What’s Really Going On

• Important to 
understand 
difference 
between real 
node names and 
your experiment 
node names

Real names

Experiment node names
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Emulab and Operating Systems

• Emulab configures each node with the OS you 
choose
– Supported choices are FreeBSD, multiple Linux 

variants, Windows XP
– Can also run OSKit kernels on some Emulab

nodes
• Fresh instantiation of OS on each machine
• Don’t get root password, but full sudo root access
• Allowed to customize pretty much any way you 

like
• Specified in the NS-2 config file
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Emulab and Network Issues

• You can set up whatever network 
bandwidth you want
– Up to 100 Mbps

• Can specify the network delays you want
• Can specify network queueing disciplines
• Multiple routing options for the network
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Wireless in Emulab

• Some Emulab nodes have 802.11 cards
– Some also have GNU Software 

Radio hardware
• More wireless nodes are set to be 

added soon
• Also a dense array of wireless nodes

– For studying interference effects
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Emulab and Internet Experiments

• Emulab has ability to link to Planetlab
– Which is on the real Internet

• Use from within Emulab somewhat 
different than normal Planetlab use
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Other Emulab Facilities

• Small sensor network (25 Mica nodes)
• Robotic-based testbed for mobile wireless 

experiments
– Small number of robots with attached 

wireless 
– Controllable movement in a small space
– Predecessor of larger testbed of this type

• Hybrid simulation capabilities
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Other Emulabs

• The basic hardware and software has 
been adapted to build other testbeds
– Mostly much smaller

• Some are for public use, others for 
private use

• Some are for specialized purposes
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Emulab and Network Topologies

• Can specify any topology expressible in 
NS-2 language

• But where do they come from?
• Generally, network topology generation 

programs
– Emulab recommends BRITE

• We’ll discuss topology generation in more 
detail later
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Sample Uses of Emulab

• Testing RON
• D-Ward, DefCOM, and other DDoS

defenses
• Benchmarking CORBA tools
• Testing collaborative cache consistency
• Testing Internet game systems
• Active network testing
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Planetlab

• A testbed designed to test Internet services
• Using nodes deployed widely around the Internet
• And software to support safe and controlled sharing of the 

nodes
• Run primarily by Princeton, Berkeley, and Washington
• Funding seeded by NSF and DARPA
• Strong Intel participation

– Other industry involvement, as well
• http://www.planet-lab.org

– www.planetlab.org was taken
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Basic Planetlab Concept

• Deploy testbed nodes at many 
locations throughout Internet
– Standardized hardware and software

• Allow those who deploy nodes to use 
the testbed facility

• Provide virtual machines to each tester 
using a node
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Planetlab Nodes

• Hardware deploying the Planetlab software 
package

• Which support cheap virtual machines
• Otherwise, provides a typical Linux 

environment
• Pretty complete control of virtual machine
• But node-based mechanisms to ensure fair 

and safe sharing of hardware
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Planetlab Locations

Usually two machines per location
788 nodes at 382 sites (as of 5/12/07)
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Planetlab Experiments

• Usually run on many Planetlab nodes
• By one controlling researcher
• The collection of resources across all nodes 

supporting the experiment is called a Planetlab
slice
– A multimachine environment for the 

experiment
– Also an organization for cooperating 

researchers to use
• Services run in slices
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More On Slices

• Slices have computing resources associated 
with them
– Processing, memory, storage, network 

bandwidth
– On each participating node

• Networks of virtual machines
• In this sense, Planetlab is an overlay testbed
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Planetlab Virtual Machines

• Multiple slices can co-exist on the same virtual 
machine

• Uses Linux VServersto create virtual kernels
– Virtualization at system call level
– Harder to ensure real separation than true 

virtual machines, like VMWare
– But cheaper to run

• Semi-copy-on-write techniques used to limit disk 
storage required for each kernel
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Privileged Access in Planetlab

• Slice owner has root-like privileges on his 
node

• But not all root services
– E.g., not raw device control or rebooting

• Root services only applied to the virtual 
machine in his slice
– Can modify root file system, e.g.

• Separate sets of password files per slice
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Networking in Planetlab

• Basically uses variant of sockets
• Can only get get sockets bound to particular UDP 

or TCP ports
• Incoming packets delivered only to service that 

created the socket
• Outgoing packets filtered for “well-formedness”

– E.g., no IP spoofing allowed
• Internode communication uses standard Internet
• Planetlab has no special network or privileges
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Planetlab and Deployment

• Planetlab was designed to allow 
eventually deployment of real services

• By running them in a slice
• Reasonable to run experiments for a 

long time over Planetlab, today
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A Key Issue in Planetlab
• Traffic between nodes crosses the 

Internet
• No guarantees about state of that 

communications medium
• Makes reproducibility of results and 

control of experiments challenging
• But experiment experiences realities of 
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Planetlab Administration

• Overall administration handled by testbed
leaders and steering committee
– Software releases, overall policies, 

handling requests to join
• Distributed administration at each site
• Site’s Planetlab PI approves users and slice 

requests
• Less centralized than Emulab

– But also less open
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Some Sample Uses of Planetlab

• Testing DHT concepts
• Anycast and multicast projects
• Measurement of Internet behavior and 

topology
• Video streaming research
• Protocol resiliency and survivability
• Lots of P2P work
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Core Differences Between Emulab
and Planetlab

• Emulab is centralized
• Planetlab is distributed
• Emulab is highly controllable
• Planetlab has highly uncontrollable 

elements
• Emulab gives exclusive access to nodes for 

short periods
• Planetlab gives shared access to nodes for 

long periods
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More Differences

• Emulab gives total control of a node
• Planetlab gives limited control of a 

virtual node
• Emulab is a totally artificial 

environment
• Planetlab is a partially natural 

environment
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So, What Do I Test Where?
• Anything requiring really controlled and 

reproducable testing should go on Emulab
• Anything that requires realistic Internet 

traffic/topology should go on Planetlab
• Most things involving security issues should go on 

Emulab
• Anything about observing long-term behaviors is 

better for Planetlab
• Anything requiring control of topologies should 

go on Emulab
• Anything to be opened to real users should go on 

Planetlab
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Deter

• Some experiments are risky
– In their potential to do unintentional harm

• Worm experiments are a classic example
– Worms try to spread as far as possible
– How sure are you that your testbed really 

constrains them?
– Even one major Internet worm incident 

from an escaped experiment would be a 
disaster
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Confining Risky Experiments

• That’s the point of the Deter testbed
• Builds on functionality from Emulab
• But adds extra precautions to keep bad 

stuff from escaping the testbed
• Also includes set of tools speficially

useful for these kinds of experiments
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Why Do We Need More Isolation?

• DDoS experiments have been run on 
Emulab
– With no known problems

• Why not just be careful?
• Question is, how careful?
• Especially if you’re running real malicious 

code
– Do you really understand it as well as you 

think?
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What Is Deter For?

• Security testing, especially of risky code
– Worms
– DDoS attacks
– Botnets
– Attacks on routing protocols

• Other important element is network scale
– Meant for problems of Internet scale
– Or at least really big networks
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Status of Deter

• Working testbed
• Similar model to Emulab
• Two clusters of nodes

– At ISI and UC Berkeley
• Connected via high speed link
• Has over 300 nodes
• http://www.isi.deterlab.net

– http://www.isi.edu/deter gets you to a lot of 
information about the testbed

• Funded by NSF and HSARPA
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Security Issues for Deter

• Containment
– Of both code and bad side effects

• Intrusion prevention
– Bad guys might want to mess with it

• Confidentiality
– Results of sensitive experiments shouldn’t be 

leaked
• Isolation

– Both during experiments
– And from effects of previous experiments
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Administration of Deter

• Run jointly by ISI and Berkeley
• Not as open as Emulab or Planetlab
• Must submit a project proposal to use 

the testbed
• Administration reviews it and approves 

or disapproves
– Only approved users get access
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What’s Been Done on Deter?

• Lots of worm testing
• DDoS defense (including DefCOM)
• Analysis of malware
• Intrusion prevention research
• Attack traceback tools
• Network security model validation
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GENI

• A new testbed for networks
– Not yet built

• Specifically to support highly innovative 
network research

• Using ideas of virtualization to allow easy 
sharing of testbed resources

• Funded primarily by NSF
• http://www.geni.net
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The Idea Behind GENI

• Owes a lot to Planetlab
– Ideas of overlay and shared infrastructure

• Collection of physical resources (links, 
routers, etc.) will make up the GENI 
substrate

• Software management framework will 
overlay experiments on substrate
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Key Ideas of GENI Architecture

1. Substrate components will be 
programmable

2. Substrate components will be 
virtualizable

3. Seamless opt-in mechanisms to allow 
users to access services

4. Modular, to allow addition of new 
network components in future
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The GENI Slice

• Similar idea to Planetlab slice
• A set of resources across the testbed

devoted to single use
• Virtualized into its own network
• Unlike Planetlab slices, need better 

ability for slices to interact
– Not entirely separate in all cases
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Challenges in Building GENI

• Security and robustness
– Especially in times of crisis

• Embracing unforeseen technologies
– Networking, end system, applications

• Network management must be improved
• Need a design that conforms to economic rules 

and realities
– Ultimately, it can only work if someone is 

eager to pay for it
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Status of GENI

• First discussed in detail at workshop in 2005
• Current development guided by planning and 

working groups
– Composed of well-known networking 

researchers
– Larry Peterson (Princeton) is key figure

• As he was for Planetlab
• Various GENI Design Documents (GDDs) have 

come out
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Some Current Elements of GENI 
Plans

• Many link and node technologies will be incorporated
– Including wireless and sensor networks
– Support of mobility very important
– Optical networking seen as huge opportunity

• Possible to connect arbitrary networks to the edges
• Goal is to get actual useful stuff running over GENI

– To attract users and validate ideas
• Heavily instrumented

– To allow better testing
– But also because we’ve learned from the first Internet
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Some Other Testbeds

• Multi-antenna wireless testbed at UCLA
• Chiba City – scalable cluster computing 

testbed at Argonne Nat’l Labs
• City Sense – wireless sensor network testbed

being set up by Harvard
• Open Network Laboratory – for educational 

purposes related to networks, at Wisconsin
• Many others out there
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Learning More About Testbeds

• Tridentcom is a relatively new 
conference devoted to testbeds

• Publishes papers about new testbeds
• And about technology that supports 

testbeds
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Setting Up Your Own Testbed

• What if you want to set up your own 
testbed?

• Why would you do it?
• How would you go about it?
• What issues should you be aware of?
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Why Build Your Own?

• Shared testbeds have limited resources
– Particularly close to due dates of 

major conferences
• If secrecy is important . . .

– Particularly the case for companies
• Complete control and full 

customizability
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How To Build Your Own Testbed

• Depends on exactly what kind of testbed
you want

• Wireless mobile testbeds are a lot different 
than Internet protocol testbeds

• Assume a simple case:
– Testbed to support typical 

OS/networks/distributed systems research
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First Steps

• Space and money
– Where will you put it?
– How much can you afford to spend?

• Will probably be around for a long time
• If it’s not tiny, it will take up significant 

space
• Options dwindle as dollars available 

become less
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Space Issues

• Rack-mounted or desktop machines
• You often get more for your money with desktop 

machines
• But rack-mounted machines are much more 

compact
• Remember to consider issues of heat dissipation

– If you are talking about more than a few 
machines

• Probably need a space where you can somewhat 
control access
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Hardware Issues

• Generally want homogeneous hardware
– Buy a bunch of identical machines
– Eases administration and testing

• Probably important to consider size and power 
– Especially if you’ re buying a lot of them

• If you have sufficient expertise, might consider buying 
components
– And assembling them yourself
– Fewer dollars spent on hardware
– But does the people time cost use up all those dollars?
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What Goes in the Boxes?
• Usually want machines that are light on peripherals

– Don’t buy bunches of monitors and keyboards
– Buy one or two of each, and a switch 
– Consider tradeoff between machine power and 

cost
– Testbeds are built to last, so buy as close to top-

of-the-line in performance as possible
• Consider devoting some hardware to mass data 

storage
• Consider issues of backups

– If you really need a testbed, you’ll generate a lot 
of data
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Networks for Testbeds

• Generally want it to be fairly isolated
• But might be useful to allow remote access

– At least from within your facility
• Again, build for the future

– Go with best bandwidth possible
• Switched solutions for testbed are generally best

– Consider issues of degree of control of network 
your research requires

• Do you need real routers?
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Wireless Testbeds

• Considerably harder
• If you want any control, need a clean environment 

– Not a lot of other wireless networks around
– If not clean, you’ll learn about interference
– But not about full range of possible network 

conditions
– Clean environments generally mean isolated 

areas
– Hard to find in CS departments or typical 

modern companies
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Software Issues

• Highly variable
• At least need a bootable system to start with
• What else you need depends on what you’re 

doing
• Might be sensible to set up multiple 

partitions on disks
• Important to make it easy for experimenters 

to install new SW on testbed
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Running Testbeds

• If you needed one, you’ve got a lot going on
• Think about issues of testbed sharing and 

scheduling
• Small group testbeds maybe need only a 

signup sheet
• Larger systems with more users might need 

scheduling and reservation software
• If it’s informal, users need to be careful not 

to stomp on other people’s experiments
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Testbeds and Aging

• Hardware gets old quickly
– Testbed machines will start to die
– And what you bought will no longer be 

available
• Might need to rejuvenate your testbed

– Probably best to consider that at design time
• Generally a good idea to replace machines in bulk

– Rather than piecemeal
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Testbed Administration

• If it’s complex, you need someone in 
charge

• Also need someone to deal with all the 
little hardware/software problems

• An ongoing cost of running a testbed
• Consider if you really need/can afford 

to pay that cost
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Summary

• Setting up a testbed is a fair amount of work
• It’s a big expense now and an ongoing 

expense for its lifetime
• Will Emulab/Planetlab/otherpublic testbeds

be good enough?
• Be sure they won’t before you decide to 

build your own


