
Answers to Homework #2, CS 239, Section 1, Spring 2007

1.
 a). (6 points) A purely probabilistic model generates the different operations
randomly with the probabilities observed in the generating data. That is,

 Operation Probability
 ------------ --------------
 Metadata 11.4%
 Small File 57.1%
 Seq. Large File 25.7%
 Non-Seq. Large File 5.7%

 b). (10 points) To build a Markov model, one first calculates the probabilities of
each operation following the others, from the generating data. First, the raw numbers of
operations and the sums of them:

 M SF SLF NLF sum
M 31500 65000 3000 500 100000
SF 68000 419000 10000 2000 499000
SLF 400 5000 208000 11600 225000
NLF 99 10000 4000 35900 49999

 873999
Total
operations

Next, the probabilities:

 M SF SLF NLF
M 0.315 0.65 0.03 0.005
SF 0.136273 0.839679 0.02004 0.004008
SLF 0.001778 0.022222 0.924444 0.051556
NLF 0.00198 0.200004 0.080002 0.718014

The model is most commonly expressed not as this kind of table, but as a diagram, as
below:

 c. (10 points) It’s not entirely clear how one would handle sequential large file
accesses without some kind of history-driven model. Even with one, there is the issue of
when one stops accessing one large file and starts accessing another. A reasonable
choice would be to assume that a metadata access after a large file access indicates an
open of a different large file, but there are other possibilities. It might be nice to know
what each kind of metadata access really is: an open, a close, an attribute lookup, etc.

That issue aside, a Markov model is likely to be a better choice because of the issue of
sequential accesses to large files. As the model shows, the vast majority of the time, the
next operation after a sequential access to a large file is another such access. Since
Conquest’s large file system is optimized for just such behavior, and presumably will
achieve high disk bandwidth and good speed when one such access is instantly followed
by a string of others, a model that blindly generates one access in four to such a file will
have a very different performance than the Markov model. Order probably matters less
for the other forms of access. Unless one is carefully modeling which bytes of which
small files and metadata are accessed, one won’t capture L2 caching effects (if any) for
small file and metadata accesses based on operation order. But given you’re using a
history-driven method for at least the large sequential file accesses, it makes sense to use
Markov methods uniformly.

2. There is not necessarily a uniquely right answer here. Answers that offer a good
argument for their choices, even if they don’t match the below answers, might receive
full or partial credit.

 A. Probably a generator is the best choice here. We might expect to see varying
behavior from user to user, and being able to tune the workload easily to test different
possibilities would be helpful. On the other hand, the entire set of users, likely enough,

M SLF

SF NLF

.315

.65

.03

.005

.84

.136

.02

.004

.002

.02

.924

.05 .002

.2

.08

.718

uses some fairly common set of tools for their most common operations, so creating a
generator to match those few tools would be reasonable. The generator should create the
kinds of operations common to the salesmen’s normal activities, which are likely to
include at least process running, file system activity, and network activity.

 B. There’s a lot to be said for a trace here. However, the rapidly growing
element would make one concerned that the trace of today’s activity might not match
tomorrow’s. If the expectation is merely more users doing the same kind of operations,
the trace might be scalable pretty easily. If not, a generator might be necessary. A
benchmark is not as good a choice, since the company already knows at least its current
load, and this is precisely the sort of thing they care about. A generic benchmark is less
likely to behave like their environment. The workload should consist of web requests,
probably organized into typical web sessions (which happens automatically with a trace,
but must be coded in for a generator).

 C. A generator is the best way to go here. There is no benchmark of this sort
(and it’s not clear there should or could be), traces might not scale for different types of
worms, and live testing is right out. The operations the generator should produce are
connection creations, either normal or modeling known or postulated worm behavior.

 D. Assuming that the issue is handling the kind of traffic experienced today, a
trace is a good solution here. Since it’s the company’s own internal traffic, a trace can
easily be gathered. Privacy issues are not likely to be a problem, but, on the other hand,
chances are that the router will be neutral to any packet contents beyond the IP header
fields, so a trace with all packet contents zeroed out after the header will probably be
sufficient.

 E. A benchmark sounds good for this one, assuming one can find a benchmark
that has characteristics similar to the type of traffic to be carried. Benchmarks allow easy
head-to-head comparisons of different system options, with lower costs than generators
usually require. The benchmark would need to be able to generate suitably sized file
transfers using TCP.

 F. Benchmarks that the community agrees are acceptable aren’t available for
phishing. Generation really isn’t suitable, since the performance question hinges on
distinguishing phishing sites from non-phishing sites. A trace is a possibility, where here
a trace would actually represent a set of web pages that are known to be legitimate and
another set known to be phishing sites. While there is something to be said for running
the system with live users as test subjects, since that would help determine the efficacy of
the color-coding in alerting users, we would not want to run normal live traffic for the
test, since we would probably be unable to determine whether visited sites really are
legitimate or phishing sites. The workload would consist of visits to a number of web
sites, some of which are phishing sites and some of which are legitimate.

 G. The workload here is disk contents. Assuming we wish to check that the
program can find viruses and determine its performance on infected files, we would need
to have some real viruses infecting files on the disk. In live testing, we’d get no
assurance of such files being present, and no control over how widely infected the disk is.
Traces are not likely to be readily available, and benchmarks don’t really exist for this.
The best solution is a generator that creates a whole disk’s contents with a controllable

amount and character of virus infection. In more detail, the workload is a file system
containing some files that should be identified as infected and other files that should not.

 H. Generally speaking, traces of emails containing viruses aren’t available. Live
workloads are very likely to eventually produce some emails that contain a virus, but it
isn’t very controllable. Benchmarks aren’t agreed upon. That leaves a generator. It
should create email messages, some of which contain viruses (perhaps in a crippled but
recognizable form, since otherwise they are dangerous) and some of which don’t.

 I. This one is tricky, since AES is used potentially for many purposes, from bulk
encryption of large quantities of data to encrypting a trickle of data across a network.
Performance for the rival algorithm could differ for the various cases. If one is
evaluating the rival for one’s own purposes, the workload should match what you are
likely to do with it. Using samples of real work of the kind you do would be sensible.
One might call that a trace or a benchmark or perhaps even a generator. If one is
interested in making wider ranging statements on the comparative performance under
many circumstances, the workload must capture all of them. A generator is better for the
latter case. On the other hand, cryptographic algorithm performance is widely studied,
and, depending on exactly what one wants to learn, one can perhaps find suitable
benchmarks.

 J. “Reasonable performance” on a desktop operating system can be hard to
quantify, since it more or less boils down to user satisfaction. There would be something
to be said for live testing here. Choose a subset of the company and switch them to Vista
as a pilot program. Both measure the observed performance and get the users’ feedback.
If this approach is not feasible, running benchmarks is probably the next best choice.
Creating a generator that matches the workload will be difficult, and gathering
sufficiently detailed traces hardly less so. The workload will consist either of the real
work of the pilot users or of whatever the benchmarks do.

3. There is not necessarily a uniquely right answer here. Answers that offer a good
argument for their choices, even if they don’t match the below answers, might receive
full or partial credit.

 A. The most important parameter is the size of the data flow we are trying to
move. We could also consider other characteristics as parameters, such as whether the
data flow is constant or varying, but size alone is probably the place to start. A histogram
is probably the best choice here. We would like to test some representative flow sizes
from the entire range of likely flows, not just those at the mean or relatively close to it. If
the multipath algorithm allows adjustments based on number of paths used, testing that as
a parameter is also worthwhile. In such a case, chances are the maximum number of
allowable or feasible paths isn’t too large, in which case one should test them all. The
choice of source and destination nodes is another possible parameter, to allow us to
investigate different path lengths and possibility of multiple paths. The question’s choices
for parameter variation don’t make much sense for this parameter, since, effectively, this
is a categorical parameter. Selecting a set of choices that exercise different parts of the
parameter space is perhaps the best way to characterize this parameter.

 B. We clearly need to vary the number of hash lookups to be performed, and the
number of hash table creations. Both can be reasonably characterized by an average and

a variation from that average. Depending on what we’re investigating, varying the
number of nodes in the DHT might also make sense. This is not, however, really a
workload parameter, though it certainly is an experimental factor to be considered in
experiment design.

 C. To test this code properly, we need to offer workloads characteristic of both
network traffic and file system traffic. The network traffic should probably have
parameters that control its direction (send or receive), the number of requests per unit
time, and the size of each request. The file system traffic should consist of typical file
operations (read, write, create, remove, access metadata), so one parameter should be the
mix of such operations, another should be the time between operations, and a third should
be size. The network traffic parameter for direction need merely be the average
percentage of the types of operation. The requests per unit time and the size can be
controlled reasonably by average and variation. For file system parameters, the mix can
be represented as an average. Very large file operations are not that uncommon and are
likely to put particular stress on a buffer system, so size might be best handled by
histogram methods. Timing can reasonably be handled by an average and deviation.
 D.
 i). The algorithm will use some set of inputs, probably based on timing, to
make its decision on spinning down the disk. One could test the battery power savings
by generating such events, using a parameter to control the timing of each type of input
(file system read/write, mouse click, key press, packet arrival, whatever). An average
and variation will capture this well enough.
 ii). Different applications are likely to have different tolerances to the disk
having to be spun up, particularly if the inputs used are beyond merely observing file
system activities. We would need a deeper understanding of the program mix and
behavior to provide a proper workload for this purpose. Probably the easiest workload
for this purpose would be to run characteristic applications themselves, rather than
generating events. The most likely parameters to vary would control the mix of
applications to be run and the characteristics of those applications (such as run time,
number of remote sites communicated with, number of files written, etc.)
 iii). One could use the workload and parameters for testing performance
effects to also test battery power savings. If one was interested in measuring both effects,
much could be learned merely by using that workload and varying its parameters.
However, being able to characterize the battery savings under extremes of conditions
might be helpful, and it could be hard to create those conditions by playing with
application control parameters. So to the extent that understanding the full range of
power implications is important, one should test that workload and the extremes of its
parameters. This workload, however, will tell one little about the user experience of
using such a machine.

4. 1). Breadth of coverage is vital here. Your article will be read by a wide variety of
people whose systems behave in many different ways. You need a workload that will
allow you to easily test situations that correspond to many different real world systems.
You might, for example, decide to characterize the most common workloads as belonging
to N categories and create a separate workload for each. Or you might try to argue that
you can generalize the workload for all environments by controlling a few important

parameters, such as number of remote hosts contacted or types of applications used.
High applicability is of more importance than accurate representation of any single
reality.
 2). You care if it works well in your system, not in someone else’s. A workload
representing an actual trace of your office’s activity would be a reasonable candidate, if it
were readily available. If it isn’t, a benchmark or generator that you believe accurately
captures the characteristics of your system is what you want. Parameters would be varied
to represent how conditions vary in your office, or to capture likely changes that might
happen in the near future, not to describe very different situations that occur elsewhere,
but not in your environment. Accurate representation of your reality trumps generality in
your workload characterization, here.

