
1

Lecture 1
Page 1CS 239, Spring 2007

Introduction
CS 239

Experimental Methodologies for 
System Software

Peter Reiher
April 3, 2007

Lecture 1
Page 2CS 239, Spring 2007

Purpose of Class

• To teach graduate students working in 
systems software how to design, run, 
and interpret experiments

• To give such students some experience 
in experimentation

Lecture 1
Page 3CS 239, Spring 2007

Introduction

• Basic course information
• Grading

– Projects
– Homework

• Textbook and web page
• Office hours
• Outline of class

Lecture 1
Page 4CS 239, Spring 2007

Basic Course Information

• Pre-requisites - CS111

• Professor - Peter Reiher 

• Email address-

– reiher@cs.ucla.edu

Lecture 1
Page 5CS 239, Spring 2007

What Will This Course Teach 
You?

• Proper methods to design and perform 
experiments on system software

• Proper methods to analyze and present 
data gathered from such experiments

• Proper methods to critique experiments 
and data produced by others

Lecture 1
Page 6CS 239, Spring 2007

What Won’t This Course Teach 
You?

• Basic systems software principles
• Systems software modeling
• Queueing theory
• Simulation techniques for systems 

software
• Background in statistics



2

Lecture 1
Page 7CS 239, Spring 2007

Who Should Take This Course

Well, everyone, but especially -
• software developers
• software researchers
• software purchasers
• software evaluators

Lecture 1
Page 8CS 239, Spring 2007

Grading

• Project - 60%
• Evaluation of other students’ projects -

10%
• Homework - 30%
• Course is offered for variable units, but 

sign up for 4 units

Lecture 1
Page 9CS 239, Spring 2007

Project Information

• Design and perform evaluation of a 
real software system

• Present plans in class
• Present results in class
• Final written report 
• Evaluate others’ projects

– In a written report
Lecture 1
Page 10CS 239, Spring 2007

Suitable Subjects for Projects
• Operating systems
• OS components (file systems, I/O 

subsystems, process handling, etc.)
• Compilers
• Databases
• Real time applications
• Large application packages 
• Distributed systems
• Networks/networking systems

Lecture 1
Page 11CS 239, Spring 2007

Project Formats

• Group projects
– Size of group dependent on number 

of students in class
– Groups chosen by students

• Project topic chosen by the group
• All group members must participate in 

all group activities
Lecture 1
Page 12CS 239, Spring 2007

Written Materials for Project

• Project proposal (1-2 pages)
– Due April 26

• Project design (5-8 pages)
• Final report (15+ pages)

– Due June 14th, 5 PM



3

Lecture 1
Page 13CS 239, Spring 2007

In-Class Presentations

• Detailed presentation of project 
designs (May 3)

• Presentation of results (June 5 & 7) 
• Unless teams are large, all group 

members are expected to help present 
• Length of presentation will depend on 

number of groups (but at least 1/2 hour 
for final presentation)

Lecture 1
Page 14CS 239, Spring 2007

Grading of Projects

Several criteria will be used:
• Proper design of the experiment
• Care and thoroughness of its execution
• Completeness of analysis
• Quality of data presentation
• Insight gained from experiment

Lecture 1
Page 15CS 239, Spring 2007

Evaluation of Other Groups’
Projects

• Submitted by each student individually
• 1 page critique of each group’s proposed 

experiment
– Due May 8, 5 PM

• 1 page critique of each group’s results
– Due June 13, 5 PM 

• Graded on basis of insight into strengths and flaws 
of each project

• Email submission fine
Lecture 1
Page 16CS 239, Spring 2007

Homework

• 5 homework sets worth 6% each
• Assigned Wednesday each of 2nd-6th

weeks
• Due Wednesday of the following week

– Via email or hard copy
• Homeworks must be done individually, 

not by group

Lecture 1
Page 17CS 239, Spring 2007

Textbook

The Art of Computer Systems 
Performance Analysis
Raj Jain

• Readings assigned weekly
• Students expected to find and read 

required materials to perform projects
• First week’s assignment - Chapters 1-3

Lecture 1
Page 18CS 239, Spring 2007

Class Web Page
http://www.lasr.cs.ucla.edu/classes/239_1.spring07

• Slides from lectures posted at least two 
hours before class (in handout format)

• List of upcoming important 
dates/deadlines

• Homework assignments
• Other material relevant to the class



4

Lecture 1
Page 19CS 239, Spring 2007

Office Hours

• In BH3532F
• TT 2-3
• Instructor also available by 

appointment

Lecture 1
Page 20CS 239, Spring 2007

Class Outline
• Introduction (1 class)
• Review of probability & statistics (3 

classes)
• System measurement techniques and 

experimental design (7 classes) 
• Presentation of project designs (1 class)
• Testbeds (1 class)
• Graphical techniques (1 class)
• Analyzing example systems (2 classes)
• Critiquing performance evaluations (1 class)
• Presentation of project results (2 classes)

Lecture 1
Page 21CS 239, Spring 2007

Overview of Analysis of 
Software Systems

• Introduction
• Common mistakes made in system 

software analysis
– And how to avoid them

• Selection of techniques and metrics

Lecture 1
Page 22CS 239, Spring 2007

Introduction

• Why do we care about performance 
evaluation?

• Why is it hard?
• What tools can we use to understand 

system performance?

Lecture 1
Page 23CS 239, Spring 2007

Why Do We Care?

• Performance is almost always a key issue in 
software
– Especially in system software

• Everyone wants the best possible 
performance

• Cost of achieving performance is also key
• Reporting performance is necessary in 

many publication venues
– Academic and industry

Lecture 1
Page 24CS 239, Spring 2007

Importance of Performance in 
Research

• In almost all CS research, performance 
is a key

• A solution that doesn’t perform well 
isn’t a solution at all

• Successful research must prove its 
performance characteristics to a 
skeptical community



5

Lecture 1
Page 25CS 239, Spring 2007

State of Performance Evaluation 
in the Field

• Generally regarded as poor
• Many systems have little performance 

data presented
• Many systems are measured by 

improper criteria
• Many experiments are poorly designed
• Many results are badly or incorrectly 

presented Lecture 1
Page 26CS 239, Spring 2007

With the Result?
• You can’t always trust what you read 

in a research paper
• Authors may have accidentally or 

intentionally misled you
– Overstating performance
– Hiding problems
– Not answering the important 

questions

Lecture 1
Page 27CS 239, Spring 2007

Where Does This Problem Come 
From?

• Mostly from ignorance of proper 
methods of measuring and presenting 
performance

• Abetted by reader’s ignorance of what 
questions they should be asking

Lecture 1
Page 28CS 239, Spring 2007

But the Field Is Improving
• People are taking performance 

measurement more seriously
• Quality of published experiments is 

increasing
• So yours had better be of high quality, 

too
• And publishing is tough

– Be at the top of the heap of papers

Lecture 1
Page 29CS 239, Spring 2007

Sample Performance 
Measurement Problems

• To be used as running examples 
throughout the class

• Illustrate a wide variety of the 
problems and issues of system 
measurement

• Using real systems, real problems, and 
(some) real numbers

Lecture 1
Page 30CS 239, Spring 2007

Some Sample Systems

• DefCOM – a system for defending against 
distributed denial of service attacks

• Conquest – a file system designed to 
improve performance

• Time Warp – a parallel simulation platform 
intended to run simulations fast

• Ficus – a replicated file system to offer 
higher file availability in mobile 
environments



6

Lecture 1
Page 31CS 239, Spring 2007

DefCOM

• A defensive system to counter 
distributed denial of service (DDoS) 
attacks

• Especially attacks based on high 
volumes of garbage traffic
– Originating from many sources

Lecture 1
Page 32CS 239, Spring 2007

The DDoS Problem

Lecture 1
Page 33CS 239, Spring 2007

Why Distributed Attacks?

• Targets are often highly provisioned 
servers

• A single machine usually cannot 
overwhelm such a server

• So harness multiple machines to do so
• Also makes defenses harder

Lecture 1
Page 34CS 239, Spring 2007

How to Defend?

• A vital characteristic:
– Don’t just stop a flood
– ENSURE SERVICE TO 

LEGITIMATE CLIENTS!!!
• If you only deliver a manageable 

amount of garbage, you haven’t solved 
the problem

Lecture 1
Page 35CS 239, Spring 2007

Complicating Factors

• High availability of compromised machines
– At least tens of thousands of zombie machines 

out there
• Internet is designed to deliver traffic

– Regardless of its value
• IP spoofing allows easy hiding
• Distributed nature makes legal approaches hard
• Attacker can choose all aspects of his attack 

packets
– Can be a lot like good ones

Lecture 1
Page 36CS 239, Spring 2007

DefCOM Defense Approach

• Addresses the core problem:
– Too much traffic coming in, so get rid of 

some of it
– A common idea in DDoSdefense

• Vital to separate the sheep from the goats
• Unless you have good discrimination 

techniques, not much help



7

Lecture 1
Page 37CS 239, Spring 2007

Where Do You Filter?

Near the 
target?

Near the 
source?

In the network 
core?

In multiple 
places?

Lecture 1
Page 38CS 239, Spring 2007

Filtering Near the Target

+ Easier to detect attack
+ Sees everything
+ Obvious deployment incentive
? May be hard to prevent collateral 

damage
? May be hard to handle attack volume

Lecture 1
Page 39CS 239, Spring 2007

Filtering Near the Sources

+ Easier to prevent collateral damage
+ Easier to handle attack volume
? May be hard to detect attack
? Only works where deployed
? Deployment incentives?

Lecture 1
Page 40CS 239, Spring 2007

Filtering in the Internet

+ Spreads attack volume over many machines
+ Sees everything 

• With sufficient deployment
• Which can be quite reasonable

? May be hard to prevent collateral damage
? May be hard to detect attack
? Low per-packet processing budget
? Deployment incentive?

Lecture 1
Page 41CS 239, Spring 2007

What If All Parties Cooperated?

• Could we leverage strengths of all 
locations?

• While minimizing their weaknesses?
• That’s the DefCOM approach
• A prototype system built at U 

Delaware and UCLA

Lecture 1
Page 42CS 239, Spring 2007

DefCOM

alert 
generator

classifier

classifier

core
core

DefCOM instructs 
core nodes to 

apply rate limits

Core nodes use 
information from 

classifiers to 
prioritize traffic

Classifiers can assure 
priority for good traffic



8

Lecture 1
Page 43CS 239, Spring 2007

Performance Questions for DefCOM

• How well does DefCOM defend against 
attacks?

• Does DefCOM damage performance of 
normal traffic?

• Can all DefCOM components run fast 
enough for realistic cases?

• How much does partial deployment pattern 
matter?

Lecture 1
Page 44CS 239, Spring 2007

Conquest

• A file system meant to improve 
performance

• Key observation is that disks suck
– Always have, but sucking harder 

every year
• Vast amounts of OS effort spent in 

hiding how badly disks suck

Lecture 1
Page 45CS 239, Spring 2007

The Key Hardware Trend

1990 2000

1 KHz

1 MHz

1 GHz
CPU (50% /yr)
memory (50% /yr)

disk (15% /yr)

accesses
per
second
(log scale)

105
106

1995
(1 sec : 6 days) (1 sec : 3 months)

Lecture 1
Page 46CS 239, Spring 2007

A Solution: Use Persistent RAM

• RAM that saves its state when power goes 
off

• Speed similar to regular RAM
• Battery-backed DRAM available today
• Flash RAM also common

– But some bad characteristics
• Other forms of persistent RAM under 

development

Lecture 1
Page 47CS 239, Spring 2007

Basic Idea of Conquest

• Use a few gigabytes of persistent RAM 
• Store many files permanently in persistent 

RAM
– Also store all metadata there

• Use disk only for big files
– Mostly accessed sequentially
– Which is OK for disks

• Prototype built here at UCLA

Lecture 1
Page 48CS 239, Spring 2007

Performance Questions for Conquest

• How much faster than pure disk?
• Can it perform better than just 

persistent caching?
• What about performance of big files?



9

Lecture 1
Page 49CS 239, Spring 2007

Time Warp 

• Engine for running discrete event 
simulations in parallel

• Using “interesting” synchronization 
mechanisms

• Goal is essentially to run things faster 
– Than sequentially
– Than competing parallel methods

Lecture 1
Page 50CS 239, Spring 2007

Discrete Event Simulations

• Simulate a system by simulating individual 
events that comprise it

• Events scheduled/communicate via 
messages

• Parallelize by running multiple events 
simultaneously

• Key constraint is must get same results as if 
all events run sequentially

• Issues of proper event ordering vital

Lecture 1
Page 51CS 239, Spring 2007

Illustrating the Problem

Event(100): 
Blow up 
bridge!

Event(110): 
Cross bridge

Attempt to cross 
bridge fails
So the tank’s stuck 
on the far side

Lecture 1
Page 52CS 239, Spring 2007

Illustrating the Problem, Con’t

Event(110): 
Cross bridge

Event(100): 
Blow up 
bridge!

The tank just 
crossed a non-
existent bridge!

And it ends up on 
the wrong side of 
the river

Lecture 1
Page 53CS 239, Spring 2007

Basic Idea Behind Time Warp

• Be optimistic
• Run as many events in parallel as you can

– Which could mean you run some out of order
• Detect out -of-order events, roll them back, and 

rerun them properly
– Also rolling back all their side effects
– Like scheduling other events

• Prototype built at JPL
– Based on idea from UCLA professor

Lecture 1
Page 54CS 239, Spring 2007

Performance Questions for Time 
Warp

• Can it speed up simulations?
• How much benefit do you get from adding 

more hardware?
• Which internal optimizations are 

worthwhile?
• Can it run simulations faster than 

conservative methods?
• How do optimistic artifacts (like rollbacks) 

affect performance?



10

Lecture 1
Page 55CS 239, Spring 2007

Ficus

• A replicated file system
• Keeps multiple copies of files on different 

machines
– Including possibly disconnected portable 

machines
– Uses optimistic synchronization

• Benefits are availability and local performance
• Issues are overall performance and effects of 

conflicts 

Lecture 1
Page 56CS 239, Spring 2007

Basic Idea Behind Ficus

• Store replicas where users might need them
• Allow updates at any replica
• Propagate updates to other replicas
• Can lead to consistency problems

– Detect them
– Correct them (automatically, when 

possible)
• Prototype built at UCLA

Lecture 1
Page 57CS 239, Spring 2007

Performance Issues for Ficus

• Is it really cheaper than remote access?
• What are the performance costs of 

maintaining multiple replicas?
• What are the costs of updates?
• How often do conflicting updates occur?
• How often is stale data read from a replica 

that hasn’t gotten the latest update?


