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Abstract

In this paperwe seekto answela simplequestion:*How

prevalentaredenial-of-servicattacksin the Internetto-

day?”. Our motivationis to understandjuantitatvely the
natureof the currentthreataswell asto enablelonger

termanalyse®f trendsandrecurringpatternsof attacks.
We presenta new technique,called “backscatteranal-
ysis”, that providesan estimateof worldwide denial-of-
serviceactivity. We usethisapproactonthreeweek-long
datasetdo assesshe number durationandfocus of at-

tacks,andto characterizéheir behavior. During this pe-
riod, we obsene morethan12,000attacksagainstmore
than5,000distincttargets,rangingfrom well known e-

commercecompaniessuchas Amazonand Hotmail to

smallforeign ISPsanddial-up connections We believe

thatour work is the only publically availabledataquan-
tifying denial-of-servicectvity in theInternet.

1 Intr oduction

In Februaryof 2000,aseriesof massie denial-of-service
(DoS) attacksincapacitatedseveral high-visibility In-
ternet e-commercesites, including Yahoo, Ebay and
E*trade. Next, in Januaryof 2001, Microsoft's name
sener infrastructurewas disabledby a similar assault.
Despite attackson high-profile sites, the majority of
attacksare not well publicized. Many other domes-
tic and foreign sites have also beenvictims, ranging
from smaller commercialsites, to educationalinstitu-
tions, public chatsenersandgovernmenbrganizations.
While it is clear from theseanecdotalreportsthat
denial-of-servicaattackscontinueto be a problem,there
is currently not much quantitatve dataaboutthe preva-
lenceof theseattacksnor ary representatie character
ization of their behaior. Unfortunately thereare mul-

tiple obstaclesvamperinghe collectionof anauthorita-
tive denial-of-serviceraffic dataset. Serviceproviders
and contentproviders considersuch datasensitve and

private. Even if it were allowed, monitoring traf-

fic at enoughsitesto obtain a representatie measure
of Internet-wideattackspresentsa significantlogistical

challenge.Consequentlythe only contemporarnpublic

datawe areawareof is a CSI/FBI surwey study[8]*.

We believethatastronggquantitatve foundationis nec-
essanbothfor understandinghe natureof today'sthreat
andasa baselinefor longerterm comparisorand anal-
ysis. Our paperseeksto answerthe simple question:
“How prevalentare denial-of-serviceattacksin the In-
ternettoday?”. As a meansto this end, we describea
traffic monitoring techniquecalled “backscatteranaly-
sis” for estimatingthe worldwide prevalenceof denial-
of-serviceattacks. Using backscattemanalysis,we ob-
sene 12,805attackson over5,000distinctInternethosts
belongingto morethan2,000distinctorganizationsdur-
ing athree-weelperiod. We furtherareableto estimate
alower-boundon theintensityof suchattacks- someof
which arein excessof 600,000paclets-persecondpps)
—andcharacterizeéhe natureof the sitesvictimized.

The remainderof this paperis organized as fol-
lows: Section2 describeshe underlying mechanisms
of denial-of-serviceattacks, Section 3 describesthe
backscatteitechnique,and limitations arising from its
assumptionsand Section4 explains our techniquesor
classifyingattacksfrom monitoredbackscattetraffic. In
Section5 we describeour experimentalplatform, and
presentour resultsin Section6. Finally, in Sections?
and 8 we cover relatedwork and summarizeour find-

1The primary resultfrom this reportis that 27 percentof security
professionalssuneyed detecteddenial-of-serviceattacksduring the
year2000.



ings.

2 Background

Denial-of-serviceattacksconsumeheresourcesf are-
mote hostor network that would otherwisebe usedfor
servinglegitimateusers.Therearetwo principal classes
of attacks:logic attacksandfloodingattacks.Attacksin
the first class,suchasthe “Ping-of-Death”, exploit ex-
isting softwareflaws to causeremotesenersto crashor
substantiallydegradein performance Many of theseat-
tackscan be preventedby either upgradingfaulty soft-
wareor filtering particularpaclet sequencedut they re-
main a seriousand ongoingthreat. The secondclass,
flooding attacksoverwhelmthevictim’s CPU,memory
or network resourcedy sendinglarge numbersof spu-
riousrequestsBecausehereis typically no simpleway
to distinguishthe“good” requestgrom the“bad”, it can
be extremelydifficult to defendagainstflooding attacks.
For the purposesof this study we will focus solely on
floodingattacks.

2.1 Attack types

Therearetwo relatedconsequencds afloodingattack—
thenetwork loadinducedandtheimpacton thevictim’s
CPU. To load the network, an attacler generallysends
small pacletsasrapidly aspossiblesincemostnetwork
devices(bothroutersandNICs) arelimited not by band-
width but by paclet processingate. Therefore paclets-
persecondareusuallythe bestmeasureof network load
duringanattack.

An attacler often simultaneoushattemptsto load the
victim’s CPU by requiring additionalprocessingabove
andbeyondthatrequiredto receie a paclket. For exam-
ple, the bestknown denial-of-servicettackis the“SYN
flood” [6] which consistsf a streamof TCP SYN pack-
etsdirectedto a listening TCP port at the victim. For
eachsuch SYN paclet receved, the host victim must
searchthroughexisting connectionsandif no matchis
found, allocatea new datastructurefor the connection.
Moreover, the numberof thesedatastructuresmay be
limited by thevictim’s operatingsystem.Consequently
without additional protection,even a small SYN flood
canoverwhelma remotehost. Thereare mary similar
attacksthat exploit other codevulnerabilitiesincluding
TCP ACK, NUL, RST and DATA floods, IP fragment
floods,ICMP EchoRequesfloods,DNS Requesfloods,
andsoforth.

2.2 Distributed attacks

While a single host can causesignificant damageby
sendingpacletsat its maximumrate,attaclerscan(and

Paclet sent Responsérom victim
TCPSYN (to openport) TCPSYN/ACK
TCPSYN (to closedport) | TCPRST(ACK)
TCPACK TCPRST(ACK)
TCPDATA TCPRST(ACK)
TCPRST noresponse
TCPNULL TCPRST(ACK)
ICMP ECHORequest ICMP EchoReply
ICMP TS Request ICMP TS Reply
UDP pkt (to openport) protocoldependent
UDP pkt (to closedport) ICMP PortUnreach

Tablel: A sampleof victim responseto typical attacks.

do) mountmore powerful attacksby leveragingthe re-

sourcesof multiple hosts. Typically an attacler com-

promisesa setof Internethosts(usingmanualor semi-
automatednethods)andinstallsa small attackdaemon
on each producingagroupof “zombie” hosts.This dae-
montypically containsboth the codefor sourcinga va-

riety of attacksand somebasiccommunicationsnfras-

tructureto allow for remotecontrol. Using variantsof

thisbasicarchitecturanattaclercanfocusacoordinated
attackfrom thousand®f zombiesontoasinglesite.

2.3 IP spoofing

To concealtheir location, therebyforestallingan effec-

tiveresponseattaclerstypically forge,or “spoof’, thelP

sourceaddres®f eachpaclket they send. Consequently
the pacletsappeatto the victim to be arriving from one
or morethird parties. Spoofingcanalsobe usedto “re-

flect” an attackthroughan innocentthird party. While

we do not address'reflector attacks”in this paper we

describehemmorefully in Section3.3.

3 Basicmethodology

As notedin the previous section, attaclers commonly
spoof the sourcelP addressfield to concealthe loca-
tion of the attackinghost. The key obsenation behind
our techniques thatfor directdenial-of-serviceattacks,
most programsselectsourceaddressest random for

eachpacletsent. Theseprogramsncludeall of themost
populardistributedattackingtools: Shaft, TFN, TFN2k,
trinoo, all variantsof Stacheldrahtmstreamand Trin-

ity). When a spoofedpaclet arrives at the victim, the
victim usually sendswhatit believesto be an appropri-
ateresponseo the faked IP addresgsuchasshawvn in

Table1). Occasionallyanintermediatenetwork device
(suchasa router, load balancer or firewall) may issue
its own reply to the attackvia an ICMP messagg21].
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Figure 1: An illustration of backscattein action. Herethe
attacler sendsa seriesof SYN paclets towardsthe victim V,
usinga seriesof randomspoofedsourceaddressesnamedC,
B, andD. Uponreceving thesepacletsthevictim respondby
sendingSYN/ACKSsto eachof spoofedhosts.

Again, theselCMP messagesre sentto the randomly
spoofedsourceaddress.

Becausethe attacler’'s sourceaddressis selectedat
random, the victim’s responsesre equi-probablydis-
tributed acrossthe entire Internetaddressspace,an in-
adwertenteffect we call “backscatter?. This behavior is
illustratedin Figurel.

3.1 Backscatteranalysis

Assumingperpacket randomsourceaddresseggliable
delivery andoneresponsgeneratedor every pacletin

an attack,the probability of a givenhoston the Internet
receving at leastoneunsolicitedresponsdrom the vic-

tim is gz duringanattackof m paclets.Similarly, if one
monitorsn distinctIP addresseshenthe expectationof
observinganattackis:

nm

E(X) = 75
By observinga largeenoughaddressangewe canef-
fectively “sample” all suchdenial-of-serviceactivity on
the Internet. Containedn thesesamplesaretheidentity
of thevictim, informationaboutthekind of attack,anda
timestampfrom which we canestimateattackduration.
Moreover, giventheseassumptionsye canalsousethe
averagearrival rate of unsolicitedresponseslirectedat
the monitoredaddresgangeto estimatethe actualrate

2We did not originatethis term. It is borraved from Vern Paxson
who independentlygiscoveredthe samebackscatteeffect whenanat-
tack accidentallydisruptedmulticastconnectiity by selectingglobal
multicastaddresseassourceaddressef20].

of theattackbeingdirectedatthevictim, asfollows:

232
R>R—
n
where R’ is the measuredaverageinter-arrival rate of
backscattefrom thevictim and R is the extrapolatedat-
tackratein paclets-persecond.

3.2 Addressuniformity

The estimationapproactoutlinedabove dependson the
spoofed source addresseseing uniformly distributed
acrossthe entireIP addresspace. To checkwhethera
sampleof obsened addresseare uniform in our moni-

toredaddresgange,we computethe Anderson-Darling
(A2) test statistic[9] to determineif the obsenations
areconsistentith a uniform distribution. In particular

we usethe implementatiorof the A2 testasspecifiedin

RFC233(0/19] ata 0.05significancdevel.

3.3 Analysislimitations

Therearethreeassumptionghatunderlyour analysis:

e Address uniformity. attaclers spoof source ad-
dressestrandom.

o Reliabledelivery. attacktraffic is deliveredreliably
to thevictim andbackscatteis deliveredreliably to
themonitor.

e Badkscatter hypothesis unsolicited paclets ob-
senedby themonitorrepresenbackscatter

We discusgotentialbiaseghatarisefrom theseassump-
tionsbelow.

Key amongourassumptionss therandomselectiorof
sourceaddressTherearethreereasonsvhy thisassump-
tion may not be valid. First, somelSPsemploy ingress
filtering [12, 5] on their routersto drop paclets with
sourcdP addressesutsidetherangeof acustomersnet-
work. Thus,anattacler’'s sourceaddresgangemay not
includeary of our monitoredaddresseandwe will un-
derestimat¢he total numberof attacks.

“Reflectorattacks”posea secondproblemfor source
addresauniformity. In this situation,an attacler “laun-
ders” the attack by sendinga paclet spoofedwith the
victim’'s sourceaddresdo a third party Thethird party
responddy sendinga responsdacktowardsthevictim.
If the pacletsto the third partie are addressedising a
broadcasaddresgaswith the popularsmurfor fraggle
attacks)henthird partiesmayfurtheramplify theattack.
Thekey issuewith reflectorattackss thatthe sourcead-
dresds specificallyselectedUnlessan IP addressn the
rangewe monitoris usedasareflector wewill beunable



to obsenetheattack.We have detectechoinstance®f a
monitoredhostinvolvedin this sortof attack.Ourinabil-
ity to detect,'reflectorattacks’causaisto underestimate
thetotal numberof denial-of-servicaattacks.

Finally, if the distribution of sourceaddressess not
random,thenary attemptto extrapolatethe attackrate
via the arrival rate of responsewill producean arbi-
trarily biasedresult. This particular problem can be
mitigatedby verifying that the distribution of obsened
sourceaddressess indeeduniform within the setof n
addressewe obsene.

Another limitation arisesfrom our assumptionthat
pacletsaredeliveredreliably andthatevery paclet gen-
eratesa response During a large attackit is likely that
pacletsfrom the attacler may be queuedand dropped.
Those paclets that do arrive may be filtered or rate-
limited by firewall or intrusiondetectiorsoftware[4] and
moreover someforms of attacktraffic (e.g., TCP RST
messagegjo not typically elicit aresponseFinally, the
responsethemselesmaybe queuedanddroppedalong
the pathbackto our monitoredaddressange.In partic-
ular, our estimateof the attackrateis necessarilyimited
to the capacityof smallestbottlenecklink betweenthe
victim andour monitor. As with our randomdistribution
assumptiontheselimitationswill causeusto undeesti-
matethe numberof attacksandthe attackrate. However,
they may alsobiasour characterizatiomf victims (e.g.,
if large e-commercesitesare more likely to have rate-
limiting software than educationalsites, then we may
disproportionatelyunderestimatehe size of attackson
this classof victim).

The final limitation of our techniqueis that we as-
sumeunsolicitedresponsesepresentackscatteifrom
anattack. Any sener on the Internetis freeto sendun-
solicited pacletsto our monitoredaddressesand these
paclets may be misinterpretedas backscattefrom an
attack. It is possibleto eliminate accidentalerrors by
choosinga quiescentaddresgangefor monitoring, fil-
teringthosepacletflows consistentlydestinedo asingle
hostin therangeandby high-pasdiltering to only record
sufficiently long and voluminouspaclet flows. How-
ever, aconcertedeffort by athird-partyto biasourresults
would be difficult to detectand correctautomatically
The mostlikely sourceof suchbias arisesfrom misin-
terpretationof randomport scansasbackscatterWhile
it is impossibleto eliminatethis possibility in general,
we will shaw thatit is extremelyunlikely to be a factor
in the vastmajority of attackswe obsere.

In spite of its limitations, we believe our overall ap-
proachis soundandprovidesat worsta conserative es-
timateof currentdenial-of-servicectiity.

4 Attack Classification

After collectinga large traceof backscattepaclets,the
first taskis post-processinthetrace. For this we group
collectionsof relatedpacletsinto clustersrepresenting
attacks.The choiceof a specificaggreyationmethodol-
ogy presentssignificantchallenges. For example, it is
often unclearwhethercontemporaneousackscattein-
dicating both TCP and ICMP-basedattacksshould be
classifiedasasingleattackor multiple attacks More dif-
ficult still is the problemof determininghe startandend
timesof anattack.In the presencef significantvariabil-
ity, too lenienta thresholdcanbiasthe analysistowards
fewer attacksof longerdurationandlow averagepaclet
rates,while too strict an interpretationsuggests large
numberof shortattackswith highly variablerates.

Without knowledgeof the intent of the attacler or di-
rectobsenationof the attackasit orchestratetby the at-
tacker, it is impossibleto createa syntheticclassification
systemthatwill groupall typesof attacksappropriately
for all metrics. Instead,we have chosernto employ two
distinctclassificatiormethods:a flow-basedanalysisfor
classifyingindividual attacks- how mary, how long and
whatkind —andanevent-basednethodfor analyzingthe
severity of attackson shorttime scales.

4.1 Flow-basedclassification

For the purposeof this study we definea flow asa se-
riesof consecutie pacletssharingthesametargetIP ad-
dressand|IP protocol. We explored several approaches
for defining flow lifetimes and settledon a fixed time-
out approach:the first paclet seenfor a target creates
a new flow andary additionalpacletsfrom that target
are countedasbelongingto thatflow if the pacletsare
recevved within five minutesof the mostrecentpaclet
in this flow. The choice of parametersiere caninflu-
encethefinal results,sincea more conserative timeout
will tendto suggestewer, longerattackswhile ashorter
timeoutwill suggestlarge numberof shortattacks.We
chosefive minutesas a human-sensibl®alancethat is
not unduly affectedby punctuatecdattacksor temporary
outages.

To reducenoiseandtraffic generatediue to random
Internet misconfiguration(for instance,one NetBIOS
implementation/configuratiosendssmall numbersun-
solicitedpacletsto our monitoredaddressange)we dis-
cardall flows that do not have at least100 pacletsand
a flow durationof at least60 seconds. Theseparam-
etersare also somavhat arbitrary but we believe they
represent reasonabldaseline- belowv suchthresholds
it seemsunlikely that an attackwould causesignificant
damageFinally, flows mustcontainpaclketssentto more
thanoneof our monitoredaddresses.



We examineeachindividual flow andextractthe fol-
lowing information:

e TCP flag settings whetherthe flow consistsof
SYN/ACKs,RSTs,etc.

e ICMP payload for ICMP paclets that contain
copiesof theoriginal paclet (e.g. TTL expired)we
breakout the enclosedaddressegprotocols,ports,
etc.

e Address uniformity: whether the distribution of
sourceaddressewithin our monitoredrangepasses
theAnderson-DarlingA2) testfor uniformity to the
0.05significancdevel.

e Port settings for sourceanddestinationports (for
both UDP and TCP) we record whetherthe port
rangeis fixed, is uniform underthe A2 test, or is
non-fixedandnon-uniform.

e DNS information the full DNS addressof the
sourceaddress-thevictim.

e Routinginformation the prefix, maskand origin
AS asregisteredn ourlocalBGPtableonthemorn-
ing of Februaryrth.

We generatea databasén which eachrecordcharac-
terizesthe propertiesof a singleattack.

4.2 Event-basedclassification

Becausethe choice of flow parametersanimpactthe
estimateddurationof an attack,the flow-basedmethod
may obscureinterestingtime-domaincharacteristicsin
particular attackscanbe highly variable— with periodic
bursts of activity — causingthe flow-basedmethodto
vastly underestimat¢he short-termimpactof an attack
andoverestimateéhelong-termimpact.

We useanevent-basedlassificatiormethodkeyeden-
tirely onthevictim’s IP addres®verfixedtime-windowns
for examiningtime-domaimualities,suchasthenumber
of simultaneousattacksor thedistribution of attackrates,
For theseanalysesve divide our traceinto one minute
periodsandrecordeachattadk eventduring this period.
An attackeventis definedby a victim emitting at least
ten backscattepacletsduring a oneminute period. We
donotfurtherclassifyattacksaccordingo protocoltype,
port, etc,asthe goalis to estimatethe instantaneousn-
pacton a particularvictim. Theresultof this classifica-
tion is a databasén which eachrecordcharacterizethe
numberof victims andtheintensityof theattacksn each
oneminuteperiod.

Internet
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Hub
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/8 Network
Figure 2: Our experimentalbackscattecollection platform.
Wemonitorall traffic to our/8 network by passvely monitoring
dataasit is forwardedthrougha sharechuh This monitoring
pointrepresentsheonly ingressinto the network.

5 Experimental platform

For our experimentsmonitoredthe soleingresdink into
alightly utilized /8 network (comprising224 distinct IP
addressespr 1/256 of the total Internetaddressspace).
Our monitoring infrastructure,shovn in Figure 2, con-
sistedof a PC configuredto captureall Ethernettraffic,
attachedto a sharedhub at the router terminatingthis
network. During this time, the upstreanrouterdid fil-
tersometraffic destinedo thenetwork (notablyexternal
SNMP queries)but we do not believe that this signifi-
cantlyimpactedour results.We alsohave someevidence
that small portions of our addressprefix are occasion-
ally “hijacked” by inadwertentrouteadwertisementglse-
wherein the Internet,but at worst this shouldcauseus
to slightly underestimatattackintensities.We collected
threetraces,eachroughly spanningone week, starting
onFebruarylstandextendingto February?5th,andiso-
latedtheinboundportion of the network.

6 Results

Using the previously describedflows-basedapproach
(Sectiord.1),we obsened12,805attacksoverthecourse
of aweek. Table2 summarizeshis data,shaving more
than 5,000 distinct victim IP addressesn more than
2,000distinctDNS domains.Acrosstheentireperiodwe
obsenedalmost200 million backscattepaclets(again,
representingessthanﬁ of theactualattacktraffic dur-
ing this period).

In this section,we first shov the overall frequeng of
attacksseenin our trace,and then characterizehe at-
tacksaccordingo boththetype of attackandthetype of
victim.
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Trace-1 Trace-2 Trace-3
Dates(2001) Feb01-08 || Feb11-18 || Feb18-25
Duration 7.5days 6.2days 7.1days
Flow-basedAttacks:
Uniquevictim IPs 1,942 1,821 2,385
Uniquevictim DNS domains 750 693 876
Uniquevictim DNS TLDs 60 62 71
Uniquevictim network prefixes 1,132 1,085 1,281
Uniquevictim AutonomousSystems 585 575 677
Attacks 4,173 3,878 4,754
Total attackpaclets 50,827,217|| 78,234,768|| 62,233,762
Event-based\ttacks:
Uniquevictim IPs 3,147 3,034 3,849
Uniquevictim DNS domains 987 925 1,128
Uniquevictim DNS TLDs 73 71 81
Uniquevictim network prefixes 1,577 1,511 1,744
Uniquevictim AutonomousSystems 752 755 874
Attack Events 112,457 102,204 110,025
Total attackpaclets 51,119,549| 78,655,631|| 62,394,290
Table2: Summaryof backscattedatabase.
Traée—l —
i Trace-3 —— |
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
02/02 02/05 02/08 02/11 TiR/14 02/17 02/20 02/23

Figure3: Estimatechumberof attacksperhourasa functionof time (UTC).



Kind Trace-1 Trace-2 Trace-3

Attacks | Paclets(k) Attacks | Paclets(k) Attacks | Paclets(k)
TCP(RSTACK) 2,027 (49) | 12,656 (25) || 1,837 (47) | 15,265 (20) || 2,118 (45) | 11,244 (18)
ICMP (HostUnreachable) 699 (17) | 2,892 (5.7) || 560 (14) |27,776 (36) || 776 (16) |19,719 (32)
ICMP (TTL Exceeded) || 453 (11) |31,468 (62) || 495 (13) |32,001 (41) || 626 (13) |22,150 (36)
ICMP (Other) 486 (12) 580 (1.1) || 441 (11) 640 (0.82)|| 520 (11) 472 (0.76)
TCP(SYN ACK) 378 (9.1) | 919 (1.8) || 276 (7.1) | 1,580 (2.0) || 346 (7.3) | 937 (1.5)
TCP(RST) 128 (3.1) | 2,309 (4.5) || 269 (6.9) | 974 (1.2) | 367 (7.7) | 7,712 (12)
TCP(Other) 2 (0.05) 3 (0.01)]] 0 (0.00) 0 (0.00) 1 (0.02) 0 (0.00)

Table3: Breakdaevn of responserotocols.

6.1 Time series

Figure 3 shavs a time seriesgraph of the estimated
numberof actively attacledvictims throughouthethree
traces,as sampledin one hour periods. Thereare two
gapsin this graphcorrespondingo the gapsbetween
traces. In contrastto otherworkloads,suchasHTTP,
the numberof active attacksdoesnot appearto follow
ary diurnalpattern(atleastasobsenedfrom asinglelo-
cation). Theoutliersontheweekof February20th,with
more than 150 victim IP addresseger hour, represent
broadattacksagainstmary machinesn a commonnet-
work. While mostof the backscattedataaveragesone
victim IP addresper network prefix per hour, the ratio
climbsto abovefive for mary outliers.

6.2 Attack classification

In this sectionwe characterizeattacksaccordingto the
protocolsusedin responseacletssentby victims, the
protocolsusedin theoriginal attackpaclkets,andtherate
anddurationsof attacks.

6.2.1 Responseprotocols

In Table3 we decomposeur backscattedataaccording
to the protocolsof responseseturnedoy thevictim or an
intermediatehost. For eachtracewe list both the num-
berof attacksandthe numbermackscattepacletsfor the
given protocol. The numbersin parentheseshav the
relative percentageepresentedy eachcount. For ex-
ample,1,837attacksin Trace2 (47% of thetotal), were
derived from TCP backscattewith the RST and ACK
flagsset.

We obsene that over 50% of the attacksand 20% of
the backscattepaclets are TCP pacletswith the RST
flag set. Referringbackto Table 1 we seethat RST is
sentin responseo eithera SYN flood directedagainsta
closedport or someotherunexpectedT CP paclet. The
next largestprotocolcateyoryis ICMP hostunreachable,
comprisingroughly 15% of the attacks. Almost all of
thesel CMP messagesontainthe TCP headerfrom a
paclet directedat the victim, suggestinga TCP flood of

somesort. Unfortunately the TCP flagsfield cannotbe
recovered,becausehe ICMP responsenly includesthe
first 28 bytesof the original IP paclet. ICMP hostun-

reachablés generallyreturnecby arouterwhenapaclket
cannotbe forwardedto its destination.Probingsomeof

thesevictims we confirmedthata numberof themcould
not be reachedput mostwereaccessiblesuggestindn-

termittentconnectvity. This discontinuougeachability
is probablycausedy explicit “black holing’ onthe part
of anISP.

We alsoseea numberof SYN/ACK backscattepack-
ets(likely sentdirectlyin responseo a SYN flood onan
openport) and an equivalentnumberof assortedCMP
messagesincluding ICMP echo reply (resulting from
ICMP echorequesftloods),ICMP protocolunreachable
(sentin responséo attacksusingillegal combinationof
TCPflags), ICMP fragmentatiomeededcausecby at-
tackswith the “Dont Fragment”bit set)and ICMP ad-
ministratively filtered (likely the result of someattack
countermeasure).However, a more surprisingfinding
is the large numberof ICMP TTL exceededmessages
— comprisingbetween36% and 62% of all backscatter
pacletsobsered, yet lessthan 15% of thetotal attacks.
In fact, the vastmajority of thesepaclketsoccurin just
a few attacks,including three attackson @Homecus-
tomers,two on ChinaTelecom(onewith almost9 mil-
lion backscattepaclets),and othersdirectedat Roma-
nia, Belgium, Switzerlandand New Zealand. The at-
tackonthelatterwasat an extremelyhigh rate,suggest-
ing an attackof morethan150,000paclkets per second.
We areunableto completelyexplain the mechanisnfor
the generatiorof thesetime-exceededmessageslpon
examinationof the encapsulatetieadetthatis returned,
we notethat several of themshareidentical“signatures”
(ICMP Echowith identicalsequenc@umberidentifica-
tion fields,andchecksum}yuggestinghatasingleattack
tool wasin use.

6.2.2 Attack protocols

We refine this datain Table 4 to shav the distribution
of attad protocols Thatis, the protocol which must



Kind Trace-1 Trace-2 Trace-3

Attacks | Paclets(k) Attacks | Paclets(k) Attacks | Paclets(k)
TCP [[3,902 (94) | 28,705 (56) || 3,472 (90) |53,999 (69) || 4,378 (92) | 43,555 (70)
UDP 99 (2.4) 66 (0.13)| 194 (5.0) 316 (0.40)|| 131 (2.8) 91 (0.15)
ICMP 88 (2.1) | 22,020 (43) 102 (2.6) | 23,875 (31) 107 (2.3) | 18,487 (30)
Proto0 65 (1.6) 25 (0.05)| 108 (2.8) 43 (0.06)|| 104 (2.2) 49 (0.08)
Other 19 (0.46)| 12 (0.02) 2 (0.05) 1 (0.00)]| 34 (0.72)] 52 (0.08)

Table4: Breakdavn of protocolsusedin attacks.

100 i Adacks —— | and the upper curve shavs the cumulative distribution
or of eventratesfor uniform randomattacks,i.e., thoseat-
gor tackswhosesourcelP addressesatisfiedthe A2 uni-

RCh form distribution testdescribedn Section3.2. As de-
g 60 - scribedearlier, we calculatethe attackeventrateby mul-
5 s0r '/ tiplying theaveragearrival rateof backscattepacletsby
§ a0l / 256 (assuminghat an attackrepresents randomsam-
ol ’ pling acrosghe entireaddresspace pf which we mon-
. / itor 2},—6). Almost all attackshave no dominantmodein
ol / the addresdlistribution, but sometimesmall deviations
o ‘ ‘ ‘ ‘ from uniformity preventthe A2 testfrom beingsatisfied.
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Figure4: Cumulatve distributionsof estimatechttackratesin
pacletspersecond.

have beenusedby the attacler to producethe backscat-
termonitoredat our network. We seethatmorethan90%
of the attacksuse TCP astheir protocolof choice,but a
smallemumberof ICMP-basedttackgproduceadispro-
portionatenumberof the backscattepacketsseen.Other
protocolsrepresentt minor numberof both attacksand
backscattepaclets. This patternis consistentacrossall
threetraces.

In Table5 we further breakdown our datasetbased
on the service(asrevealedin the victim’s port number)
being attacled. Most of the attacksfocus on multiple
ports,ratherthana singleoneandmostof thesearewell
spreadthroughoutthe addresgange. Many attackpro-
gramsselectrandomportsabore 1024;this may explain
why lessthan25%of attacksshov a completelyuniform
randomportdistribution accordingo the A2 test. Of the
remainingattacksthe mostpopularstaticcateyoriesare
port 6667 (IRC), port 80 (HTTP), port 23 (Telnet),port
113 (Authd). The large numberof paclets directedat
port 0 is an artifact of our ICMP cateyorization— there
arefewer thanten TCP attacksdirectedat port 0, com-
prisingatotal of lessthan9,000paclets.

6.2.3 Attack rate

Figure 4 showvs two cumulative distributions of attack
eventratesin pacletspersecond.Thelowercurveshavs
the cumulative distribution of eventratesfor all attacks,

For this reasonwe believe that thereis likely someva-
lidity in the extrapolationappliedto the completeattack
datasetNotethatthe attackrate(x-axis)is shavn using
alogarithmicscale.

Comparingthe distributions, we seethat the uniform
randomattackshave alower ratethanthe distribution of
all attacksput trackclosely Half of theuniformrandom
attackeventshaveapacletrategreatethan250,whereas
half of all attackeventshave a paclet rate greaterthan
350. The fastestuniform randomeventis over 517,000
paclets per secondwhereaghe fastestoverall eventis
over 679,000paclketspersecond.

How threateningare the attacksthat we see?Recent
experimentswith SYN attackson commercialplatforms
shav that an attackrate of only 500 SYN paclets per
secondis enoughto overwhelma sener [10]. In our
trace,38% of uniform randomattackeventsand46% of
all attackeventshadanestimatedateof 500pacletsper
secondor higher The sameexperimentshav thateven
with aspecializedirewall designedo resistSYN floods,
a sener can be disabledby a flood of 14,000paclets
per second. In our data, 0.3% of the uniform random
attacksand2.4%of all attackeventswould still compro-
mise theseattack-resistantirewalls. We concludethat
the majority of the attacksthat we have monitoredare
fastenoughto overwhelmcommodity solutions,and a
small fraction are fastenoughto overwhelmeven opti-
mizedcountermeasures.

Of course,one significantfactor in the questionof
threatposedby an attackis the connectvity of the vic-
tim. An attackratethatoverwhelmsa cablemodemvic-
tim maybetrivial awell-connectednajorsenerinstalla-
tion. Victim connectvity is a difficult to ascertainwith-



Kind Trace-1 Trace-2 Trace-3
Attacks | Paclets(k) Attacks | Paclets(k) Attacks | Paclets(k)
Multiple Ports 2,740 (66) | 24,996 (49) || 2,546 (66) | 45,660 (58) || 2,803 (59) | 26,202 (42)
Uniformly Random|| 655 (16) | 1584 (3.1) || 721 (19) | 5586 (7.1) || 1,076 (23) | 15,004 (24)
Other 267 (6.4) | 994 (2.0) || 204 (5.3) | 1,080 (1.4) | 266 (5.6) | 410 (0.66)
PortUnknawn 91 (2.2) 44 (0.09)| 114 (2.9) 47 (0.06)|| 155 (3.3) 150 (0.24)
HTTP (80) 94 (2.3) 334 (0.66)| 79 (2.0) 857 (1.1) || 175 (3.7) 478 (0.77)
0 78 (1.9) | 22,007 (43) 90 (2.3) | 23,765 (30) 99 (2.1) | 18,227 (29)
IRC (6667) 114 (2.7) 526 (1.0) 39 (1.0 211 (0.27)|| 57 (1.2) | 1,016 (1.6)
Authd (113) 34 (0.81) 49 (0.10)|| 52 (1.3) 161 (0.21)|| 53 (1.1) 533 (0.86)
Telnet(23) 67 (1.6) 252 (0.50)|| 18 (0.46)| 467 (0.60)|| 27 (0.57)| 160 (0.26)
DNS (53) 30 (0.72) 39 (0.08) 3 (0.08) 3 (0.00)|| 25 (0.53) 38 (0.06)
SSH(22) 3 (0.07) 2 (0.00)|| 12 (0.31)] 397 (0.51)|| 18 (0.38) 15 (0.02)
Table5: Breakdavn of attacksby victim portnumber
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Figure5: Cumulatie distribution of attackdurations.

out flooding the victim's link. Consequentlywe leave
correlationbetweenattackratesandvictim connectvity
asanopenproblem.

6.2.4 Attack duration

While attackeventratescharacterizehe intensity of at-
tacks,they do not give insight on how long attacksare
sustained.For this metric, we characterizehe duration
of attacksin Figures5 and 6 acrossall threeweeksof
tracedata.In thesegraphswe usethe flow-basedlassi-
ficationdescribedn Section4 becausdlows betterchar
acterizeattackdurationswhile remaininginsensitve to
intensity We also combineall three weeksof attacks
for clarity; the distributionsare nearlydenticalfor each
week,andindividual weekly curvesoverlapandobscure
eachother

Figure 5 shawvs the cumulative distribution of attack
durationdn unitsof time; notethatboththeaxesarelog-
arithmicscale.In this graphwe seethatmostattacksare

Attack Duration

Figure6: Probabilitydensityof attackdurations.

relatively short: 50% of attacksarelessthan10 minutes
in duration,80% arelessthan30 minutes,and90% last
lessthanan hour However, the tail of the distribution
is long: 2% of attacksaregreaterthan5 hours,1% are
greatethan10hours,anddozenspannednultiple days.

Figure 6 shows the probability density of attackdu-
rationsas definedusing a histogramof 150 bucketsin
the log time domain. The x-axisis in logarithmic units
of time, andthe y-axis is the percentagef attacksthat
lasteda given amountof time. For example,whenthe
curve crosseghe y-axis, it indicatesthat approximately
0.5%of attackshada durationof 1 minute. As we sav
in the CDF, the bulk of the attacksare relatively short,
lastingfrom 3—20minutes.Fromthis graph,though,we
seethattherearepeaksat roundedime durationsin this
interval at durationsof 5, 10, and20 minutes. Immedi-
atelybeforethisinterval thereis a peakat 3 minutes,and
immediatelyaftera peakat 30 minutes.For attackswith
longerdurations,we seea local peakat 2 hoursin the
long tail.



6.3 Victim classification

In this sectionwe characterizeictims accordingto DNS
name,top-level domain, AutonomousSystem,and de-
greeof repeatedattacks.

6.3.1 Victim Name

Table 6 shaws the distribution of attacksaccordingto
the DNS nameassociatedvith the victim’s IP address.
We classify theseusing a hand-tunedsetof regular ex-
pressionmatchegi.e. DNS nameswith “dialup” repre-
sentmodems;dsl” or“home.com represenbroadband,
etc). The majority of attacksare not classifiedby this
schemeeitherbecausehey arenot matchedby our cri-
teria (shovn by “other”), or morelikely, becausdhere
wasno valid reverseDNS mapping(shovn by “In-Addr
Arpa”).

Of the remaining attacksthere are several interest-
ing obsenations. First, there is a significant frac-
tion of attacksdirected againsthome machines— ei-
ther dialup or broadband. Someof theseattacks,par
ticularly those directed towards cable modem users,
constituterelatively large, severe attackswith ratesin
the thousandsof paclets per second. This suggests
that minor denial-of-serviceattacksare frequently be-
ing usedto settle personalvendettas.In the samevein
we anecdotallyobsene a significantnumberof attacks
againstvictims running “Internet Relay Chat” (IRC),
victims supporting multi-player game use (e.g. bat-
tle.net), and victims with DNS namesthat are sex-
ually suggestie or incorporatethemesof drug use.
We further note that mary reverse DNS mappings
have beenclearly beencompromisedy attaclers(e.qg.,
DNS translationssuch as “is.on.the.net.illgal.ly” and
“the.feds.cant.secure.thahellz.ca”).

Second,thereis a small but significant fraction of
attacks directed against network infrastructure. Be-
tween 2-3% of attacks target name seners (e.g.,
ns4.reliablehosting.com)while 1-3% target routers
(e.g.,core2-corel-oc48.paol.abe net). Again, someof
theseattacksparticularlyafew destinedowardsrouters,
are comprisedof a disproportionatelarge numberof
paclets. This pointis particularlydisturbing,sinceover-
whelming a router could dery serviceto all end hosts
thatrely uponthatrouterfor connectvity.

Finally, we are surprisedat the diversity of different
commercialattacktargets. While we certainly find at-
tackson bellwetherinternetsitesincludingaol.com,aka-
mai.com,amazon.conandhotmail.comwe alsoseeat-
tacksagainstalarge rangeof smallerandmediumsized
businesses.
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Figure 7: Distribution of attacksto the 10 top-level domains
(TLDs) thatrecevedthe mostnumberof attacks.

6.3.2 Top-level domains

Figure7 shavs the distribution of attacksto the 10 most
frequentlytargetedtop-level domains(TLDs). For each
TLD displayedonthex-axis,we shav onevaluefor each
of the threeweeksof our studyin progressie shadeof
grey. Note thatthe TLDs are sortedby overall attacks
acrossll threeweeks.

Comparingthe numberof attacksto eachTLD from
weekto week,we seethatthereis little variation. Each
TLD is targetedby roughly the samepercentagef at-
tacks eachweek. The domain unknown represents
thoseattacksin which a reverseDNS lookup failed on
thevictim IP addresgjust under30% of all attacks).In
termsof the “three-letter”domains,both comandnet
were eachtargetedby roughly 15% of the attacks,but
edu and or g were only targetedby 2—4% of the at-
tacks.Thisis notsurprising,assitesin thecomandnet
presenmoreattractive andnensworthy targets.Interest-
ingly, althoughone might have expectedattacksto sites
inm |, m | did notshov upin ary of ourreverseDNS
lookups.We do notyetknow whatto concludefrom this
result;for example,it couldbethatni | tarmgetsfall into
ourunknown category.

In termsof the country-codeTLDs, we seethatthere
is a disproportionateoncentratiorof attacksto a small
groupof countries.Surprisingly Romania(r 0), a coun-
try with arelatively poor networking infrastructurewas
targetednearlyasfrequentlyasnet andcom andBrazil
(br ) wastargetedalmostmorethanedu andor g com-
bined.CanadaGermaly, andthe United Kingdomwere
all weretargetedby 1-2%o0f attacks.

6.3.3 AutonomousSystems

As another aggreation of attack tamgets, we exam-
ined the distribution of attacksto AutonomousSystems
(ASes). To determinethe origin AS numberassociated



Kind Trace-1 Trace-2 Trace-3
Attacks |  Paclets(k) Attacks |  Paclets(k) Attacks |  Paclets(k)
Other 1,017 (46) | 19,118 (38) || 1,985 (51) | 25,305 (32) || 2,308 (49) | 17,192 (28)
In-Addr Arpa || 1,230 (29) | 16,716 (33) || 1,105 (28) | 24,645 (32) || 1,307 (27) | 26,880 (43)
Broadband 394 (9.4) | 9,869 (19) 275 (7.1) | 13,054 (17) 375 (7.9) | 8513 (14)
Dial-Up 239 (5.7) 956 (1.9) 163 (4.2) 343 (0.44)|| 276 (5.8) | 1,018 (1.6)
IRC Sener 110 (2.6) 461 (0.91) 88 (2.3) | 2,289 (2.9) 111 (2.3) | 6,476 (10)
Nameserer 124 (3.0) 453 (0.89) 84 (2.2) 2,796 (3.6) 90 (1.9) 451 (0.72)
Router 58 (1.4) | 2,698 (5.3) 76 (2.0) | 4,055 (5.2) 125 (2.6) 682 (1.1)
Web Sener 54 (1.3) 393 (0.77) 64 (1.7) | 5674 (7.3) 134 (2.8) 730 (1.2)
Mail Sener 38 (0.91) 156  (0.31) 35 (0.90) 71 (0.09) 26 (0.55) 292 (0.47)
Firewall 9 (0.22) 7 (0.01) 3 (0.08) 3 (0.00) 2 (0.04) 1 (0.00)
Table6: Breakdavn of victim hostnames.
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Figure 8: Distribution of attacksto AutonomousSystems
(ASes)thatweretargetedby atleast1% of all attacks.

with the victim of an attack,we performediongestpre-
fix matchingagainsta BGP routing table usingthe vic-

tim’s IP addressTo constructhis table,we took a snap-
shotfrom a borderrouterwith globalrouteson February
7, 2001. We then mappedAS numbersto identifying

namesusing the NetGeo[17] serviceto do lookupsin

registry whois seners. We labeledaddressewhich had
no matchingprefixas’NOROUTE”".

Figure 8 shaws the distribution of attacksto the 17
ASesthatweretargetedby atleast1% of all attacks.As
with top-level domains.eachAS namedon the x-axis is
associatedvith threevalues,one for eachof the three
weeksof our studyin progressie shadesf grey. Note
thattheASesaresortedby overallattacksacrossall three
weeks.

From Figure 8, we seethatno single AS or small set
of ASesis the targetof an overwhelmingfraction of at-
tacks: STARNETS was attacled the most, but only re-
ceived 4-5% of attacks. However, the distribution of
ASesattacled doeshave a long tail. The ASesshovn
in Figure 8 accountedor 35% of all attacks,yet these
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Figure 9: Histogramcountingthe numberof victims of re-
peatedattacksacrossll traces.

ASescorrespondo only 3% of all ASesattacled. About
4% of attackseachweekhadno route accordingto our
offline snapshobf globalroutes.

Comparedvith TLDs, ASesexperiencednorevaria-
tion in the numberof attackstargetedat themfor each
week. In otherwords,thereis morestability in the type
or country of victims thanthe ASesin which they re-
side. For example,EMBRATEL's percentagef attacks
variesby morethana factorof 2, andAS 15662,anun-
namedAS in Yugoslaia, did not shov up in week1 of
thetraces.

6.3.4 Victims of repeatedattacks

Figure 9 shaws a histogramof victims of repeatedat-
tacksfor all tracescombined. The valueson the x-axis
correspondo thenumberof attackgo thesamevictim in
thetraceperiod,andthevalueson the y-axis shav what
percentagef victims were attacled a given numberof
timesin logarithmicscale.For example,the majority of
victims (65%)wereattacledonly once,andmary of the
remainingvictims (18%) were attacled twice. Overall,




mostvictims (95%) were attacled five or fewer times.
For theremainingvictims, mostwereattacled lessthan
adozentimes,althougha handfulof hostswereattacled
quiteoften. In thetraceperiod,onehostwasattacled48
timesfor durationsbetween72 secondsand5 hours(at
timessimultaneously)Thegraphis alsotruncatedthere
are5 outlier victims attacled 60—70times, andoneun-
fortunatevictim attacked 102timesin a oneweekspan.

6.4 Validation

Thebackscattehypothesistateghatunsolicitedpaclets
representesponseto spoofecdattacktraffic. Thistheory
which is at the core of our approachijs difficult to vali-
date beyond all doubt. However, we canincreaseour
confidencesignificantly throughcareful examinationof
thedataandvia relatedexperiments.

First, an importantobsenation from Table 3 is that
roughly80%of attacksand98%of pacletsareattributed
to backscattethatdoesnotitself provokearesponsée.g.
TCP RST, ICMP Host Unreachable). Consequently
thesepacletscould not have beenusedfor probingour
monitorednetwork; thereforenetwork probingis not a
goodalternatie explanationfor this traffic.

Next, we wereableto duplicatea portion of our anal-
ysisusingdataprovidedby VernPaxsontakenfrom sev-
eral University-relatechetworksin NorthernCalifornia.
Thisnew datasetoversthesameperiod,but only detects
TCP backscattewith the SYN and ACK flagsset. The
addresspacamonitoredwasalsomuchsmaller consist-
ing of three/16 networks (5255 's of thetotal IP address
space).For 98% of the victim IP addressesecordedn
this smallerdatasetwe find a correspondingecordat
the sametime in our larger dataset.We canthink of no
othermechanisnotherthanbackscattethatcanexplain
suchacloselevel of correspondence.

Finally, AstaNetworks provideduswith datadescrib-
ing denial-of-serviceattacksdirectly detectedat mon-
itors covering a large backbonenetwork. While their
approachand ours capturedifferent setsof attacks(in
part due ingressfiltering as discussedn Section3 and
in partdueto limited peeringin the monitorednetwork),
their dataqualitatively confirmsour own; in particular
we were ableto matchseveral attacksthey directly ob-
senedwith contemporaneougcordsin our backscatter
database.

7 Relatedwork

While denial-of-servicehaslong beenrecognizedas a
problem[14, 18], there has beenlimited researchon
the topic. Most of the existing work can be roughly
catgyorized as being focusedon tolerance, diagnosis
and localization. The first cateyory is composedof

bothapproachefor mitigatingtheimpactof specificat-
tacks[4, 16] andgeneralsystemmechanism$25, 1] for
controllingresourceusageon the victim machine.Usu-
ally suchsolutionsinvolve a quick triageon datapaclets
sominimal work is spenton the attacler’s requestsand
thevictim cantoleratemorepotentattacksbeforefailing.
Thesesolutions,asembodiedn operatingsystemsfire-
walls, switchesandrouters,representhe dominantcur-
rent industrial solution for addressinglenial-of-service
attacks.

The secondareaof researchakin to traditionalintru-
sion detection,is abouttechniquesand algorithmsfor
automaticallydetectingattacksas they occur[22, 13].
Thesetechniquegenerallyinvolve monitoringlinks in-
cidentto the victim andanalyzingpatternsin the arriv-
ing anddepartingraffic to determindf anattackhasoc-
curred.

Thefinal cateyory of work, focuseson identifying the
source(spf DoS attacksin the presencef IP spoofing.
The bestknown andmostwidely deployed of thesepro-
posalsis so-calledingressand egressfiltering [12, 5].
Thesetechniqueswhich differ mainly in whetherthey
aremanuallyor automaticallyconfigured,causerouters
to droppacletswith sourceaddressethatarenotusedby
thecustomerconnectedo thereceving interface.Given
the practicaldifficulty of ensuringthatall networks are
filtered, otherwork hasfocusedon developingtoolsand
mechanisméor tracingflows of pacletsthroughthenet-
work independenbf their ostensiblyclaimedsourcead-
dresd3, 26, 23, 2, 24, 11].

Thereis a dearthof researcltoncernedvith quantify-
ing attackswithin the Internet— denial-of-servicer oth-
erwise.Probablythe bestknown prior work is Howard’s
PhD thesis— a longitudinal study of incident reports
receved by the ComputerEmegeny Responseleam
(CERT) from 1989to 1995[15]. Sincethen,CERT has
starteda new project,calledAIR-CERT, to automatehe
collection of intrusiondetectiondatafrom a numberof
differentorganizationsbut unfortunatelytheirresultsare
not yet available[7]. To our knowledgeoursis the only
quantitatve andempirical study of wide-areadenial-of-
serviceattackso date.

8 Conclusions

In this paper we have presenteda new technique,
“backscatteranalysis, for estimatingdenial-of-service
attackactiity in the Internet. Using this technique we
have obsened widespreadDoS attacksin the Internet,
distributedamongmary differentdomainsandISPs.The
size and length of the attackswe obsere are heay-
tailed,with asmallnumberof long attacksconstitutinga
significantfraction of the overall attackvolume. More-
over, we seea surprisingnumberof attacksdirectedat



afew foreign countriesat homemachinesandtowards
particularinternetservices.
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