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Abstract 
We describe "NetBouncer", an approach and set of 

technologies for providing practical and high-
performance defenses against distributed denial-of-
service (DDoS) attacks. The central innovation in the 
NetBouncer approach to filtering and mitigating DDoS 
attacks is the ability to distinguish legitimate traffic from 
illegitimate ones so as to enable the discarding of only 
illegitimate traffic. In particular, this allows a 
NetBouncer-enabled network to distinguish DDoS 
congestion from flash crowd congestion situations. This 
provides a unique advantage over other DDoS mitigation 
techniques such as those based on filtering and 
congestion control where some loss of legitimate traffic is 
inevitable. The NetBouncer approach is characterized as 
an end-point-based solution to DDoS protection. It 
provides localized protection at potential choke points or 
bottlenecks that may exist in front of hosts and servers. 
NetBouncer attempts to block traffic as close to the victim 
as possible, while upstream of the nearest bottleneck. The 
immediate manifestation of NetBouncer technology is as a 
high-speed packet processing in-line appliance based on 
network processor technology. However, the long-term 
evolution, adoption and integration of NetBouncer 
technology may be in the back-plane/fast path of 
commercial high-speed routers. 

 
 

1. Introduction 
Denial-of-service (DoS) and Distributed Denial-of-

service (DDoS) attacks have received a lot of attention 
lately in the security community and the industry at large. 
This can be attributed to the fact that the victims of these 
attacks have included well known web sites and electronic 
commerce companies. This is exacerbated by the reality 
that DDoS attacks are increasing in frequency and 
sophistication with the current attack tools now 

considered to be in the fourth generation of development 
[13]. 

In this paper, we present a practical and high-
performance approach to DDoS defenses. The approach, 
related concepts and technologies are collectively referred 
to hereafter as "NetBouncer".  The NetBouncer project is 
a two-year research effort currently under funding by 
DARPA's Fault Tolerant Networks (FTN) program and at 
the time of writing this paper, the project is about half-
way through its funding period. The NetBouncer approach 
stems from the realization that at its core, the DDoS 
problem is caused by the illegitimate use of network and 
host resources so as to cause availability problems.  As 
such, our approach to DDoS protection relies on 
distinguishing legitimate and illegitimate use and ensuring 
that resources are made available only for legitimate use.  

In its current form, NetBouncer technology consists of 
high-speed packet processing and filtering devices. To 
enable filtering of incoming packets, a NetBouncer device 
maintains a large legitimacy list of clients that have been 
proven to be legitimate. If packets are received from a 
client (source) not on the legitimacy list, a NetBouncer 
device will proceed to administer a variety of legitimacy 
tests to challenge the client to prove its legitimacy. If a 
client can pass these tests, it will be added to the 
legitimacy list and subsequent packets from the client will 
be accepted until a certain legitimacy window expires. 
Once accepted, the transmission of legitimate packets is 
controlled by a traffic management subsystem that applies 
various bandwidth allocation and rate limiting schemes to 
ensure that legitimate clients do not abuse bandwidth 
consumption and that target servers cannot be 
overwhelmed even by what appears to be legitimate 
traffic.  

We characterize the NetBouncer approach as an end-
point-based solution to DDoS protection and thus contrast 
it from network-wide approaches that rely on network-

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

mailto:tjohnson, jcroall}@nai.com


wide visibility, trace back, attack isolation and congestion 
control. The immediate manifestation of NetBouncer 
technology, as pursued in our research prototype, is in the 
form of a high-performance in-line packet blocking and 
traffic management appliance built on a network processor 
(NP).  However, the eventual evolution and adoption of 
NetBouncer technology may be in a form where it can be 
easily integrated into the backplane and fast path of 
commercial routers.  NetBouncer provides localized 
protection and should be placed upstream of potential 
choke points or bottlenecks that may exist in front of hosts 
and servers in a network. In other words, NetBouncer 
attempts to block or rate limit packets as close to the 
victim as possible while upstream of the bottleneck. Based 
on the capacities of the various links and the potential for 
choke points, we may place NetBouncer-enabled devices 
at various points in a network topology. At the lowest 
level, NetBouncer can protect an individual server or a 
subnet. However, if choke points can arise further 
upstream, NetBouncer can be used to block traffic on the 
links connecting the border (distribution) routers to other 
interior (access) routers, or in the worst case block traffic 
from an ISP before it reaches a border router. NetBouncer 
makes no attempt to characterize or analyze a DDoS 
attack, maintain historical data or to trace the origin of an 
attack across intervening ISP networks and intermediary 
devices such as routers and firewalls. Our claim here is 
that although the DDoS protection NetBouncer can offer 
is localized and with limited network-wide visibility, it is 
nevertheless adequate for most organizations and offers a 
practical, cost-effective and easy to deploy near-term 
solution.  

From a high level concept of operations standpoint, the 
working of a NetBouncer device is very simple. On 
receipt of a packet, a device has to make one of three 
decisions: (1) accept and transmit the packet; (2) discard 
the packet or (3) challenge the sender of the packet. 
However, NetBouncer has to operate in a manner that can 
meet the scalability and performance needs of high 
bandwidth, real-world commercial and military 
environments. In particular, our objective is to create a 
solution that is easy to integrate and has low technology 
insertion cost, scalable in terms of network topology 
complexity and network speeds, imposes minimal 
administrative overhead, and requires minimal 
collaboration and information exchange across 
organizational network infrastructures and Internet service 
provider (ISP) networks. 

Meeting the above needs poses several research, design 
and architecture challenges. As such, the NetBouncer 
approach and design incorporates several innovative 
elements including: 

• Novel techniques to test for the legitimacy of network 
traffic using stateless legitimacy tests and the 
subsequent enforcement of access controls on traffic. 

• Algorithms to enable efficient look-up and updates of 
very large legitimacy lists. 

• Quality-of-service (QoS) related traffic management 
schemes to provide rate limiting and bandwidth 
management for various classes of traffic based on 
client legitimacy and service priorities. 

• Hardware-assisted high-speed packet processing 
techniques and architectures using network 
processors to implement the above functions, so as to 
provide a defense against DDoS attacks that incur 
minimal performance degradation (as measured by 
packet throughputs, latencies, etc.).  

 
Our initial research resulted in a software prototype of 

NetBouncer based on the Linux operating system. This 
paper reports on our current efforts to develop a high-
speed hardware prototype using leading-edge network 
processor technology. 

The rest of this paper is organized as follows. Section 2 
gives an overview of DDoS filtering based on client 
legitimacy and section 3 discusses flexible traffic 
management and QoS mechanisms to provide rate limiting 
and bandwidth management. Section 4 gives an 
architectural overview of the NetBouncer prototype 
currently being built on top of the Intel IXP 1200 network 
processor. Section 5 concludes the paper. 

 
2. Current DDoS Defenses versus 
Legitimacy-based DDoS Filtering 

We now survey current approaches to DDoS defenses 
and then discuss the NetBouncer approach to DDoS 
mitigation. 

 
2.1. Related Work 

In response to the growing DDoS problem, we have 
seen the emergence of a variety of vendor-supplied 
solutions as well as research-oriented solutions and 
prototypes. Commercial router manufacturers suggest a 
variety of techniques to detect and mitigate DDoS attacks 
based on traffic sampling, monitoring and filtering. These 
include setting up of counters and access lists to monitor 
traffic patterns and filter unwanted packets, ingress and 
egress filtering of bogus IP addresses and manual tracing 
of incoming traffic across routers and interfaces [6, 7, 8].  

More recently we have witnessed a number of solutions 
from start up companies (or so called DDoS vendors) [2, 
3, 4]. These solutions typically import incoming traffic 
traces and statistics from routers using technology such as 
NetFlow [9] or in-line sensor devices. These traces and 
statistics are then compared to well-known DDoS attack 
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signatures and baseline traffic profiles to identify potential 
DDoS attack conditions and recommend filters and rate 
limiting parameters to routers. These products have the 
advantage that they give more DDoS-specific visibility 
into the network. However, these traffic monitoring and 
filtering approaches have the disadvantage that when 
attacks are mitigated through filters and rate limiting 
mechanisms, some proportion of the legitimate traffic may 
also be discarded (as noted in [5]).  

Other techniques for DDoS mitigation include host-
based and intermediary-based approaches. Host-based 
approaches apply better resource management techniques 
locally within hosts so that DDoS vulnerabilities do not 
arise due to resource starvation conditions. Examples 
include better connection and timeout management (such 
as for the TCP connection table) as well as slowing down 
or throttling senders through client puzzles [10] and 
congestion control mechanisms. Intermediary-based 
approaches rely on an intermediary sitting between 
attackers and target hosts. The intermediary may intercept 
and terminate suspect connection requests or provide 
stateful connection binding by negotiating connections on 
behalf of servers. An example of the latter is the TCP-
intercept feature on many CISCO devices running the IOS 
operating system [8].  

Research directions in DDoS solutions currently being 
pursued include automated tracing of attacks through 
collaboration of network devices so as to block attacks as 
close to the attacker as possible [23], collaborative 
congestion control [17] and the use of routing information 
to trace attacks [22]. However, such tracing may require 
collaboration from multiple routers, ISPs and network 
administrators. Also, a number of legal and logistical 
challenges and privacy concerns have to be overcome 
before attack information can be exchanged in a timely 
fashion. 

 
2.2. Client-legitimacy-based DDoS Defenses 

The commercial solutions surveyed above have several 
limitations. For example, approaches based on access 
filters and rate limits will inevitably discard some 
proportion of legitimate traffic along with illegitimate 
traffic as they cannot often distinguish DDoS-based floods 
from flash crowd situations where a large number of 
legitimate users may be requesting services from a server. 
Intermediary-based approaches simply move DDoS 
vulnerabilities from target hosts to intermediate hosts. 
Approaches based on network-wide congestion control, 
collaborative attack tracing etc. have long-term potential 
but in their current form do not scale and face other 
technical, legal and organizational challenges that limit 
cost-effective and easy deployment. Thus, NetBouncer is 
a direct response to provide a practical, end-point based 
and short-term DDoS solution that is easy to deploy in a 

localized manner. It can be seen as providing a 
complementary approach to other solutions.  

The key innovation of the NetBouncer approach is the 
ability to distinguish legitimate traffic from illegitimate 
traffic. If we examine this issue more closely, we come to 
the realization that determining if traffic is legitimate, in 
turn, requires us to determine if the origin of the traffic 
(the client) itself is legitimate in relation to the target of 
the traffic (the server). In general, determining legitimacy 
may require us to abstract and analyze the traffic at one or 
more levels of the protocol stack. Our approach thus relies 
on a series of legitimacy tests, with each test targeted for a 
particular type of traffic recognized at a specific protocol 
layer. Thus, the source of the traffic and the related notion 
of the client identity that is validated will depend on the 
protocol layer (e.g., network, application etc.) and the 
application or service (ftp, real video, etc.) for which a 
test is administered. Thus, it makes sense for a legitimacy 
test at the network layer to determine the validity of a host 
or router as identified by its IP address. At the transport 
layer, the legitimacy tests may be aimed at validating TCP 
connections. At the application layer, our legitimacy tests 
will attempt to determine valid application sessions and 
user processes and identifiers. Depending on the 
circumstances and the application, we may apply in 
succession, a combination of tests for various protocol 
layers and application level notions such as sessions.  

The legitimacy tests we are developing in this project 
are all governed by some common principles and design 
objectives. These include the following:   
• No changes should be required to network protocols 

or the configurations at clients and servers. 
• No administrator intervention should be required to 

perform legitimacy tests in real time. 
• The overall operation of a NetBouncer device and the 

administering of legitimacy tests have to be state-safe. 
The concept of state-safety can be informally defined 
as a property that guarantees that the amount and rate 
of the consumption of state at NetBouncer cannot be 
directly induced by the proportion and rate of 
illegitimate traffic. This prevents the implementation 
of legitimacy tests themselves from being vulnerable 
to state-consumption DDoS attacks.1 

 
These principles and objectives also allow us to design 

and deploy NetBouncer devices rapidly with minimal 
changes and disruption to existing network configurations 
and services within an infrastructure. 

 

                                                           
1 We are currently developing formal state-safety 

proofs for various legitimacy tests. However the 
presentation of this is beyond the scope of this paper. 
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2.3. Categories and Examples of Legitimacy 
Tests 

Our ongoing research has led us to believe that there 
exist at least three categories of legitimacy tests. 
Specifically, these include packet-based tests, flow-based 
tests and service-based tests. In order to understand the 
specific and sometimes subtle differences between these, 
let us first define the notion of legitimacy tests in more 
detail. In particular, we model the elements common to all 
legitimacy tests.  

 
Definition. A legitimacy test t is a tuple <assertion, 

legit-id, pre-scope, pre-state, post-state, post-scope> 
where: 
• assertion: the legitimacy assertion that is validated if 

the test is successfully passed. 
• legit-id: is the identifier in the assertion that is 

validated and subsequently used to process requests. 
• pre-scope: the entity (such as a packet, protocol flow, 

application session etc.) to which the test is applied. 
• pre-state: the state that is maintained and examined 

in order to validate the legitimacy assertion. A good 
example of such state information is authentication 
and integrity check information in response to 
messages returned by a client after it has been 
challenged.   

• post-state: the state that is required after legitimacy 
has been established and is maintained, examined and 
updated to process legitimate data traffic as it is 
passed through. Typically, the post-state will include 
the legit-id and other formatting,  housekeeping and 
statistical information. 

• post-scope: this refers to the entities to which the just 
validated legitimacy assertion and identifier applies. 

 
We now describe each of these categories in turn and 

give examples of tests in each category. 
 

2.3.1. Packet-based tests 
The distinguishing characteristic of a packet-based 

legitimacy test is that the pre-state and post-state that 
needs to be examined is fully self-contained in an 
individual packet. In other words, a decision as to whether 
a packet can be passed is made solely by examining the 
contents of the packet. In particular, there is no 
information from previously seen packets that needs to be 
retained and consulted. 

 
Source host address validation at the newtwork layer 

Many DDoS attacks use spoofed and bogus source IP 
addresses making it difficult to trace the source of the 
attack. Thus, one technique that can be employed to 
diminish or prevent certain types of DDoS attacks is the 

use of legitimacy tests to determine if the IP address in an 
incoming request is associated with a live host. One such 
test is based on the creative use of ICMP echo messages2.  

A NetBouncer device intercepts any incoming packet 
destined for a server. If the source of the packet is 
recognized as not being on the legitimacy list, NetBouncer 
will challenge the source of the packet by sending to this 
source an ICMP echo request. However, to avoid storing 
any state in NetBouncer, the original incoming request 
packet is encapsulated in the payload of the outgoing 
ICMP echo request. If the original sender of the request is 
a valid host, the legitimacy test host can expect to get back 
an ICMP echo reply packet.3  However, we need to 
authenticate such replies and verify their integrity. To 
enable this, the payload of the ICMP echo request also 
includes a hashed message authentication code (HMAC) 
computed using a keyed hash function and taking as input 
a packet tag, the incoming request packet, source IP 
address, payload-length, expiry-time, and a nonce. If an 
ICMP echo reply is received and the HMAC can be 
verified, the authenticity and integrity of the ICMP echo 
reply is verified and the source IP address of the extracted 
incoming request packet is added to a legitimacy list 
consisting of validated source addresses. The HMAC is an 
example of the pre-state. The detailed messages for this 
test are given in Figure 1 with "hk" standing for the 
HMAC function h using key k. 

 
Anti-smurf filtering through egress packet tagging and 
ingress filtering  

Some DDoS attacks (such as a smurf attack) spoof the 
source addresses of victims and utilize an amplification 
network to overwhelm a server with messages such as 
ICMP-echo replies. To provide a defense against such 
attacks, NetBouncer cryptographically signs and tags 
outgoing ICMP-echo requests from the trusted side of 
internal networks and accepts ICMP-echo replies from the 
untrusted side only if they contain the previously inserted 
tag. This tag is basically the pre-state. A flood of ICMP-
echo replies generated from untrusted sources in a Smurf 
attack can thus be filtered and discarded. Although we 
have discussed this test within the context of the smurf-
style attacks, this scheme of egress packet tagging 
combined with ingress filtering can be used for any 
scenario where incoming packets should be received at a 

                                                           
2 We realize that a test based on ICMP echo is not very 

reliable as many hosts, firewalls and routers are 
configured to not respond to echo requests; nevertheless 
this provides a simple illustration. 

3 Please note that the challenge packet must be smaller 
than the maximum transmission unit (MTU) for this test to 
be applicable. 
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network only in response to a previously sent outgoing 
request.  
2.3.2. Flow-based tests 

We define a "flow" as a stream of packets from a 
particular protocol connection/session (at layer 4 in the 
network stack) and thus having the same (<source-
address, source-port> <destination-address, destination-
port>) properties. In contrast to a packet-based test, the 
post-state is not contained within individual packets and 
more significantly a single post-state applies to the entire 
stream of packets that belong to a flow. 

 
Transport layer TCP connection request validation 
using stateless TCP SYN cookies 

This layer 4 test provides a defense against denial-of-
service attacks based on TCP SYN floods by providing a 
means to validate TCP connection requests for their 
legitimacy. NetBouncer basically intercepts TCP requests 
for connection establishment.. In traditional TCP 
implementations, as soon as the first TCP SYN packet is 
received, state is allocated for the connection. This 
violates state-safety.  

To elaborate, NetBouncer intercepts SYN packets and  
generates a cryptographic checksum (cookie) of private 
rotating keying material and various fields in the TCP/IP 
header. This cookie is stored in the outgoing SYN/ACK 
packet as a NetBouncer-generated intial sequence number 
(this cookie is effectively the pre-state). The SYN/ACK is  
then returned to the source address of the SYN packet. 
When the ACK (which is the response from the client to 
the SYN/ACK) arrives at the NetBouncer, if the cookie 
(pre-state) verifies, state is instantiated for the connection. 
Then the original SYN along with client supplied 
sequence number is recreated based on the information in 
the ACK packet and the stored cookie and forwarded to 
the original destination server. However, the original 
destination will then return a SYN/ACK server sequence 
number of its own, and NetBouncer will complete the 3-
way handshake. NetBouncer will also retain the offset 
between its sequence number and the server sequence 
number, allowing it to transform the sequence number on 
each packet on the TCP connection from and to the server 
through NetBouncer. This offset and related information 
form the post-state for the test. Our solution is an 
adaptation of the idea of SYN cookies proposed by  [1].  
The detailed messages for this test are shown in Figure 2. 

If the original SYN packet was spoofed and sent from a 
fraudulent IP address not used by any live host, then no 
ACK packet will be generated and the original SYN 
packet is effectively ignored. Now if the spoofed address 
is in use by another host but one that did not send the 
original client SYN packet, the host will send a reset 
(RST) packet and no connection will be established. In 
summary, this technique allows us to handle TCP 

connection requests in a stateless manner. This is clearly 
state-safe. State is reserved only when the host generating 
the request has demonstrated that it is legitimate, i.e., that 
it received the SYN/ACK and wants to complete the 
connection handshake. Our stateless approach is superior 
to stateful connection binding or knitting approaches such 
as TCP-Interrupt [8] as it escapes state-based DDoS 
vulnerabilities. Approaches such as TCP-Interrupt are an 
attempt to better manage state but are truly not state-safe. 

 
2.3.3. Application and session-oriented legitimacy tests 

In contrast to packet-based and flow-based tests, this 
third category of tests is relevant for higher level (above 
layer 4) services and applications. In particular, these tests 
understand application level abstractions and structures as 
well as session semantics. Testing for legitimacy requires 
an understanding of the structure and semantics at the 
application-level. Thus, a packet-based and flow-based 
examination of traffic at the level of IP packets and flows 
will generally not provide conclusive evidence of the 
legitimacy of application traffic. Rather, this would 
require examination of application headers. In an 
application-level test, the pre-state may be spread across 
several IP packets and applying the post state may require 
examination of application-level headers. We now 
describe some application level legitimacy tests. 

In reality, this category of tests may be thought of as 
consisting of two subcategories. The first is what we call 
structured composite services (SCS). These consist of 
services and protocols such as the real-time streaming 
protocol (RTSP). The structure of an RTSP session can be 
thought of as a composite one that consists of many 
underlying lower level protocol sessions and connections 
(including TCP, UDP and RTP etc.) However, the exact 
structure is fixed by the RFCs and standards.  

The second subcategory consists of ad-hoc composite 
services (ACS). The structure of ACS services is also a 
composite one but varies from one environment to another 
rather than being defined by a standard.  A simple 
example of an ACS service would be one where a user 
clicks on a URL at a web site and the server subsequently 
downloads one or more applets to the client machine. 
These applets may subsequently initiate additional 
network connections and services depending on the 
application logic and transaction structure. So the critical 
challenge here is to understand how legitimacy state is 
preserved and tracked through various components 
sessions and application interactions. 

We now describe some application level legitimacy 
tests, but limit our discussion to the SCS subcategory.  
The ACS subcategory is currently a topic of intense 
research and will be reported in the future. 
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Application layer Turing-style test for the presence of 
a human user 

As validation methods and countermeasures against 
DDoS attacks become more powerful, we can expect 
attacks to move up from the protocol level to the 
application level. During a DDoS attack, it is critical to 
distinguish attackers from non-threatening users. Since 
most DDoS attacks are composed of a handler guiding a 
large number of automated attack agents [13], we can use 
the non-intelligence of the digital agents to distinguish 
them from intelligent human users. The key idea is to 
interrupt an application session and challenge the client 
host with a question only a human user can answer. We 
can test for intelligence by questioning agents with some 
puzzle/question that requires some basic level of human 
intelligence to answer; for instance, “What color is the 
apple?" or "How many houses do you see in the picture?"  

Such techniques were used in many historical battles to 
expose spies. If the client answers the question correctly, 
its identity is entered into a list of good clients that are 
allowed subsequent access.  To be of any value, this test 
must be done in a manner that cannot be defeated by 
automated agents. In other words, the questions posed 
should be sufficiently random and yet the answers to these 
questions should require a level of intelligence that will 
make it difficult for an automated agent (or computer 
program) to construct.  

In our current hardware prototype of NetBouncer, we 
have completed an initial implementation of this test at the 
application level and integrated it with HTTP/HTML. In 
this implementation, a user (client) initiating an http (web) 
request from a web browser is confronted with a question 
(i.e., a puzzle).  If the user can supply the correct answer, 
he is added to the legitimacy list. 

The test works as follows. With an incoming HTTP 
request, NetBouncer intercepts the connection 
establishment TCP SYN packet from the client and 
responds with the SYN/ACK packet on behalf of the 
server. The client then responds with the TCP ACK 
packet to complete the TCP 3-way handshaking procedure 
and then follows up with an HTTP get request. 
NetBouncer then issues the challenge by posting an 
HTML form. However, the correct answer to the puzzle is 
cryptographically sealed and sent with the form. If the 
client responds correctly, as verified by comparing the 
user supplied answer with the cryptographically sealed 
and extracted answer, NetBouncer will then send an 
HTTP refresh request to the client's browser and this will 
result in the client issuing a second HTTP get request that 
NetBouncer routes directly to the server. 

The tests discussed above represent only a small 
sample taken from our initial research in developing a 
prototype of NetBouncer. However, the diversity of these 
legitimacy tests should give the reader some idea of the 

range of possibilities with respect to complexity and 
applicability at various protocol layers and for newer 
protocols and applications. The development of additional 
tests as well as algorithms to determine the right 
combination of tests for a given situation and host and the 
sequence in which such tests are to be applied, all 
represent active areas of research for this effort. Some 
discussions of these issues follow. 

 
3. Integrating Legitimacy and Quality of 
Service 

A novel concept that is key to the NetBouncer 
approach is the integration of legitimacy, security, and 
assurance-related attributes into quality-of-service (QoS) 
provisioning.  The objective is to provide QoS to different 
service classes even under DDoS conditions. NetBouncer 
factors legitimacy weights and service priorities into QoS-
based traffic management, including rate-limiting and fair 
scheduling of outgoing packets. We expect traffic 
management features to be important requirements for 
many environments that could deploy NetBouncer 
technology.  

Many ISP and enterprise environments must provide 
certain QoS guarantees to their customers. If ISPs could 
make such guarantees even when their networks are under 
DDoS attacks, they could easily use this feature to 
differentiate their services from those provided by other 
ISPs.  E-commerce environments that distinguish varying 
classes of customers may wish to provide superior service 
to certain preferred (high class) customers. For example, a 
stock brokerage may want to provide faster response times 
and better network access (especially under DDoS 
conditions) to customers who have account balances that 
exceed a certain amount. Finally, in an enterprise 
environment, one may wish to reserve more bandwidth 
and guarantee higher packet rates for certain classes of 
services (such as http, video, voice, etc).  

Our goal is to provide a rich set of underlying 
mechanisms so that NetBouncer has the flexibility to 
support a variety of QoS policies based on client 
legitimacy and service classes.  Supporting these policies 
requires an integrated approach incorporating various rate 
limiting and scheduling mechanisms.  
3.1. Legitimacy Weights and Costs 

To manage various cost and assurance tradeoffs, we 
associate with every test a weight (w) and a cost (c). The 
weight of a test is a measure of the "goodness" of a test 
while the cost is a measure of the expense that can be 
incurred when a test is administered. When we think of 
characterizing the goodness of a test, we may use one or 
more criteria such as assurance, reliability, strength or 
difficulty level etc. Thus our goal is to establish the weight  
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Client ServerNetBouncer

1. incoming request packet:

2. ICMP-ping-challenge:
[ICMP-header, hk (tag, source-IP, payload-length, 
expiry-time, nonce, request-packet)]

3. ICMP-ping-reply:
[ping-reply, hk (tag, source-IP, payload-length, 
expiry-time, nonce, request-packet)]

4. forward-request-packet:
[request-packet]

Figure 2. The ICMP echo (ping) test 

Client ServerNetBouncer

2. NetB-SYN-ACK: [Cookie]

6. NetB-ACK

1. Client-SYN [Client-Seq-No]

3. Client-ACK [Cookie]

4. NetB-SYN [Client-Seq-No]

5. Server-SYN-ACK [Server-Seq-No]

9. Client-Data [Subtract server sequence no offset]

8. Client-Data

10. Server-Data [Add server sequence no offset]
11. Server-Data

Figure 1. The TCP SYN Cookies legitimacy test 
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of a test as a function of assurance, reliability and 
strength, i.e., 

Legitimacy-weight = f (assurance, reliability, strength) 
               …  (1) 

Intuitively, a high degree of assurance (or confidence) 
in a test should be indicative of the fact that the test cannot 
be circumvented or compromised easily. This in turn 
relates to the soundness of the implementation as well as 
the security of the messages and protocol steps required to 
administer the test. The reliability of a test relates to a 
variety of qualities including the ability to get consistent 
and accurate results. The strength of a test relates to the 
rigor of the test challenges and the difficulty level and 
specificity of the answers required. The idea here is that a 
stronger test will establish legitimacy with more certainty 
by narrowing down the respondents to a test.  

 To model the cost of administering a legitimacy test, 
we consider the various factors that contribute to the 
overall overhead and expense of the test. Our initial 
investigations have identified three obvious contributors. 
These include packet processing, message transmission 
and miscellaneous computational overhead. Thus we can 
express cost as:  

 
Cost = f (packet-processing, message-transmission, 

misc-computational-overhead)                            … (2) 
 
To elaborate, packet-processing costs include the 

overhead in processing various headers and the payload 
and the overhead to queue and dequeue packets. Message 
transmission costs include the cost to transmit and receive 
messages where a message may consist of one or more 
packets. We also have to factor in additional 
computational overhead for operations such as those 
involving cryptography. 

 
3.2. Service Classes based on Legitimacy Weights 
and Service priorities 

Central to our QoS approach is the notion of service 
class. The service class determines the rate limiting and 
bandwidth allocation policies that are applied to the 
packets. The service class assigned to a packet arriving at  
NetBouncer port is determined by: (1) the legitimacy 
weight of the source that sent the packet (2) a preassigned 
service priority for the service to which the packet 
belongs. For each packet, a service-class-score is 
computed as a function of its legitimacy-weight and a 
service-priority-weight: 

 
Service-class-score = f (legitimacy-weight, service-

priority-weight)                                                     … (3) 
 
In formulating a function to compute the service-class-

score, it is important to consider the implications of 

processing packets that are destined for services that have 
a high service priority but have very low legitimacy. In 
particular, these packets should not be assigned to the 
high service priority queues. To achieve this, a service-
class-threshold is defined for each service class. A 
packet's service-class-score must meet or exceed a 
service-class-threshold for it to be assigned to the 
corresponding service class queue. An initial choice for a 
function to compute the service-class-score is: 

 
Service-class-score =  ((legitimacy-weight x service-

priority-weight) + service-priority-weight)               … (4) 
 
In general, the service-priority-weights should be 

chosen so that the service-class score intervals do not 
overlap. All packets whose service-class-score falls below 
the lowest service-class-threshold are assigned to a default 
low priority service queue. This queue will be serviced 
only when there are no other packets in the system. 

 
3.3. Two-tiered Adaptive Framework for Traffic 
Management 

NetBouncer employs a two-tiered framework that can 
support a rich variety of security-based QoS policies. 
Tiers 1 and 2 provide, inter-class and intra-class traffic 
management, respectively.  Inter-class packet scheduling 
provides QoS differentiation among different service 
classes, while intra-class scheduling ensures a fair 
allocation of resources to clients belonging to the same 
service class. 

At any given time, a NetBouncer installation may be 
required to support a variety of QoS policies and the 
traffic management policies may be modified adaptively 
based on ongoing network congestion and its impact on 
QoS. The adaptive aspect of our framework refers to a 
system implementation that constantly monitors the 
policies that need to be supported and dynamically 
provides the appropriate traffic management at each tier in 
order to support the current policies. Ideally, this 
adaptation should be done in an automated fashion with 
minimal human/operator intervention. 

 
3.3.1. Inter-Class Scheduling 

Strict priority (SP) scheduling is a simple way of 
providing service differentiation, but is not sufficient to 
provide QoS guarantees to service classes.  Under SP, the 
highest priority service class is effectively guaranteed all 
of the available bandwidth, while the remaining classes 
receive no bandwidth guarantees. To provide QoS 
guarantees to different service classes, we have adapted 
the use of dynamic rate scheduling (DRS) as reported in 
[14]. DRS allows a NetBouncer system the capability to 
support a rich variety of policies for QoS and rate 
limiting. In particular, it offers the ability to set hard rate 
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limits for various classes of service and to adjust these 
rates dynamically to take advantage of available excess 
bandwidth. 

To illustrate the basic framework for DRS, consider 
two classes of service: high (H) and low (L).  Under DRS, 
the rates for these classes are governed by: 

 
RH = MH + WH E ,    RL = ML +  WL E               … (5) 
 
where RH and RL are the effective service rates for the 

classes H and L, MH and ML are guaranteed minimum 
rates for H and L, E is the excess bandwidth available.  
The weights WH and WL determine the fractions of E that 
will be assigned to H and L, respectively. 

The essential idea is that of a minimum guaranteed rate 
for each service class. Intuitively, service classes requiring 
more bandwidth are assigned higher minimum rates. 
These minimum rates should be chosen after careful 
analysis so as to ensure that the system can guarantee 
these rates. Once the minimum rates, M, are assigned, the 
effective rates R are computed dynamically as the sum of 
M, a class weight W, and the available excess bandwidth 
E.  To ensure a hard rate limit for a service class, its 
associated class weight W can be set to zero.  The excess 
bandwidth E is computed dynamically based on traffic 
utilization and/or aggregate queue lengths in order to 
ensure that service classes with strictly positive weights, 
W, can use any available bandwidth.  Thus, DRS adapts to 
changing traffic conditions. 

 
3.3.2. Intra-class Scheduling 

Intra-class scheduling provides fair bandwidth 
allocation within a service class. Let us discuss why such a 
scheme is needed. Consider the scenario where there are 
two legitimate sources (clients) S1 and S2 that have been 
assigned to the same service class. If S1 sends 95% of the 
packets for this service class, it will clearly dominate the 
bandwidth allocated to the service class. From S2's 
perspective this is essentially a bandwidth-based denial of 
service condition. 

To address the above problem, tier 2 of the 
NetBouncer traffic management framework consists of an 
intra-class weighted fair queuing (ICWFQ) scheme for 
bandwidth management within service classes.  Weighted 
Fair Queueing (WFQ) is a packet scheduling scheme that 
approximates ideal fair scheduling among a set of 
connections by assigning timestamps to arriving packets 
[16, 21].  The timestamp values are proportional to the 
finishing times of the packets under an ideal fair 
scheduler.  Packets are then served in increasing order of 
their timestamp values. Several variants of WFQ have 
been devised that achieve a sufficient degree of fairness 
while also being computationally efficient.  The basic 

form of the timestamp computation for WFQ and its 
variants is as follows: 

TS(i,k) = max {TS(i,k-1), VT} + P(i,k)/W(i),    …  (6) 
 
where TS(i,k) and P(i,k) denote, respectively, the 

timestamp value and packet length of the kth packet 
arriving from the ith source, and W(i) is a weight value 
assigned to the ith source.  The weight W(i) is 
proportional to the bandwidth share received by the ith 
source, i.e., WFQ scheduling guarantees that the ith 
source will receive a minimum bandwidth share 
proportional to W(i).  From (6), it can be seen that a 
packet belonging to a source with a small value of W(i) 
will be assigned a larger timestamp than a packet 
associated with a smaller value of W(i), assuming all other 
variables to be the same for both packets.  Hence, the first 
packet will be served before the second. In WFQ, the 
variable VT (virtual time) represents the normalized 
finishing time of the kth packet from the ith source under 
an idealized fair scheduler.  A popular variant of WFQ 
known as Self-Clocked Fair Queueing (SCFQ) [16] sets 
the variable VT equal to the timestamp value of the packet 
that is being served at the time of the current packet 
arrival.  At the end of a busy period, VT is reset to zero.     

Our innovation here is that ICWFQ employs a fair 
queueing scheme (i.e., WFQ or one of its variants) to 
guarantee clients within a given service class a fair share 
of the bandwidth allocated to the class at tier 1, with 
respect to the client’s level of legitimacy.  The weight 
W(i) associated with the ith client is set equal to the 
client’s legitimacy weight.  Thus, client legitimacy is 
factored into the QoS provisioning within a service class.   

Implementation of ICWFQ requires a priority queue to 
be maintained for each service class.  In such a priority 
queue, the packets are ordered in increasing value of their 
associated timestamp, which can be stored as part of the 
packet descriptor.  The most recent timestamp value 
associated with a (legitimate) client must be stored in a list 
indexed by the legitimacy list.  We are currently exploring 
how ICWFQ can be supported within the IXP-1200 based 
hardware prototype of NetBouncer. 

 
4. Architecture of the NetBouncer Hardware 
Prototype 

We now discuss the architecture of the NetBouncer 
hardware prototype implemented on the Intel IXP1200 
network processor. This prototype is a network 
transparent inline device with Gigabit input and output 
ports connected by fiber cables. We start with an overview 
of our hardware platform. 

 
4.1. Overview of the Intel IXP1200 Network 
Processor 
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The IXP1200 chip and network processor development 
system consists of a StrongArm processor and six 
microengines. The Intel StrongArm Core processor, is a 
32-bit RISC processor currently available at an operating 
frequency of 200 MHz and acts as the master general-
purpose processor and supports the control plane. It would 
be responsible for performing the bulk of the signaling 
and network management functions comprising the 
control plane. The actual movement of data and packet 
processing operations is performed by six 32-bit RISC 
Microengines running at 200MHz and acting as 
specialized slave processors.  Each microengine can 
execute four parallel threads by means of four 
independent program counters, zero overhead context 
switching and hardware semaphores.  In addition, the 
Microengine contains an ALU and shifter, 4 Kbytes of 
RAM control store, 128 32-bit general-purpose registers 
and 128 32-bit transfer registers for accessing the SRAM 
and SDRAM units. The IXP1200 also contains a hash unit 
for generating 48- and 64-bit hash keys. The IXP1200 
supports two Gigabit Ethernet ports and eight fast 
Ethernet (100 Mbps) ports. For our current prototype, 
only the Gigabit ports are used. 

 
4.2. Prototype Architecture 

Figure 3 illustrates in detail the architecture of our 
current hardware prototype. Our prototype uses only the 
two Gigabit ports. The thick arrows shows the fast path in 
the architecture - the path through which legitimate 
packets are processed and transmitted. The dotted arrows 
shows the test path which is the path through which 
packets that failed legitimacy, as well as test packets 
associated with sending and verifying legitimacy tests, are 
processed and transmitted. The figure also shows the 
careful allocation of various NetBouncer packet filtering 
and legitimacy administration functions to the available 
microengines (labeled µE1 through µE6). Packets are 
received from the media access control (MAC) layer, 
processed, and transmitted. To enable this, a variety of 
queues are used.  As a packet is received from the MAC 
layer, it is stored in SRAM. However, vital information 
from the packet (such as critical header information) is 
extracted and stored in a structure called a packet 
descriptor. The packet descriptor also stores a pointer to 
the physical SRAM address where the packet is stored. 
The queues are used to pass the packet descriptors from 
one microengine to another as processing of the packet 
progresses. This is more efficient than passing the actual 
packet from one queue to another. 

Let us look at the details of how packets are processed 
on the prototype. We start with the fast path in the 
architecture. Processing starts with the "Internet-Receive" 
microengine (µE1) reading incoming packets from the 
MAC layer and depositing their packet descriptors into 

the queue labeled Q-fast-in. A second microengine labeled 
"Fast-Path-Manager" (µE2) dequeues these descriptors, 
extracts the source address and checks on the legitimacy 
list to see if the packet is coming from a legitimate source. 
If the source address is on the legitimacy list, we consider 
the packet to have passed the legitimacy test and the 
corresponding packet descriptor is queued into the queue 
labeled Q-fast-out. A third microengine labeled 
"Protected-Transmit" (µE3) consumes descriptors from 
this queue and uses the pointer in the descriptor to extract 
the packet contents and transmit them to the appropriate 
destination on the trusted side.  

Now if a packet is not on the legitimacy list, its 
descriptor is queued into the queue labeled Q-test-in and 
the packet is now processed through the test path. A 
microengine labeled "Test-Manager" (µE5) empties 
entries from this queue and issues one or more legitimacy 
tests. Each legitimacy test challenge packet is queued into 
the queue Q-test-out from where the microengine "Source-
transmit" (µE4) transmits the challenge back to the client 
source. Now our design accommodates the scenario where 
if a legitimacy test is too complicated for data plane 
processing in a microengine, the appropriate descriptor is 
forwarded to the StrongArm processor for further 
processing via the queue labeled Q-strong-arm. The 
StrongArm may do more complex processing such as 
those involving very sophisticated legitimacy tests. 
Finally, if a packet can be identified by µE1 as a response 
from a client to a previously issued challenge, its 
descriptor is put directly into the queue Q-test-in and 
thereby avoiding the Fast-Path-Manager" (µE2) 
microengine. These response packets will eventually be 
processed and validated by the Test-Manager" (µE5). 

Implementing an HMAC function on the IXP1200 
requires careful thought due to the limited instruction 
store and memory and other efficiency concerns. Common 
schemes such as MD5 and SHA1 are too complex and 
inefficient. So we have chosen to implement an alternate 
algorithm called Michael [15] to generate HMACs for the 
various legitimacy test packets. Michael is simple to 
implement and offers acceptable tradeoffs between 
performance and security strength given NetBouncer's 
design intention to change keys frequently. By default, 
Michael generates 64-bit authentication tags. NetBouncer 
performs some modest post-processing of the Michael 
output by applying the XOR operation to the two 32-bit 
halves to generate a final 32-bit result that is encapsulated 
in outgoing legitimacy test packets. 

 
4.3. Support for High-speed and Memory-
efficient IP Address Lookup 

In the NetBouncer architecture, the legitimacy list may 
contain hundreds of thousands of entries.  Since the  
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lookup function lies on the fast path of the hardware 
architecture and is performed on every incoming packet, it 
can become a major system bottleneck, reducing packet 
throughput dramatically.  Moreover, NetBouncer must be 
able to process a very high frequency of updates to the 
legitimacy table. We expect the legitimacy list to be 
updated every few seconds. In contrast, routing tables on 
routers are updated far less frequently. Another unique 
requirement is the size of the legitimacy list.  Since clients 
correspond to full source IP addresses rather than subnets 
indicated by prefixes, the size of the legitimacy list could 
be significantly larger than typical routing tables. These 
requirements pose some unique challenges. 

Various approaches to fast IP address lookup have 
been proposed in the literature [11, 19, 20, 25].  The LC-
trie structure proposed in [20] (a variation of tries [18]) 
offers very good lookup performance with minimal 
storage requirements but is not optimized to support 
dynamic updates. By combining features of hash tables 
and LC-tries, we have developed a structure called the 
hash-trie that can support efficient insertion and deletion 
to and from the legitimacy list. Further details are 
presented in [24]. 

 
5. Conclusions and Future Work 

We have presented a practical and high-performance 
approach to DDoS filtering. The key elements to the 

NetBouncer approach include the use of legitimacy tests 
to distinguish legitimate traffic, high performance through 
the use of network processors and a flexible two-tiered 
QoS-oriented traffic management scheme.  NetBouncer 
differs from other approaches to DDoS protection in that 
it focuses on distinguishing legitimate traffic from 
illegitimates ones.  This will allow NetBouncer to be 
placed in environments where even under DDoS attack 
conditions, legitimate requests from high priority clients 
to critical services can be guaranteed availability and 
quality-of-service. This is a big benefit for e-commerce 
sites since they would ideally prefer not to incur any loss 
of legitimate traffic as this translates directly to loss of 
revenue. In this context, the NetBouncer approach 
represents a clear and unique advancement over the 
current state-of-the art.  

We have built an initial hardware-based prototype of 
NetBouncer as an in-line packet filtering device. Initial 
tests of the prototype have demonstrated promising 
performance but also exposed the limitations of a low-end 
network processor such as the IXP1200 in supporting 
functions beyond simple packet forwarding. A detailed 
presentation of these initial performance results is beyond 
the scope of this paper but is reported in [24].  

Most notable is the fact that applying HMAC and 
cryptography increases the per packet overhead reducing 
throughputs and increasing latencies. The results we 

Figure 3. Architecture of the NetBouncer hardware prototype 
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obtained used an initial implementation of the Michael 
HMAC algorithm. Additional optimizations and the use of 
more powerful network processors in the future should 
allow NetBouncer technology to scale up to 10 Gbps (OC 
192) line rates and allow integration with edge and core 
and routers. For example, the anticipated release of Intel's 
second-generation network processor, the IXP2800, will 
feature 16 microengines and offer much more processing 
capacity and throughputs approaching 10Gbps.  

As for ongoing and future work, we are currently 
completing the design of our two-tiered traffic 
management scheme and expect to implement it soon. We 
are also expanding our performance analysis experiments 
to understand the efficiency of various legitimacy tests. 
We will also be investigating the invention of additional 
service and session-based legitimacy tests. To aid in this 
task, we are currently collecting data and studying the 
most popular application-level protocols and services on 
the Internet. Our future work, we plan to study the 
performance of NetBouncer on real network traffic. We 
will also investigate the issues associated with integrating 
NetBouncer technology in various network topologies. In 
particular, issues associated with network address 
translation and asymmetric and multi-path routing require 
more study. We will also study deployment architectures 
where several NetBouncer devices may be deployed in a 
network and out-of-band commands are sent to one or 
more devices to "wake them up" to provide on demand 
DDoS filtering based on knowledge of which parts of the 
network are experiencing DDoS attacks.  
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