
1

Lecture 11
Page 1CS 239, Spring 2007

Testbeds
CS 239

Experimental Methodologies for
System Software

Peter Reiher
May 15, 2007

Lecture 11
Page 2CS 239, Spring 2007

Outline

• What is a testbed?
• Important shared testbeds
• Setting up your own testbed

Lecture 11
Page 3CS 239, Spring 2007

What is a Testbed?

• A facility specifically devoted to
running experiments

• Almost always with dedicated
hardware

• Often with special software support

Lecture 11
Page 4CS 239, Spring 2007

Components of a Testbed

• Computers
• A network

– In most cases
– Usually wired
– Unless a specifically wireless testbed

• Supporting software

Lecture 11
Page 5CS 239, Spring 2007

Purpose of a Testbed

• To set aside dedicated machines for testing
• Over a long period of time
• Often set up for a particular company or lab
• Recently, shared testbeds have become

popular
– Allows much larger testbeds
– By sharing costs

Lecture 11
Page 6CS 239, Spring 2007

Desirable Properties of a Testbed

• Sufficiently large
• Sufficiently modern hardware
• Flexibility in its use and control
• Ease of use in experiments
• Evolvable
• Sharable, at least at some level

2

Lecture 11
Page 7CS 239, Spring 2007

Important Testbeds

• Emulab
• Planetlab
• Deter
• GENI

Lecture 11
Page 8CS 239, Spring 2007

Emulab

• Large testbed located at University of Utah
• Funded initially by NSF and DARPA
• Designed to support experiments by

researchers worldwide
• Probably the first really successful Internet-

wide testbed
• http://www.emulab.net

Lecture 11
Page 9CS 239, Spring 2007

Basic Philosophy of Emulab

• Provide large pool of machines to entire
Internet community

• Almost all testing will be done remotely
• Almost all testing must be done without

intervention by testbed admins
• Handle the widest possible kinds of

experiments and testing situations

Lecture 11
Page 10CS 239, Spring 2007

Basic Emulab Approach

• Emulab indeed provides large numbers of
machines
– Around 450 total nodes

• But also provides a rich, powerful testing
environment

• Completely configurable remotely
• Designed for simultaneous sharing by many

users

Lecture 11
Page 11CS 239, Spring 2007

Core Emulab Characteristics

• Highly configurable
– System software
– Application software
– Network topology and characteristics

• Controllable, predictable, repeatable
• Good guarantees of isolation from

other experiments
Lecture 11
Page 12CS 239, Spring 2007

Emulab Use Policy

• Public resource open to most researchers
• Including commercial researchers
• And those in other countries
• Rules about abuse of system
• And priorities when overloaded
• But otherwise, anyone can run any

experiment they want

3

Lecture 11
Page 13CS 239, Spring 2007

Using Emulab

• Start an Emulab project
– Using on-line web form
– Requires some description of what

you’ll be doing
– Can also join existing project

• Log in to Emulab
• Set up and run an experiment

Lecture 11
Page 14CS 239, Spring 2007

Running Emulab Experiments

• Must specify a network topology
– Using NS-2 syntax
– Includes specification of how many nodes you

want, software used, etc.
• Use interface to start experiment
• Emulab automatically configures nodes as

specified
• Experiment starts running

– You can poke into your nodes during run
• When done, terminate the experiment

Lecture 11
Page 15CS 239, Spring 2007

Simple Emulab Example

• Nodes B, C, and D are connected via a 100
Mb LAN
• Node A connects to node B by a 30 Mb
link

set ns [new Simulator]
source tb_compat.tcl

set nodeA [$ns node]
set nodeB [$ns node]
set nodeC [$ns node]
set nodeD [$ns node]
set link0 [$ns duplex -link $nodeB
$nodeA 30Mb 50ms DropTail]
tb-set-link-loss $link0 0.01 set
lan0 [$ns make-lan "$ nodeD $nodeC
$nodeB " 100Mb 0ms]

Lecture 11
Page 16CS 239, Spring 2007

What’s Really Going On

• Important to
understand
difference
between real
node names and
your experiment
node names

Real names

Experiment node names

Lecture 11
Page 17CS 239, Spring 2007

Emulab and Operating Systems

• Emulab configures each node with the OS you
choose
– Supported choices are FreeBSD, multiple Linux

variants, Windows XP
– Can also run OSKit kernels on some Emulab

nodes
• Fresh instantiation of OS on each machine
• Don’t get root password, but full sudo root access
• Allowed to customize pretty much any way you

like
• Specified in the NS-2 config file

Lecture 11
Page 18CS 239, Spring 2007

Emulab and Network Issues

• You can set up whatever network
bandwidth you want
– Up to 100 Mbps

• Can specify the network delays you want
• Can specify network queueing disciplines
• Multiple routing options for the network

4

Lecture 11
Page 19CS 239, Spring 2007

Wireless in Emulab

• Some Emulab nodes have 802.11 cards
– Some also have GNU Software

Radio hardware
• More wireless nodes are set to be

added soon
• Also a dense array of wireless nodes

– For studying interference effects
Lecture 11
Page 20CS 239, Spring 2007

Emulab and Internet Experiments

• Emulab has ability to link to Planetlab
– Which is on the real Internet

• Use from within Emulab somewhat
different than normal Planetlab use

Lecture 11
Page 21CS 239, Spring 2007

Other Emulab Facilities

• Small sensor network (25 Mica nodes)
• Robotic-based testbed for mobile wireless

experiments
– Small number of robots with attached

wireless
– Controllable movement in a small space
– Predecessor of larger testbed of this type

• Hybrid simulation capabilities
Lecture 11
Page 22CS 239, Spring 2007

Other Emulabs

• The basic hardware and software has
been adapted to build other testbeds
– Mostly much smaller

• Some are for public use, others for
private use

• Some are for specialized purposes

Lecture 11
Page 23CS 239, Spring 2007

Emulab and Network Topologies

• Can specify any topology expressible in
NS-2 language

• But where do they come from?
• Generally, network topology generation

programs
– Emulab recommends BRITE

• We’ll discuss topology generation in more
detail later

Lecture 11
Page 24CS 239, Spring 2007

Sample Uses of Emulab

• Testing RON
• D-Ward, DefCOM, and other DDoS

defenses
• Benchmarking CORBA tools
• Testing collaborative cache consistency
• Testing Internet game systems
• Active network testing

5

Lecture 11
Page 25CS 239, Spring 2007

Planetlab

• A testbed designed to test Internet services
• Using nodes deployed widely around the Internet
• And software to support safe and controlled sharing of the

nodes
• Run primarily by Princeton, Berkeley, and Washington
• Funding seeded by NSF and DARPA
• Strong Intel participation

– Other industry involvement, as well
• http://www.planet-lab.org

– www.planetlab.org was taken

Lecture 11
Page 26CS 239, Spring 2007

Basic Planetlab Concept

• Deploy testbed nodes at many
locations throughout Internet
– Standardized hardware and software

• Allow those who deploy nodes to use
the testbed facility

• Provide virtual machines to each tester
using a node

Lecture 11
Page 27CS 239, Spring 2007

Planetlab Nodes

• Hardware deploying the Planetlab software
package

• Which support cheap virtual machines
• Otherwise, provides a typical Linux

environment
• Pretty complete control of virtual machine
• But node-based mechanisms to ensure fair

and safe sharing of hardware
Lecture 11
Page 28CS 239, Spring 2007

Planetlab Locations

Usually two machines per location
788 nodes at 382 sites (as of 5/12/07)

Lecture 11
Page 29CS 239, Spring 2007

Planetlab Experiments

• Usually run on many Planetlab nodes
• By one controlling researcher
• The collection of resources across all nodes

supporting the experiment is called a Planetlab
slice
– A multimachine environment for the

experiment
– Also an organization for cooperating

researchers to use
• Services run in slices

Lecture 11
Page 30CS 239, Spring 2007

More On Slices

• Slices have computing resources associated
with them
– Processing, memory, storage, network

bandwidth
– On each participating node

• Networks of virtual machines
• In this sense, Planetlab is an overlay testbed

6

Lecture 11
Page 31CS 239, Spring 2007

Planetlab Virtual Machines

• Multiple slices can co-exist on the same virtual
machine

• Uses Linux VServersto create virtual kernels
– Virtualization at system call level
– Harder to ensure real separation than true

virtual machines, like VMWare
– But cheaper to run

• Semi-copy-on-write techniques used to limit disk
storage required for each kernel

Lecture 11
Page 32CS 239, Spring 2007

Privileged Access in Planetlab

• Slice owner has root-like privileges on his
node

• But not all root services
– E.g., not raw device control or rebooting

• Root services only applied to the virtual
machine in his slice
– Can modify root file system, e.g.

• Separate sets of password files per slice

Lecture 11
Page 33CS 239, Spring 2007

Networking in Planetlab

• Basically uses variant of sockets
• Can only get get sockets bound to particular UDP

or TCP ports
• Incoming packets delivered only to service that

created the socket
• Outgoing packets filtered for “well-formedness”

– E.g., no IP spoofing allowed
• Internode communication uses standard Internet
• Planetlab has no special network or privileges

Lecture 11
Page 34CS 239, Spring 2007

Planetlab and Deployment

• Planetlab was designed to allow
eventually deployment of real services

• By running them in a slice
• Reasonable to run experiments for a

long time over Planetlab, today

Lecture 11
Page 35CS 239, Spring 2007

A Key Issue in Planetlab
• Traffic between nodes crosses the

Internet
• No guarantees about state of that

communications medium
• Makes reproducibility of results and

control of experiments challenging
• But experiment experiences realities of

Internet communications Lecture 11
Page 36CS 239, Spring 2007

Planetlab Administration

• Overall administration handled by testbed
leaders and steering committee
– Software releases, overall policies,

handling requests to join
• Distributed administration at each site
• Site’s Planetlab PI approves users and slice

requests
• Less centralized than Emulab

– But also less open

7

Lecture 11
Page 37CS 239, Spring 2007

Some Sample Uses of Planetlab

• Testing DHT concepts
• Anycast and multicast projects
• Measurement of Internet behavior and

topology
• Video streaming research
• Protocol resiliency and survivability
• Lots of P2P work

Lecture 11
Page 38CS 239, Spring 2007

Core Differences Between Emulab
and Planetlab

• Emulab is centralized
• Planetlab is distributed
• Emulab is highly controllable
• Planetlab has highly uncontrollable

elements
• Emulab gives exclusive access to nodes for

short periods
• Planetlab gives shared access to nodes for

long periods

Lecture 11
Page 39CS 239, Spring 2007

More Differences

• Emulab gives total control of a node
• Planetlab gives limited control of a

virtual node
• Emulab is a totally artificial

environment
• Planetlab is a partially natural

environment

Lecture 11
Page 40CS 239, Spring 2007

So, What Do I Test Where?
• Anything requiring really controlled and

reproducable testing should go on Emulab
• Anything that requires realistic Internet

traffic/topology should go on Planetlab
• Most things involving security issues should go on

Emulab
• Anything about observing long-term behaviors is

better for Planetlab
• Anything requiring control of topologies should

go on Emulab
• Anything to be opened to real users should go on

Planetlab

Lecture 11
Page 41CS 239, Spring 2007

Deter

• Some experiments are risky
– In their potential to do unintentional harm

• Worm experiments are a classic example
– Worms try to spread as far as possible
– How sure are you that your testbed really

constrains them?
– Even one major Internet worm incident

from an escaped experiment would be a
disaster

Lecture 11
Page 42CS 239, Spring 2007

Confining Risky Experiments

• That’s the point of the Deter testbed
• Builds on functionality from Emulab
• But adds extra precautions to keep bad

stuff from escaping the testbed
• Also includes set of tools speficially

useful for these kinds of experiments

8

Lecture 11
Page 43CS 239, Spring 2007

Why Do We Need More Isolation?

• DDoS experiments have been run on
Emulab
– With no known problems

• Why not just be careful?
• Question is, how careful?
• Especially if you’re running real malicious

code
– Do you really understand it as well as you

think?
Lecture 11
Page 44CS 239, Spring 2007

What Is Deter For?

• Security testing, especially of risky code
– Worms
– DDoS attacks
– Botnets
– Attacks on routing protocols

• Other important element is network scale
– Meant for problems of Internet scale
– Or at least really big networks

Lecture 11
Page 45CS 239, Spring 2007

Status of Deter

• Working testbed
• Similar model to Emulab
• Two clusters of nodes

– At ISI and UC Berkeley
• Connected via high speed link
• Has over 300 nodes
• http://www.isi.deterlab.net

– http://www.isi.edu/deter gets you to a lot of
information about the testbed

• Funded by NSF and HSARPA
Lecture 11
Page 46CS 239, Spring 2007

Security Issues for Deter

• Containment
– Of both code and bad side effects

• Intrusion prevention
– Bad guys might want to mess with it

• Confidentiality
– Results of sensitive experiments shouldn’t be

leaked
• Isolation

– Both during experiments
– And from effects of previous experiments

Lecture 11
Page 47CS 239, Spring 2007

Administration of Deter

• Run jointly by ISI and Berkeley
• Not as open as Emulab or Planetlab
• Must submit a project proposal to use

the testbed
• Administration reviews it and approves

or disapproves
– Only approved users get access

Lecture 11
Page 48CS 239, Spring 2007

What’s Been Done on Deter?

• Lots of worm testing
• DDoS defense (including DefCOM)
• Analysis of malware
• Intrusion prevention research
• Attack traceback tools
• Network security model validation

9

Lecture 11
Page 49CS 239, Spring 2007

GENI

• A new testbed for networks
– Not yet built

• Specifically to support highly innovative
network research

• Using ideas of virtualization to allow easy
sharing of testbed resources

• Funded primarily by NSF
• http://www.geni.net

Lecture 11
Page 50CS 239, Spring 2007

The Idea Behind GENI

• Owes a lot to Planetlab
– Ideas of overlay and shared infrastructure

• Collection of physical resources (links,
routers, etc.) will make up the GENI
substrate

• Software management framework will
overlay experiments on substrate

Lecture 11
Page 51CS 239, Spring 2007

Key Ideas of GENI Architecture

1. Substrate components will be
programmable

2. Substrate components will be
virtualizable

3. Seamless opt-in mechanisms to allow
users to access services

4. Modular, to allow addition of new
network components in future

Lecture 11
Page 52CS 239, Spring 2007

The GENI Slice

• Similar idea to Planetlab slice
• A set of resources across the testbed

devoted to single use
• Virtualized into its own network
• Unlike Planetlab slices, need better

ability for slices to interact
– Not entirely separate in all cases

Lecture 11
Page 53CS 239, Spring 2007

Challenges in Building GENI

• Security and robustness
– Especially in times of crisis

• Embracing unforeseen technologies
– Networking, end system, applications

• Network management must be improved
• Need a design that conforms to economic rules

and realities
– Ultimately, it can only work if someone is

eager to pay for it
Lecture 11
Page 54CS 239, Spring 2007

Status of GENI

• First discussed in detail at workshop in 2005
• Current development guided by planning and

working groups
– Composed of well-known networking

researchers
– Larry Peterson (Princeton) is key figure

• As he was for Planetlab
• Various GENI Design Documents (GDDs) have

come out

10

Lecture 11
Page 55CS 239, Spring 2007

Some Current Elements of GENI
Plans

• Many link and node technologies will be incorporated
– Including wireless and sensor networks
– Support of mobility very important
– Optical networking seen as huge opportunity

• Possible to connect arbitrary networks to the edges
• Goal is to get actual useful stuff running over GENI

– To attract users and validate ideas
• Heavily instrumented

– To allow better testing
– But also because we’ve learned from the first Internet

Lecture 11
Page 56CS 239, Spring 2007

Some Other Testbeds

• Multi-antenna wireless testbed at UCLA
• Chiba City – scalable cluster computing

testbed at Argonne Nat’l Labs
• City Sense – wireless sensor network testbed

being set up by Harvard
• Open Network Laboratory – for educational

purposes related to networks, at Wisconsin
• Many others out there

Lecture 11
Page 57CS 239, Spring 2007

Learning More About Testbeds

• Tridentcom is a relatively new
conference devoted to testbeds

• Publishes papers about new testbeds
• And about technology that supports

testbeds

Lecture 11
Page 58CS 239, Spring 2007

Setting Up Your Own Testbed

• What if you want to set up your own
testbed?

• Why would you do it?
• How would you go about it?
• What issues should you be aware of?

Lecture 11
Page 59CS 239, Spring 2007

Why Build Your Own?

• Shared testbeds have limited resources
– Particularly close to due dates of

major conferences
• If secrecy is important . . .

– Particularly the case for companies
• Complete control and full

customizability
Lecture 11
Page 60CS 239, Spring 2007

How To Build Your Own Testbed

• Depends on exactly what kind of testbed
you want

• Wireless mobile testbeds are a lot different
than Internet protocol testbeds

• Assume a simple case:
– Testbed to support typical

OS/networks/distributed systems research

11

Lecture 11
Page 61CS 239, Spring 2007

First Steps

• Space and money
– Where will you put it?
– How much can you afford to spend?

• Will probably be around for a long time
• If it’s not tiny, it will take up significant

space
• Options dwindle as dollars available

become less
Lecture 11
Page 62CS 239, Spring 2007

Space Issues

• Rack-mounted or desktop machines
• You often get more for your money with desktop

machines
• But rack-mounted machines are much more

compact
• Remember to consider issues of heat dissipation

– If you are talking about more than a few
machines

• Probably need a space where you can somewhat
control access

Lecture 11
Page 63CS 239, Spring 2007

Hardware Issues

• Generally want homogeneous hardware
– Buy a bunch of identical machines
– Eases administration and testing

• Probably important to consider size and power
– Especially if you’ re buying a lot of them

• If you have sufficient expertise, might consider buying
components
– And assembling them yourself
– Fewer dollars spent on hardware
– But does the people time cost use up all those dollars?

Lecture 11
Page 64CS 239, Spring 2007

What Goes in the Boxes?
• Usually want machines that are light on peripherals

– Don’t buy bunches of monitors and keyboards
– Buy one or two of each, and a switch
– Consider tradeoff between machine power and

cost
– Testbeds are built to last, so buy as close to top-

of-the-line in performance as possible
• Consider devoting some hardware to mass data

storage
• Consider issues of backups

– If you really need a testbed, you’ll generate a lot
of data

Lecture 11
Page 65CS 239, Spring 2007

Networks for Testbeds

• Generally want it to be fairly isolated
• But might be useful to allow remote access

– At least from within your facility
• Again, build for the future

– Go with best bandwidth possible
• Switched solutions for testbed are generally best

– Consider issues of degree of control of network
your research requires

• Do you need real routers?

Lecture 11
Page 66CS 239, Spring 2007

Wireless Testbeds

• Considerably harder
• If you want any control, need a clean environment

– Not a lot of other wireless networks around
– If not clean, you’ll learn about interference
– But not about full range of possible network

conditions
– Clean environments generally mean isolated

areas
– Hard to find in CS departments or typical

modern companies

12

Lecture 11
Page 67CS 239, Spring 2007

Software Issues

• Highly variable
• At least need a bootable system to start with
• What else you need depends on what you’re

doing
• Might be sensible to set up multiple

partitions on disks
• Important to make it easy for experimenters

to install new SW on testbed
Lecture 11
Page 68CS 239, Spring 2007

Running Testbeds

• If you needed one, you’ve got a lot going on
• Think about issues of testbed sharing and

scheduling
• Small group testbeds maybe need only a

signup sheet
• Larger systems with more users might need

scheduling and reservation software
• If it’s informal, users need to be careful not

to stomp on other people’s experiments

Lecture 11
Page 69CS 239, Spring 2007

Testbeds and Aging

• Hardware gets old quickly
– Testbed machines will start to die
– And what you bought will no longer be

available
• Might need to rejuvenate your testbed

– Probably best to consider that at design time
• Generally a good idea to replace machines in bulk

– Rather than piecemeal

Lecture 11
Page 70CS 239, Spring 2007

Testbed Administration

• If it’s complex, you need someone in
charge

• Also need someone to deal with all the
little hardware/software problems

• An ongoing cost of running a testbed
• Consider if you really need/can afford

to pay that cost

Lecture 11
Page 71CS 239, Spring 2007

Summary

• Setting up a testbed is a fair amount of work
• It’s a big expense now and an ongoing

expense for its lifetime
• Will Emulab/Planetlab/otherpublic testbeds

be good enough?
• Be sure they won’t before you decide to

build your own

