

NetBouncer: Client-legitimacy-based High-performance DDoS Filtering

Roshan Thomas*, Brian Mark+, Tommy Johnson*, James Croall*

*Network Associates Laboratories +Dept. of Electrical and Computer Engineering
 Network Associates, Inc. George Mason University
 1145 Herndon Parkway, Suite 500 4400 University Drive
 Herndon, VA 20170 Fairfax, VA 22030
 {rthomas, tjohnson, jcroall}@nai.com bmark@gmu.edu

Abstract
We describe "NetBouncer", an approach and set of

technologies for providing practical and high-
performance defenses against distributed denial-of-
service (DDoS) attacks. The central innovation in the
NetBouncer approach to filtering and mitigating DDoS
attacks is the ability to distinguish legitimate traffic from
illegitimate ones so as to enable the discarding of only
illegitimate traffic. In particular, this allows a
NetBouncer-enabled network to distinguish DDoS
congestion from flash crowd congestion situations. This
provides a unique advantage over other DDoS mitigation
techniques such as those based on filtering and
congestion control where some loss of legitimate traffic is
inevitable. The NetBouncer approach is characterized as
an end-point-based solution to DDoS protection. It
provides localized protection at potential choke points or
bottlenecks that may exist in front of hosts and servers.
NetBouncer attempts to block traffic as close to the victim
as possible, while upstream of the nearest bottleneck. The
immediate manifestation of NetBouncer technology is as a
high-speed packet processing in-line appliance based on
network processor technology. However, the long-term
evolution, adoption and integration of NetBouncer
technology may be in the back-plane/fast path of
commercial high-speed routers.

1. Introduction
Denial-of-service (DoS) and Distributed Denial-of-

service (DDoS) attacks have received a lot of attention
lately in the security community and the industry at large.
This can be attributed to the fact that the victims of these
attacks have included well known web sites and electronic
commerce companies. This is exacerbated by the reality
that DDoS attacks are increasing in frequency and
sophistication with the current attack tools now

considered to be in the fourth generation of development
[13].

In this paper, we present a practical and high-
performance approach to DDoS defenses. The approach,
related concepts and technologies are collectively referred
to hereafter as "NetBouncer". The NetBouncer project is
a two-year research effort currently under funding by
DARPA's Fault Tolerant Networks (FTN) program and at
the time of writing this paper, the project is about half-
way through its funding period. The NetBouncer approach
stems from the realization that at its core, the DDoS
problem is caused by the illegitimate use of network and
host resources so as to cause availability problems. As
such, our approach to DDoS protection relies on
distinguishing legitimate and illegitimate use and ensuring
that resources are made available only for legitimate use.

In its current form, NetBouncer technology consists of
high-speed packet processing and filtering devices. To
enable filtering of incoming packets, a NetBouncer device
maintains a large legitimacy list of clients that have been
proven to be legitimate. If packets are received from a
client (source) not on the legitimacy list, a NetBouncer
device will proceed to administer a variety of legitimacy
tests to challenge the client to prove its legitimacy. If a
client can pass these tests, it will be added to the
legitimacy list and subsequent packets from the client will
be accepted until a certain legitimacy window expires.
Once accepted, the transmission of legitimate packets is
controlled by a traffic management subsystem that applies
various bandwidth allocation and rate limiting schemes to
ensure that legitimate clients do not abuse bandwidth
consumption and that target servers cannot be
overwhelmed even by what appears to be legitimate
traffic.

We characterize the NetBouncer approach as an end-
point-based solution to DDoS protection and thus contrast
it from network-wide approaches that rely on network-

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

mailto:tjohnson, jcroall}@nai.com

wide visibility, trace back, attack isolation and congestion
control. The immediate manifestation of NetBouncer
technology, as pursued in our research prototype, is in the
form of a high-performance in-line packet blocking and
traffic management appliance built on a network processor
(NP). However, the eventual evolution and adoption of
NetBouncer technology may be in a form where it can be
easily integrated into the backplane and fast path of
commercial routers. NetBouncer provides localized
protection and should be placed upstream of potential
choke points or bottlenecks that may exist in front of hosts
and servers in a network. In other words, NetBouncer
attempts to block or rate limit packets as close to the
victim as possible while upstream of the bottleneck. Based
on the capacities of the various links and the potential for
choke points, we may place NetBouncer-enabled devices
at various points in a network topology. At the lowest
level, NetBouncer can protect an individual server or a
subnet. However, if choke points can arise further
upstream, NetBouncer can be used to block traffic on the
links connecting the border (distribution) routers to other
interior (access) routers, or in the worst case block traffic
from an ISP before it reaches a border router. NetBouncer
makes no attempt to characterize or analyze a DDoS
attack, maintain historical data or to trace the origin of an
attack across intervening ISP networks and intermediary
devices such as routers and firewalls. Our claim here is
that although the DDoS protection NetBouncer can offer
is localized and with limited network-wide visibility, it is
nevertheless adequate for most organizations and offers a
practical, cost-effective and easy to deploy near-term
solution.

From a high level concept of operations standpoint, the
working of a NetBouncer device is very simple. On
receipt of a packet, a device has to make one of three
decisions: (1) accept and transmit the packet; (2) discard
the packet or (3) challenge the sender of the packet.
However, NetBouncer has to operate in a manner that can
meet the scalability and performance needs of high
bandwidth, real-world commercial and military
environments. In particular, our objective is to create a
solution that is easy to integrate and has low technology
insertion cost, scalable in terms of network topology
complexity and network speeds, imposes minimal
administrative overhead, and requires minimal
collaboration and information exchange across
organizational network infrastructures and Internet service
provider (ISP) networks.

Meeting the above needs poses several research, design
and architecture challenges. As such, the NetBouncer
approach and design incorporates several innovative
elements including:

• Novel techniques to test for the legitimacy of network
traffic using stateless legitimacy tests and the
subsequent enforcement of access controls on traffic.

• Algorithms to enable efficient look-up and updates of
very large legitimacy lists.

• Quality-of-service (QoS) related traffic management
schemes to provide rate limiting and bandwidth
management for various classes of traffic based on
client legitimacy and service priorities.

• Hardware-assisted high-speed packet processing
techniques and architectures using network
processors to implement the above functions, so as to
provide a defense against DDoS attacks that incur
minimal performance degradation (as measured by
packet throughputs, latencies, etc.).

Our initial research resulted in a software prototype of

NetBouncer based on the Linux operating system. This
paper reports on our current efforts to develop a high-
speed hardware prototype using leading-edge network
processor technology.

The rest of this paper is organized as follows. Section 2
gives an overview of DDoS filtering based on client
legitimacy and section 3 discusses flexible traffic
management and QoS mechanisms to provide rate limiting
and bandwidth management. Section 4 gives an
architectural overview of the NetBouncer prototype
currently being built on top of the Intel IXP 1200 network
processor. Section 5 concludes the paper.

2. Current DDoS Defenses versus
Legitimacy-based DDoS Filtering

We now survey current approaches to DDoS defenses
and then discuss the NetBouncer approach to DDoS
mitigation.

2.1. Related Work

In response to the growing DDoS problem, we have
seen the emergence of a variety of vendor-supplied
solutions as well as research-oriented solutions and
prototypes. Commercial router manufacturers suggest a
variety of techniques to detect and mitigate DDoS attacks
based on traffic sampling, monitoring and filtering. These
include setting up of counters and access lists to monitor
traffic patterns and filter unwanted packets, ingress and
egress filtering of bogus IP addresses and manual tracing
of incoming traffic across routers and interfaces [6, 7, 8].

More recently we have witnessed a number of solutions
from start up companies (or so called DDoS vendors) [2,
3, 4]. These solutions typically import incoming traffic
traces and statistics from routers using technology such as
NetFlow [9] or in-line sensor devices. These traces and
statistics are then compared to well-known DDoS attack

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

signatures and baseline traffic profiles to identify potential
DDoS attack conditions and recommend filters and rate
limiting parameters to routers. These products have the
advantage that they give more DDoS-specific visibility
into the network. However, these traffic monitoring and
filtering approaches have the disadvantage that when
attacks are mitigated through filters and rate limiting
mechanisms, some proportion of the legitimate traffic may
also be discarded (as noted in [5]).

Other techniques for DDoS mitigation include host-
based and intermediary-based approaches. Host-based
approaches apply better resource management techniques
locally within hosts so that DDoS vulnerabilities do not
arise due to resource starvation conditions. Examples
include better connection and timeout management (such
as for the TCP connection table) as well as slowing down
or throttling senders through client puzzles [10] and
congestion control mechanisms. Intermediary-based
approaches rely on an intermediary sitting between
attackers and target hosts. The intermediary may intercept
and terminate suspect connection requests or provide
stateful connection binding by negotiating connections on
behalf of servers. An example of the latter is the TCP-
intercept feature on many CISCO devices running the IOS
operating system [8].

Research directions in DDoS solutions currently being
pursued include automated tracing of attacks through
collaboration of network devices so as to block attacks as
close to the attacker as possible [23], collaborative
congestion control [17] and the use of routing information
to trace attacks [22]. However, such tracing may require
collaboration from multiple routers, ISPs and network
administrators. Also, a number of legal and logistical
challenges and privacy concerns have to be overcome
before attack information can be exchanged in a timely
fashion.

2.2. Client-legitimacy-based DDoS Defenses

The commercial solutions surveyed above have several
limitations. For example, approaches based on access
filters and rate limits will inevitably discard some
proportion of legitimate traffic along with illegitimate
traffic as they cannot often distinguish DDoS-based floods
from flash crowd situations where a large number of
legitimate users may be requesting services from a server.
Intermediary-based approaches simply move DDoS
vulnerabilities from target hosts to intermediate hosts.
Approaches based on network-wide congestion control,
collaborative attack tracing etc. have long-term potential
but in their current form do not scale and face other
technical, legal and organizational challenges that limit
cost-effective and easy deployment. Thus, NetBouncer is
a direct response to provide a practical, end-point based
and short-term DDoS solution that is easy to deploy in a

localized manner. It can be seen as providing a
complementary approach to other solutions.

The key innovation of the NetBouncer approach is the
ability to distinguish legitimate traffic from illegitimate
traffic. If we examine this issue more closely, we come to
the realization that determining if traffic is legitimate, in
turn, requires us to determine if the origin of the traffic
(the client) itself is legitimate in relation to the target of
the traffic (the server). In general, determining legitimacy
may require us to abstract and analyze the traffic at one or
more levels of the protocol stack. Our approach thus relies
on a series of legitimacy tests, with each test targeted for a
particular type of traffic recognized at a specific protocol
layer. Thus, the source of the traffic and the related notion
of the client identity that is validated will depend on the
protocol layer (e.g., network, application etc.) and the
application or service (ftp, real video, etc.) for which a
test is administered. Thus, it makes sense for a legitimacy
test at the network layer to determine the validity of a host
or router as identified by its IP address. At the transport
layer, the legitimacy tests may be aimed at validating TCP
connections. At the application layer, our legitimacy tests
will attempt to determine valid application sessions and
user processes and identifiers. Depending on the
circumstances and the application, we may apply in
succession, a combination of tests for various protocol
layers and application level notions such as sessions.

The legitimacy tests we are developing in this project
are all governed by some common principles and design
objectives. These include the following:
• No changes should be required to network protocols

or the configurations at clients and servers.
• No administrator intervention should be required to

perform legitimacy tests in real time.
• The overall operation of a NetBouncer device and the

administering of legitimacy tests have to be state-safe.
The concept of state-safety can be informally defined
as a property that guarantees that the amount and rate
of the consumption of state at NetBouncer cannot be
directly induced by the proportion and rate of
illegitimate traffic. This prevents the implementation
of legitimacy tests themselves from being vulnerable
to state-consumption DDoS attacks.1

These principles and objectives also allow us to design

and deploy NetBouncer devices rapidly with minimal
changes and disruption to existing network configurations
and services within an infrastructure.

1 We are currently developing formal state-safety

proofs for various legitimacy tests. However the
presentation of this is beyond the scope of this paper.

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

2.3. Categories and Examples of Legitimacy
Tests

Our ongoing research has led us to believe that there
exist at least three categories of legitimacy tests.
Specifically, these include packet-based tests, flow-based
tests and service-based tests. In order to understand the
specific and sometimes subtle differences between these,
let us first define the notion of legitimacy tests in more
detail. In particular, we model the elements common to all
legitimacy tests.

Definition. A legitimacy test t is a tuple <assertion,

legit-id, pre-scope, pre-state, post-state, post-scope>
where:
• assertion: the legitimacy assertion that is validated if

the test is successfully passed.
• legit-id: is the identifier in the assertion that is

validated and subsequently used to process requests.
• pre-scope: the entity (such as a packet, protocol flow,

application session etc.) to which the test is applied.
• pre-state: the state that is maintained and examined

in order to validate the legitimacy assertion. A good
example of such state information is authentication
and integrity check information in response to
messages returned by a client after it has been
challenged.

• post-state: the state that is required after legitimacy
has been established and is maintained, examined and
updated to process legitimate data traffic as it is
passed through. Typically, the post-state will include
the legit-id and other formatting, housekeeping and
statistical information.

• post-scope: this refers to the entities to which the just
validated legitimacy assertion and identifier applies.

We now describe each of these categories in turn and

give examples of tests in each category.

2.3.1. Packet-based tests
The distinguishing characteristic of a packet-based

legitimacy test is that the pre-state and post-state that
needs to be examined is fully self-contained in an
individual packet. In other words, a decision as to whether
a packet can be passed is made solely by examining the
contents of the packet. In particular, there is no
information from previously seen packets that needs to be
retained and consulted.

Source host address validation at the newtwork layer

Many DDoS attacks use spoofed and bogus source IP
addresses making it difficult to trace the source of the
attack. Thus, one technique that can be employed to
diminish or prevent certain types of DDoS attacks is the

use of legitimacy tests to determine if the IP address in an
incoming request is associated with a live host. One such
test is based on the creative use of ICMP echo messages2.

A NetBouncer device intercepts any incoming packet
destined for a server. If the source of the packet is
recognized as not being on the legitimacy list, NetBouncer
will challenge the source of the packet by sending to this
source an ICMP echo request. However, to avoid storing
any state in NetBouncer, the original incoming request
packet is encapsulated in the payload of the outgoing
ICMP echo request. If the original sender of the request is
a valid host, the legitimacy test host can expect to get back
an ICMP echo reply packet.3 However, we need to
authenticate such replies and verify their integrity. To
enable this, the payload of the ICMP echo request also
includes a hashed message authentication code (HMAC)
computed using a keyed hash function and taking as input
a packet tag, the incoming request packet, source IP
address, payload-length, expiry-time, and a nonce. If an
ICMP echo reply is received and the HMAC can be
verified, the authenticity and integrity of the ICMP echo
reply is verified and the source IP address of the extracted
incoming request packet is added to a legitimacy list
consisting of validated source addresses. The HMAC is an
example of the pre-state. The detailed messages for this
test are given in Figure 1 with "hk" standing for the
HMAC function h using key k.

Anti-smurf filtering through egress packet tagging and
ingress filtering

Some DDoS attacks (such as a smurf attack) spoof the
source addresses of victims and utilize an amplification
network to overwhelm a server with messages such as
ICMP-echo replies. To provide a defense against such
attacks, NetBouncer cryptographically signs and tags
outgoing ICMP-echo requests from the trusted side of
internal networks and accepts ICMP-echo replies from the
untrusted side only if they contain the previously inserted
tag. This tag is basically the pre-state. A flood of ICMP-
echo replies generated from untrusted sources in a Smurf
attack can thus be filtered and discarded. Although we
have discussed this test within the context of the smurf-
style attacks, this scheme of egress packet tagging
combined with ingress filtering can be used for any
scenario where incoming packets should be received at a

2 We realize that a test based on ICMP echo is not very

reliable as many hosts, firewalls and routers are
configured to not respond to echo requests; nevertheless
this provides a simple illustration.

3 Please note that the challenge packet must be smaller
than the maximum transmission unit (MTU) for this test to
be applicable.

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

network only in response to a previously sent outgoing
request.
2.3.2. Flow-based tests

We define a "flow" as a stream of packets from a
particular protocol connection/session (at layer 4 in the
network stack) and thus having the same (<source-
address, source-port> <destination-address, destination-
port>) properties. In contrast to a packet-based test, the
post-state is not contained within individual packets and
more significantly a single post-state applies to the entire
stream of packets that belong to a flow.

Transport layer TCP connection request validation
using stateless TCP SYN cookies

This layer 4 test provides a defense against denial-of-
service attacks based on TCP SYN floods by providing a
means to validate TCP connection requests for their
legitimacy. NetBouncer basically intercepts TCP requests
for connection establishment.. In traditional TCP
implementations, as soon as the first TCP SYN packet is
received, state is allocated for the connection. This
violates state-safety.

To elaborate, NetBouncer intercepts SYN packets and
generates a cryptographic checksum (cookie) of private
rotating keying material and various fields in the TCP/IP
header. This cookie is stored in the outgoing SYN/ACK
packet as a NetBouncer-generated intial sequence number
(this cookie is effectively the pre-state). The SYN/ACK is
then returned to the source address of the SYN packet.
When the ACK (which is the response from the client to
the SYN/ACK) arrives at the NetBouncer, if the cookie
(pre-state) verifies, state is instantiated for the connection.
Then the original SYN along with client supplied
sequence number is recreated based on the information in
the ACK packet and the stored cookie and forwarded to
the original destination server. However, the original
destination will then return a SYN/ACK server sequence
number of its own, and NetBouncer will complete the 3-
way handshake. NetBouncer will also retain the offset
between its sequence number and the server sequence
number, allowing it to transform the sequence number on
each packet on the TCP connection from and to the server
through NetBouncer. This offset and related information
form the post-state for the test. Our solution is an
adaptation of the idea of SYN cookies proposed by [1].
The detailed messages for this test are shown in Figure 2.

If the original SYN packet was spoofed and sent from a
fraudulent IP address not used by any live host, then no
ACK packet will be generated and the original SYN
packet is effectively ignored. Now if the spoofed address
is in use by another host but one that did not send the
original client SYN packet, the host will send a reset
(RST) packet and no connection will be established. In
summary, this technique allows us to handle TCP

connection requests in a stateless manner. This is clearly
state-safe. State is reserved only when the host generating
the request has demonstrated that it is legitimate, i.e., that
it received the SYN/ACK and wants to complete the
connection handshake. Our stateless approach is superior
to stateful connection binding or knitting approaches such
as TCP-Interrupt [8] as it escapes state-based DDoS
vulnerabilities. Approaches such as TCP-Interrupt are an
attempt to better manage state but are truly not state-safe.

2.3.3. Application and session-oriented legitimacy tests

In contrast to packet-based and flow-based tests, this
third category of tests is relevant for higher level (above
layer 4) services and applications. In particular, these tests
understand application level abstractions and structures as
well as session semantics. Testing for legitimacy requires
an understanding of the structure and semantics at the
application-level. Thus, a packet-based and flow-based
examination of traffic at the level of IP packets and flows
will generally not provide conclusive evidence of the
legitimacy of application traffic. Rather, this would
require examination of application headers. In an
application-level test, the pre-state may be spread across
several IP packets and applying the post state may require
examination of application-level headers. We now
describe some application level legitimacy tests.

In reality, this category of tests may be thought of as
consisting of two subcategories. The first is what we call
structured composite services (SCS). These consist of
services and protocols such as the real-time streaming
protocol (RTSP). The structure of an RTSP session can be
thought of as a composite one that consists of many
underlying lower level protocol sessions and connections
(including TCP, UDP and RTP etc.) However, the exact
structure is fixed by the RFCs and standards.

The second subcategory consists of ad-hoc composite
services (ACS). The structure of ACS services is also a
composite one but varies from one environment to another
rather than being defined by a standard. A simple
example of an ACS service would be one where a user
clicks on a URL at a web site and the server subsequently
downloads one or more applets to the client machine.
These applets may subsequently initiate additional
network connections and services depending on the
application logic and transaction structure. So the critical
challenge here is to understand how legitimacy state is
preserved and tracked through various components
sessions and application interactions.

We now describe some application level legitimacy
tests, but limit our discussion to the SCS subcategory.
The ACS subcategory is currently a topic of intense
research and will be reported in the future.

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

Application layer Turing-style test for the presence of
a human user

As validation methods and countermeasures against
DDoS attacks become more powerful, we can expect
attacks to move up from the protocol level to the
application level. During a DDoS attack, it is critical to
distinguish attackers from non-threatening users. Since
most DDoS attacks are composed of a handler guiding a
large number of automated attack agents [13], we can use
the non-intelligence of the digital agents to distinguish
them from intelligent human users. The key idea is to
interrupt an application session and challenge the client
host with a question only a human user can answer. We
can test for intelligence by questioning agents with some
puzzle/question that requires some basic level of human
intelligence to answer; for instance, “What color is the
apple?" or "How many houses do you see in the picture?"

Such techniques were used in many historical battles to
expose spies. If the client answers the question correctly,
its identity is entered into a list of good clients that are
allowed subsequent access. To be of any value, this test
must be done in a manner that cannot be defeated by
automated agents. In other words, the questions posed
should be sufficiently random and yet the answers to these
questions should require a level of intelligence that will
make it difficult for an automated agent (or computer
program) to construct.

In our current hardware prototype of NetBouncer, we
have completed an initial implementation of this test at the
application level and integrated it with HTTP/HTML. In
this implementation, a user (client) initiating an http (web)
request from a web browser is confronted with a question
(i.e., a puzzle). If the user can supply the correct answer,
he is added to the legitimacy list.

The test works as follows. With an incoming HTTP
request, NetBouncer intercepts the connection
establishment TCP SYN packet from the client and
responds with the SYN/ACK packet on behalf of the
server. The client then responds with the TCP ACK
packet to complete the TCP 3-way handshaking procedure
and then follows up with an HTTP get request.
NetBouncer then issues the challenge by posting an
HTML form. However, the correct answer to the puzzle is
cryptographically sealed and sent with the form. If the
client responds correctly, as verified by comparing the
user supplied answer with the cryptographically sealed
and extracted answer, NetBouncer will then send an
HTTP refresh request to the client's browser and this will
result in the client issuing a second HTTP get request that
NetBouncer routes directly to the server.

The tests discussed above represent only a small
sample taken from our initial research in developing a
prototype of NetBouncer. However, the diversity of these
legitimacy tests should give the reader some idea of the

range of possibilities with respect to complexity and
applicability at various protocol layers and for newer
protocols and applications. The development of additional
tests as well as algorithms to determine the right
combination of tests for a given situation and host and the
sequence in which such tests are to be applied, all
represent active areas of research for this effort. Some
discussions of these issues follow.

3. Integrating Legitimacy and Quality of
Service

A novel concept that is key to the NetBouncer
approach is the integration of legitimacy, security, and
assurance-related attributes into quality-of-service (QoS)
provisioning. The objective is to provide QoS to different
service classes even under DDoS conditions. NetBouncer
factors legitimacy weights and service priorities into QoS-
based traffic management, including rate-limiting and fair
scheduling of outgoing packets. We expect traffic
management features to be important requirements for
many environments that could deploy NetBouncer
technology.

Many ISP and enterprise environments must provide
certain QoS guarantees to their customers. If ISPs could
make such guarantees even when their networks are under
DDoS attacks, they could easily use this feature to
differentiate their services from those provided by other
ISPs. E-commerce environments that distinguish varying
classes of customers may wish to provide superior service
to certain preferred (high class) customers. For example, a
stock brokerage may want to provide faster response times
and better network access (especially under DDoS
conditions) to customers who have account balances that
exceed a certain amount. Finally, in an enterprise
environment, one may wish to reserve more bandwidth
and guarantee higher packet rates for certain classes of
services (such as http, video, voice, etc).

Our goal is to provide a rich set of underlying
mechanisms so that NetBouncer has the flexibility to
support a variety of QoS policies based on client
legitimacy and service classes. Supporting these policies
requires an integrated approach incorporating various rate
limiting and scheduling mechanisms.
3.1. Legitimacy Weights and Costs

To manage various cost and assurance tradeoffs, we
associate with every test a weight (w) and a cost (c). The
weight of a test is a measure of the "goodness" of a test
while the cost is a measure of the expense that can be
incurred when a test is administered. When we think of
characterizing the goodness of a test, we may use one or
more criteria such as assurance, reliability, strength or
difficulty level etc. Thus our goal is to establish the weight

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

Client ServerNetBouncer

1. incoming request packet:

2. ICMP-ping-challenge:
[ICMP-header, hk (tag, source-IP, payload-length,
expiry-time, nonce, request-packet)]

3. ICMP-ping-reply:
[ping-reply, hk (tag, source-IP, payload-length,
expiry-time, nonce, request-packet)]

4. forward-request-packet:
[request-packet]

Figure 2. The ICMP echo (ping) test

Client ServerNetBouncer

2. NetB-SYN-ACK: [Cookie]

6. NetB-ACK

1. Client-SYN [Client-Seq-No]

3. Client-ACK [Cookie]

4. NetB-SYN [Client-Seq-No]

5. Server-SYN-ACK [Server-Seq-No]

9. Client-Data [Subtract server sequence no offset]

8. Client-Data

10. Server-Data [Add server sequence no offset]
11. Server-Data

Figure 1. The TCP SYN Cookies legitimacy test

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

of a test as a function of assurance, reliability and
strength, i.e.,

Legitimacy-weight = f (assurance, reliability, strength)
 … (1)

Intuitively, a high degree of assurance (or confidence)
in a test should be indicative of the fact that the test cannot
be circumvented or compromised easily. This in turn
relates to the soundness of the implementation as well as
the security of the messages and protocol steps required to
administer the test. The reliability of a test relates to a
variety of qualities including the ability to get consistent
and accurate results. The strength of a test relates to the
rigor of the test challenges and the difficulty level and
specificity of the answers required. The idea here is that a
stronger test will establish legitimacy with more certainty
by narrowing down the respondents to a test.

 To model the cost of administering a legitimacy test,
we consider the various factors that contribute to the
overall overhead and expense of the test. Our initial
investigations have identified three obvious contributors.
These include packet processing, message transmission
and miscellaneous computational overhead. Thus we can
express cost as:

Cost = f (packet-processing, message-transmission,

misc-computational-overhead) … (2)

To elaborate, packet-processing costs include the

overhead in processing various headers and the payload
and the overhead to queue and dequeue packets. Message
transmission costs include the cost to transmit and receive
messages where a message may consist of one or more
packets. We also have to factor in additional
computational overhead for operations such as those
involving cryptography.

3.2. Service Classes based on Legitimacy Weights
and Service priorities

Central to our QoS approach is the notion of service
class. The service class determines the rate limiting and
bandwidth allocation policies that are applied to the
packets. The service class assigned to a packet arriving at
NetBouncer port is determined by: (1) the legitimacy
weight of the source that sent the packet (2) a preassigned
service priority for the service to which the packet
belongs. For each packet, a service-class-score is
computed as a function of its legitimacy-weight and a
service-priority-weight:

Service-class-score = f (legitimacy-weight, service-

priority-weight) … (3)

In formulating a function to compute the service-class-

score, it is important to consider the implications of

processing packets that are destined for services that have
a high service priority but have very low legitimacy. In
particular, these packets should not be assigned to the
high service priority queues. To achieve this, a service-
class-threshold is defined for each service class. A
packet's service-class-score must meet or exceed a
service-class-threshold for it to be assigned to the
corresponding service class queue. An initial choice for a
function to compute the service-class-score is:

Service-class-score = ((legitimacy-weight x service-

priority-weight) + service-priority-weight) … (4)

In general, the service-priority-weights should be

chosen so that the service-class score intervals do not
overlap. All packets whose service-class-score falls below
the lowest service-class-threshold are assigned to a default
low priority service queue. This queue will be serviced
only when there are no other packets in the system.

3.3. Two-tiered Adaptive Framework for Traffic
Management

NetBouncer employs a two-tiered framework that can
support a rich variety of security-based QoS policies.
Tiers 1 and 2 provide, inter-class and intra-class traffic
management, respectively. Inter-class packet scheduling
provides QoS differentiation among different service
classes, while intra-class scheduling ensures a fair
allocation of resources to clients belonging to the same
service class.

At any given time, a NetBouncer installation may be
required to support a variety of QoS policies and the
traffic management policies may be modified adaptively
based on ongoing network congestion and its impact on
QoS. The adaptive aspect of our framework refers to a
system implementation that constantly monitors the
policies that need to be supported and dynamically
provides the appropriate traffic management at each tier in
order to support the current policies. Ideally, this
adaptation should be done in an automated fashion with
minimal human/operator intervention.

3.3.1. Inter-Class Scheduling

Strict priority (SP) scheduling is a simple way of
providing service differentiation, but is not sufficient to
provide QoS guarantees to service classes. Under SP, the
highest priority service class is effectively guaranteed all
of the available bandwidth, while the remaining classes
receive no bandwidth guarantees. To provide QoS
guarantees to different service classes, we have adapted
the use of dynamic rate scheduling (DRS) as reported in
[14]. DRS allows a NetBouncer system the capability to
support a rich variety of policies for QoS and rate
limiting. In particular, it offers the ability to set hard rate

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

limits for various classes of service and to adjust these
rates dynamically to take advantage of available excess
bandwidth.

To illustrate the basic framework for DRS, consider
two classes of service: high (H) and low (L). Under DRS,
the rates for these classes are governed by:

RH = MH + WH E , RL = ML + WL E … (5)

where RH and RL are the effective service rates for the

classes H and L, MH and ML are guaranteed minimum
rates for H and L, E is the excess bandwidth available.
The weights WH and WL determine the fractions of E that
will be assigned to H and L, respectively.

The essential idea is that of a minimum guaranteed rate
for each service class. Intuitively, service classes requiring
more bandwidth are assigned higher minimum rates.
These minimum rates should be chosen after careful
analysis so as to ensure that the system can guarantee
these rates. Once the minimum rates, M, are assigned, the
effective rates R are computed dynamically as the sum of
M, a class weight W, and the available excess bandwidth
E. To ensure a hard rate limit for a service class, its
associated class weight W can be set to zero. The excess
bandwidth E is computed dynamically based on traffic
utilization and/or aggregate queue lengths in order to
ensure that service classes with strictly positive weights,
W, can use any available bandwidth. Thus, DRS adapts to
changing traffic conditions.

3.3.2. Intra-class Scheduling

Intra-class scheduling provides fair bandwidth
allocation within a service class. Let us discuss why such a
scheme is needed. Consider the scenario where there are
two legitimate sources (clients) S1 and S2 that have been
assigned to the same service class. If S1 sends 95% of the
packets for this service class, it will clearly dominate the
bandwidth allocated to the service class. From S2's
perspective this is essentially a bandwidth-based denial of
service condition.

To address the above problem, tier 2 of the
NetBouncer traffic management framework consists of an
intra-class weighted fair queuing (ICWFQ) scheme for
bandwidth management within service classes. Weighted
Fair Queueing (WFQ) is a packet scheduling scheme that
approximates ideal fair scheduling among a set of
connections by assigning timestamps to arriving packets
[16, 21]. The timestamp values are proportional to the
finishing times of the packets under an ideal fair
scheduler. Packets are then served in increasing order of
their timestamp values. Several variants of WFQ have
been devised that achieve a sufficient degree of fairness
while also being computationally efficient. The basic

form of the timestamp computation for WFQ and its
variants is as follows:

TS(i,k) = max {TS(i,k-1), VT} + P(i,k)/W(i), … (6)

where TS(i,k) and P(i,k) denote, respectively, the

timestamp value and packet length of the kth packet
arriving from the ith source, and W(i) is a weight value
assigned to the ith source. The weight W(i) is
proportional to the bandwidth share received by the ith
source, i.e., WFQ scheduling guarantees that the ith
source will receive a minimum bandwidth share
proportional to W(i). From (6), it can be seen that a
packet belonging to a source with a small value of W(i)
will be assigned a larger timestamp than a packet
associated with a smaller value of W(i), assuming all other
variables to be the same for both packets. Hence, the first
packet will be served before the second. In WFQ, the
variable VT (virtual time) represents the normalized
finishing time of the kth packet from the ith source under
an idealized fair scheduler. A popular variant of WFQ
known as Self-Clocked Fair Queueing (SCFQ) [16] sets
the variable VT equal to the timestamp value of the packet
that is being served at the time of the current packet
arrival. At the end of a busy period, VT is reset to zero.

Our innovation here is that ICWFQ employs a fair
queueing scheme (i.e., WFQ or one of its variants) to
guarantee clients within a given service class a fair share
of the bandwidth allocated to the class at tier 1, with
respect to the client’s level of legitimacy. The weight
W(i) associated with the ith client is set equal to the
client’s legitimacy weight. Thus, client legitimacy is
factored into the QoS provisioning within a service class.

Implementation of ICWFQ requires a priority queue to
be maintained for each service class. In such a priority
queue, the packets are ordered in increasing value of their
associated timestamp, which can be stored as part of the
packet descriptor. The most recent timestamp value
associated with a (legitimate) client must be stored in a list
indexed by the legitimacy list. We are currently exploring
how ICWFQ can be supported within the IXP-1200 based
hardware prototype of NetBouncer.

4. Architecture of the NetBouncer Hardware
Prototype

We now discuss the architecture of the NetBouncer
hardware prototype implemented on the Intel IXP1200
network processor. This prototype is a network
transparent inline device with Gigabit input and output
ports connected by fiber cables. We start with an overview
of our hardware platform.

4.1. Overview of the Intel IXP1200 Network
Processor

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

The IXP1200 chip and network processor development
system consists of a StrongArm processor and six
microengines. The Intel StrongArm Core processor, is a
32-bit RISC processor currently available at an operating
frequency of 200 MHz and acts as the master general-
purpose processor and supports the control plane. It would
be responsible for performing the bulk of the signaling
and network management functions comprising the
control plane. The actual movement of data and packet
processing operations is performed by six 32-bit RISC
Microengines running at 200MHz and acting as
specialized slave processors. Each microengine can
execute four parallel threads by means of four
independent program counters, zero overhead context
switching and hardware semaphores. In addition, the
Microengine contains an ALU and shifter, 4 Kbytes of
RAM control store, 128 32-bit general-purpose registers
and 128 32-bit transfer registers for accessing the SRAM
and SDRAM units. The IXP1200 also contains a hash unit
for generating 48- and 64-bit hash keys. The IXP1200
supports two Gigabit Ethernet ports and eight fast
Ethernet (100 Mbps) ports. For our current prototype,
only the Gigabit ports are used.

4.2. Prototype Architecture

Figure 3 illustrates in detail the architecture of our
current hardware prototype. Our prototype uses only the
two Gigabit ports. The thick arrows shows the fast path in
the architecture - the path through which legitimate
packets are processed and transmitted. The dotted arrows
shows the test path which is the path through which
packets that failed legitimacy, as well as test packets
associated with sending and verifying legitimacy tests, are
processed and transmitted. The figure also shows the
careful allocation of various NetBouncer packet filtering
and legitimacy administration functions to the available
microengines (labeled µE1 through µE6). Packets are
received from the media access control (MAC) layer,
processed, and transmitted. To enable this, a variety of
queues are used. As a packet is received from the MAC
layer, it is stored in SRAM. However, vital information
from the packet (such as critical header information) is
extracted and stored in a structure called a packet
descriptor. The packet descriptor also stores a pointer to
the physical SRAM address where the packet is stored.
The queues are used to pass the packet descriptors from
one microengine to another as processing of the packet
progresses. This is more efficient than passing the actual
packet from one queue to another.

Let us look at the details of how packets are processed
on the prototype. We start with the fast path in the
architecture. Processing starts with the "Internet-Receive"
microengine (µE1) reading incoming packets from the
MAC layer and depositing their packet descriptors into

the queue labeled Q-fast-in. A second microengine labeled
"Fast-Path-Manager" (µE2) dequeues these descriptors,
extracts the source address and checks on the legitimacy
list to see if the packet is coming from a legitimate source.
If the source address is on the legitimacy list, we consider
the packet to have passed the legitimacy test and the
corresponding packet descriptor is queued into the queue
labeled Q-fast-out. A third microengine labeled
"Protected-Transmit" (µE3) consumes descriptors from
this queue and uses the pointer in the descriptor to extract
the packet contents and transmit them to the appropriate
destination on the trusted side.

Now if a packet is not on the legitimacy list, its
descriptor is queued into the queue labeled Q-test-in and
the packet is now processed through the test path. A
microengine labeled "Test-Manager" (µE5) empties
entries from this queue and issues one or more legitimacy
tests. Each legitimacy test challenge packet is queued into
the queue Q-test-out from where the microengine "Source-
transmit" (µE4) transmits the challenge back to the client
source. Now our design accommodates the scenario where
if a legitimacy test is too complicated for data plane
processing in a microengine, the appropriate descriptor is
forwarded to the StrongArm processor for further
processing via the queue labeled Q-strong-arm. The
StrongArm may do more complex processing such as
those involving very sophisticated legitimacy tests.
Finally, if a packet can be identified by µE1 as a response
from a client to a previously issued challenge, its
descriptor is put directly into the queue Q-test-in and
thereby avoiding the Fast-Path-Manager" (µE2)
microengine. These response packets will eventually be
processed and validated by the Test-Manager" (µE5).

Implementing an HMAC function on the IXP1200
requires careful thought due to the limited instruction
store and memory and other efficiency concerns. Common
schemes such as MD5 and SHA1 are too complex and
inefficient. So we have chosen to implement an alternate
algorithm called Michael [15] to generate HMACs for the
various legitimacy test packets. Michael is simple to
implement and offers acceptable tradeoffs between
performance and security strength given NetBouncer's
design intention to change keys frequently. By default,
Michael generates 64-bit authentication tags. NetBouncer
performs some modest post-processing of the Michael
output by applying the XOR operation to the two 32-bit
halves to generate a final 32-bit result that is encapsulated
in outgoing legitimacy test packets.

4.3. Support for High-speed and Memory-
efficient IP Address Lookup

In the NetBouncer architecture, the legitimacy list may
contain hundreds of thousands of entries. Since the

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

lookup function lies on the fast path of the hardware
architecture and is performed on every incoming packet, it
can become a major system bottleneck, reducing packet
throughput dramatically. Moreover, NetBouncer must be
able to process a very high frequency of updates to the
legitimacy table. We expect the legitimacy list to be
updated every few seconds. In contrast, routing tables on
routers are updated far less frequently. Another unique
requirement is the size of the legitimacy list. Since clients
correspond to full source IP addresses rather than subnets
indicated by prefixes, the size of the legitimacy list could
be significantly larger than typical routing tables. These
requirements pose some unique challenges.

Various approaches to fast IP address lookup have
been proposed in the literature [11, 19, 20, 25]. The LC-
trie structure proposed in [20] (a variation of tries [18])
offers very good lookup performance with minimal
storage requirements but is not optimized to support
dynamic updates. By combining features of hash tables
and LC-tries, we have developed a structure called the
hash-trie that can support efficient insertion and deletion
to and from the legitimacy list. Further details are
presented in [24].

5. Conclusions and Future Work

We have presented a practical and high-performance
approach to DDoS filtering. The key elements to the

NetBouncer approach include the use of legitimacy tests
to distinguish legitimate traffic, high performance through
the use of network processors and a flexible two-tiered
QoS-oriented traffic management scheme. NetBouncer
differs from other approaches to DDoS protection in that
it focuses on distinguishing legitimate traffic from
illegitimates ones. This will allow NetBouncer to be
placed in environments where even under DDoS attack
conditions, legitimate requests from high priority clients
to critical services can be guaranteed availability and
quality-of-service. This is a big benefit for e-commerce
sites since they would ideally prefer not to incur any loss
of legitimate traffic as this translates directly to loss of
revenue. In this context, the NetBouncer approach
represents a clear and unique advancement over the
current state-of-the art.

We have built an initial hardware-based prototype of
NetBouncer as an in-line packet filtering device. Initial
tests of the prototype have demonstrated promising
performance but also exposed the limitations of a low-end
network processor such as the IXP1200 in supporting
functions beyond simple packet forwarding. A detailed
presentation of these initial performance results is beyond
the scope of this paper but is reported in [24].

Most notable is the fact that applying HMAC and
cryptography increases the per packet overhead reducing
throughputs and increasing latencies. The results we

Figure 3. Architecture of the NetBouncer hardware prototype

U
N
T
R
U
S
T
E
D

T
R
U
S
T
E
D

Internet-Receive (µµµµE1) Fast-Path-Manager (µµµµE2) Protected-Transmit (µµµµE3)

Protected-Receive (µµµµE6)Test-Manager (µµµµE5)
Internet-Transmit (µµµµE4)

Q-fast-in Q-fast-out

Strong
ARM

Q-test-out

Q-strong-armLegend
Microengine

Packet queue

Q-test-in

Fast path
Test path

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

obtained used an initial implementation of the Michael
HMAC algorithm. Additional optimizations and the use of
more powerful network processors in the future should
allow NetBouncer technology to scale up to 10 Gbps (OC
192) line rates and allow integration with edge and core
and routers. For example, the anticipated release of Intel's
second-generation network processor, the IXP2800, will
feature 16 microengines and offer much more processing
capacity and throughputs approaching 10Gbps.

As for ongoing and future work, we are currently
completing the design of our two-tiered traffic
management scheme and expect to implement it soon. We
are also expanding our performance analysis experiments
to understand the efficiency of various legitimacy tests.
We will also be investigating the invention of additional
service and session-based legitimacy tests. To aid in this
task, we are currently collecting data and studying the
most popular application-level protocols and services on
the Internet. Our future work, we plan to study the
performance of NetBouncer on real network traffic. We
will also investigate the issues associated with integrating
NetBouncer technology in various network topologies. In
particular, issues associated with network address
translation and asymmetric and multi-path routing require
more study. We will also study deployment architectures
where several NetBouncer devices may be deployed in a
network and out-of-band commands are sent to one or
more devices to "wake them up" to provide on demand
DDoS filtering based on knowledge of which parts of the
network are experiencing DDoS attacks.

References

[1] D.J. Bernstein, SYN Cookies,
http://cr.yp.to/syncookies.html
[2] Peakflow/DoS, Arbor networks,
http://www.arbornetworks.com/up_media/up_files/Pflow_Enter
_datasheet2.1.pdf
[3] DDoS Enforcer, Mazu Networks,
http://www.mazunetworks.com/solutions/product_overview.htm
l#300
[4] Asta vantage System, Asta Networks,
http://www.astanetworks.com/products/vantage/
[5] S. Capshaw, Minimizing the Effects of DoS Attacks,
Application Note, Juniper networks, November 2000,
http://www.juniper.net/techcenter/app_note/350001.pdf
[6] Strategies to Protect Against Distributed Denial of Service
(DDoS) Attacks, White Paper, CISCO Systems,
http://www.cisco.com/warp/public/707/newsflash.html
[7] Characterizing and Tracing Packet Floods Using Cisco
Routers, Technical Note, CISCO Systems, July 1999,
http://www.cisco.com/warp/public/707/22.html
[8] Configuring TCP Intercept (Prevent Denial-of Service
Attacks), CISCO Systems,
http://www.cisco.com/univercd/cc/td/doc/product/software/ios1
13ed/113ed_cr/secur_c/scprt3/scdenial.htm

[9] Cisco IOS Netflow,
http://www.cisco.com/warp/public/732/Tech/nmp/netflow
[10] D. Dean and A. Stubblefield, Using client puzzles to
protect TLS, Proceedings of the 10th USENIX Security
Symposium, Washington, D.C, August 13-17, 2001.
[11] M. Degermark, A. Brodnik, S. Carlsson and S. Pink, Small
forwarding tables for fast routing slookups, ACM Computer
Communication Review, 27 (4), pages 3 -14, October 1997.
[12] A. Demers, S. Keshav, and S. Shenker, Analysis and
simulation of a fair queueing algorithm, Internet Res. and
experience, Volume 1, 1990.
[13] S. Dietrich, N. Long and D. Dittrich, Analyzing Distributed
Denial of Service Tools: The Shaft Case, Proceedings of the
LISA XIV, December 3-8, 2000, New Orleans, LA.
[14] R. Fan, A. Ishii, A. Itoh, M. Kobayashi, B. Mark, T. Muira,
G. Ramamurthy, Q. Ren, S. Shibuya, H. Shimonishi and K.
Yamada, ARC-LITE: An integrated quality-of-service ATM/IP
switching-routing engine, In Proc. IEEE ATM Workshop '99,
Koichi City, pages 161-166, May 1999.
[15] N. Ferugson, Michael: an improved MIC for 802.11 WEP,
IEEE P802.11, Wireless LANs, MacFergus, Bart de Ligtstraat
64, 1097 JE Amsterdam, Netherlands, January 17, 2002.
[16] S. Golestani, A Self-Clocked Fair Queuing Scheme for
Broadband Applications, Proc. IEEE INFOCOM’94, April
1994, pp. 636-646.
[17] R. Mahajan, S. Bellovin, D. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker, Controlling High Bandwidth Aggregates in the
network, AT&T Center for Internet research at ICSI (ACIRI),
DRAFT, February 5, 2001,
http://www.research.att.com/~smb/papers/ddos-lacc.pdf
[18] D. P. Morrison, Practical algorithm to retrieve information
coded in Alfanumeric, Journal of ACM 15, 4 (October 1968),
pages 514-534.
[19] A. McAuley and P. Francis, Fast routing table lookup using
CAMs, In Proceedings of INFOCOM, pages 1382-1391, March-
April, 1993.
[20] S. Nilsson and G. Karlsson, Fast Address Lookup for
Internet Routers, In Proceedings of the International Conference
on Broadband Communication, April 1998.
[21] A.K. Parekh and R.G. Gallager, A Generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks - The Single Node Case, IEEE Trans. on Networking,
June 1993, pages 344-357.
[22] K. Park and H. Lee, "On the Effectiveness of Route-based
Packet Filtering for Distributed DoS Attack Prevention in
Power-law Internets," in Proceeding of the ACM SIGCOMM
'01, pages 15-26. 2
[23] D. Schnackenberg, K. Djahandari, and D. Sterne,
"Infrastructure for Intrusion Detection and Response",
Proceedings of the DARPA Information Survivability
Conference and Exposition, Hilton Head, SC, January 2000.
[24] R. K. Thomas, B. Mark, T. Johnson, J. Croall, High-speed
Legitimacy-based DDoS Packet Filtering with Network
Processors: A Case Study and Implementation on the Intel
IXP1200, To appear in the Proceedings of the second Workshop
on Network Processors - NP2, February 8-9, 2003, Anaheim,
CA.
[25] M. Waldvogel, G. Varghese, J. Turner, Bernhard
Plattner, Scalable High Speed IP Routing Lookups, In
Proceedings of SIGCOMM '97.

0-7695-1897-4/03/$17.00 (C) 2003 IEEE

http://cr.yp.to/syncookies.html
http://www.arbornetworks.com/up_media/up_files/Pflow_Enter_datasheet2.1.pdf
http://www.arbornetworks.com/up_media/up_files/Pflow_Enter_datasheet2.1.pdf
http://www.mazunetworks.com/solutions/product_overview.html#300
http://www.mazunetworks.com/solutions/product_overview.html#300
http://www.juniper.net/techcenter/app_note/350001.pdf
http://www.cisco.com/warp/public/707/22.html
http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed_cr/secur_c/scprt3/scdenial.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed_cr/secur_c/scprt3/scdenial.htm
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/

	DISCEX 2003
	Return to Main Menu

