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Abstract 
 
Under sponsorship of the Defense Advanced Research 
Projects Agency’s (DARPA) Fault Tolerant Networks 
(FTN) program, The Johns Hopkins University Applied 
Physics Laboratory (JHU/APL) has been conducting the 
Distributed Denial of Service Defense Attack Tradeoff 
Analysis (DDOS-DATA). DDOS-DATA’s goal is to 
analyze Distributed Denial of Service (DDOS) attacks 
and mitigation technologies to develop an understanding 
of how well mitigation technologies perform and how 
they can be combined to limit the potential attack space.  
This paper provides an overview of the DDOS-DATA 
project and discusses analysis results for the Proof of 
Work, Rate Limiting, and Active Monitor mitigation 
technologies considered both individually and when 
deployed in combinations.   
 
1. Introduction 
 
 Distributed Denial of Service (DDOS) attacks disrupt 
and deny legitimate computer and network resource 
usage through compromised hosts that monopolize 
resources.  Mitigation technologies have been developed 
to defend against DDOS attacks, but there is little 
understanding of the fundamental relationships between 
DDOS attacks, mitigation strategies, and attacker 
performance.  Without a solid understanding of these 
fundamental relationships, it is difficult to determine the 
ability of mitigation technologies to address the DDOS 
problem or how mitigation technologies can successfully 
be deployed together.   
 JHU/APL, under the sponsorship of DARPA’s FTN 
program [1], is currently analyzing DDOS attacks and 
mitigation technologies.  DDOS-DATA’s goal is to use 
analysis to quantify how well mitigation technologies 
work, how attackers can adapt to defeat mitigation 
technologies, and how different mitigation technologies 
can be combined.   
 

2. Approach 
  
 There are a variety of options for analyzing computer 
network attacks and mitigation strategies. Closed form 
analysis may be the most desirable form, but can require 
many simplifying assumptions.  The resulting models 
provide valuable first-order insights but detailed analysis 
using them is limited.  An alternative approach is a real 
world test bed, which is an excellent approach to 
understand attack dynamics.  However, a test bed can be 
limited in its ability to vary key parameters (e.g., the 
packet forwarding speed of a router) and size limitations 
can restrict the analysis of DDOS attacks that may use 
hundreds of nodes.  Modeling and simulation provides an 
approach with several advantages over closed form and 
real world test bed analysis:  the ability to vary key 
parameters that may not be easily modifiable in a test 
bed, the ability to easily repeat a given analysis scenario, 
and the use of models without debilitating 
simplifications.  However, successfully using modeling 
and simulation requires model validation, which can be 
very time consuming.  In addition, careful consideration 
must be given to the trade between model fidelity and 
model run time.  
 Analysis using modeling and simulation requires an in 
depth understanding of how attacks and mitigation 
technologies function.  At JHU/APL we accomplished 
this through literature surveys, code examination, and 
experimentation in the JHU/APL Information Operations 
(IO) Laboratory.  Through this process, key parameters 
and behaviors are identified that then drive model 
requirements and design. 
  We use OPNET Modeler, a commercial discrete event 
network simulation package, for model development.  
Development requires enhancing existing OPNET 
models (e.g., to build the target network model) or 
creating models from scratch (e.g., to build the attack and 
mitigation models).  Because computer network attacks 
often exploit nuances in protocol implementations and 
because existing OPNET models adhere to the protocol 
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specifications, they are typically not susceptible to attack 
without enhancements.   
 Model verification and validation are critical to the 
modeling process.  Without them, it is simply not 
possible to derive value from the results.  Verification 
ensures that the model correctly implements the 
developer’s intent  (i.e., “Did I implement it right?”).   
Validation takes many forms but often compares the 
model to the real system ensuring correct model behavior  
(i.e., “Did I implement the right thing?”).   
  After the models have been constructed, verified, and 
validated, our analysis (Figure 1) begins.  We examine 
the target network under benign (i.e., no attack) 
conditions, under attack conditions, and under attack 
conditions with mitigation technologies in place.   
 

Mitigat

Tune Attack 

Mitigat

Tune Attack

Baseline 

No 
Mitigation 

Combined
Mitigation

& 
Tuning 

Mitigation 

Tuning 

• No Attack 
• Confirm PDS of Zero 
• Timing Values for  
   later comparison 

• Attack 
• No Mitigation  
  Technology  Active 
• Tune Server 

• Attack
• Many Mitigation  
  Technologies  Active
• Tune Performance 

• Attack 
• Mitigation  
  Technology  Active 
• Modify Attacks 

 
Figure 1 Analysis Flow 

 
3. The System 
 
 This paper presents analysis results for a 500+ node 
target network, three mitigation technologies (discussed 
below), and a specific attack scenario.  Currently 
underway, however, is construction of a larger 1000+ 
node target network, additional mitigation technologies, 
and expanded attacker capabilities.  This work is 
scheduled for completion in August 2003. 
 
3.1 Target Network 
 
 The 500+ node target network is based on a subset of 
the JHU/APL Intranet.  The network consists of five edge 
switches interfaced to a central switch.   This core switch, 
in turn, connects to a router allowing the supported hosts 
to communicate with APL servers and the Internet.   The 
target network model is constructed from OPNET node 
models. 
  Data collection and traffic analysis from the live 
network was used to guide traffic model development. 
The primary types of traffic flowing across the network 
are web access, e-mail, file sharing and transfer, and 

system management functions.  Existing OPNET models 
(e.g., in the case of web access) and custom models were 
used to model this traffic.  The custom models generate 
client traffic using continuous time Markov processes.   
Each process represents the transmitted packet size and 
the transition arcs represent the times between 
transmitting packets.  The server is modeled using the 
same technique or by randomly selecting a response (e.g., 
packet number and size) based on the received packet 
size [2]. 
 
3.2 Mitigation Technologies 
 
 Because it continues to pose a threat and many 
mitigation technologies are designed to counter it, we are 
initially focusing on technologies mitigating the TCP 
SYN flood attack.1 [3] We have analyzed three mitigation 
technologies: rate-limiting, active monitoring, and Proof 
of Work.  Figure 2 indicates notional deployment 
locations for the technologies.   
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Figure 2 Notional Mitigation Technology Deployment 

 
 Active Monitors observe and classify traffic and then 
free resources consumed by attacks.  One example of an 
Active Monitor, which we have modeled, is the synkill 
software developed at Purdue CERIAS [4].    Synkill 
observes traffic at a protected server to determine if TCP 
connection initiation is being performed correctly. An 
unsuccessful handshake (i.e., one where no response is 
received from the SYN-ACK packet) is an indication that 
the initial SYN packet originated from an attacker instead 
of a legitimate client (which would have responded to the 
SYN-ACK).  All subsequent traffic from a BAD (i.e., 
attack) node is reset thereby freeing server resources for 
legitimate use.   
 Rate limiting, such as the committed access rate 
(CAR) available in Cisco products, limits the flow of 
predefined packet types.  For example, the flow of SYN 
packets can be limited to a subset of the available 
                                                 
1 These findings are applicable to other stateful resource attacks.  
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bandwidth.  This constrains the attacker’s ability to 
consume bandwidth in a limitless fashion.  The Rate 
Limiter can be configured to filter packets that are either 
entering (“inbound”) or leaving (“outbound”) a router 
(Figure 2). 
  Proof of Work (or client puzzle) technologies require   
client payment in return for using the server.  In DDOS-
DATA, the Proof of Work system conditionally requires 
the user to solve a cryptographic puzzle (essentially 
making payment in CPU cycles) [5].  While this puzzle is 
straightforward to solve, finding the solution results in a 
small delay.  This delay slows down resource acquisition 
by an attacker, mitigating an attack. 
 
3.3 The Attacker 
 
 The DDOS-DATA attack model provides a generic 
attack generation capability.  The attacker can generate 
TCP, User Datagram Protocol (UDP), or Internet Control 
Message Protocol (ICMP) packets with analyst specified 
field values (e.g., a SYN Packet) and timing.  The attack 
start and end times are also configurable.  Since the 
analysis focus is on the mitigation technology and 
attacker performance, we have elected not to model the 
DDOS zombie control channels or distribution, instead 
choosing to assume that the zombies have already been 
deployed. 
 
4. Verification and Validation  
 
 Verification and validation activities were conducted 
for all models developed by JHU/APL [2].  In addition, 
overall traffic loading of the network was validated. 
 
4.1 Target Network 
 
 Because the target network model was constructed 
with OPNET models, no verification activities took 
place.  To validate target network traffic models, we 
compared live data with model traffic levels. We based 
the target network traffic load on the busiest hour in 24 
hours of collected JHU/APL traffic.  Validating this 
model compares two values. The first is the traffic 
volume between clients and servers.   Table 1 compares 
the test bed data transfer size with results averaged over 
37 model runs for the two key protocols: the file transfer 
(due to its relative volume) and the intranet Web traffic 
(because the internal Web server will be the attacker’s 
target). The mismatch in Intranet Web Requests occurs 
because OPNET is using a fixed Web request size. 
However, because the analysis will rely on the creation of 
a socket and the length of the connection, this value is of 
secondary importance to the amount of data transferred. 
The other modeled protocols either match well or 
underestimate the amount of transferred data. 

Table 1 Comparison of Modeled and Observed 
Traffic Levels 

Traffic Expected 
Value (Bytes) 

(observed) 

Average 
Model Value 

(Bytes) 

% 
Error 

File Transfer Sent 1462712006 1486479035 1.62 

File Transfer Control 
Sent 

24727655 26819456 5.44 

Intranet Web Client Sent 410109 518560 26.4 

Intranet Web Server 
Sent 

1881059 1866435 -0.7 

Overall Data Transfer 1757466006 1729659550 -1.58 

 
 The second traffic validation test examines the traffic 
processed by the central switch.   Because this switch 
transfers all system and attack traffic, validating its load 
ensures correct model traffic load.  To perform 
validation, we divided the modeled hour into small 
windows and measured the switch load in each window.  
Frequency of each switch load was measured and plotted.  
Figure 3 compares plots for each of the 24 hours of 
measured traffic (“Observed Network Traffic”) and 37 
model runs (“Model Runs”) using a 0.1 second 
measurement window. 
 Figure 3 shows that model traffic, which was derived 
from the busiest hour, provides a more evenly distributed 
traffic flow (i.e., flatter graph) than the real data from 
which it was derived (“Busiest Hour”).  The model has 
generally more occurrences between 200 and 400 packets 
per window, less from 600 to 700, and then more from 
700 to 800.    
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Figure 3 Network Traffic Validation 

 While this traffic is representative, it is not a complete 
match to the observed network traffic. In our analysis we 
have varied traffic parameters to examine the effects of 
heavier and lighter loading.    These results are presented 
in Section 5.4. 

0-7695-1897-4/03/$17.00 (C) 2003 IEEE



 
4.2 Mitigation Technology 
 
 Verification tests were performed on all mitigation 
technology models.   Rate Limiting is provided here as an 
example.  For a thorough discussion on mitigation model 
verification and validation, see [2].   
  When building the Rate Limiter model, we first 
implemented the CAR algorithm in Matlab.  To verify 
the OPNET Model, we compared results from the two 
models.  The Rate Limiter limits traffic by using a 
“bucket” filled with tokens.  Tokens are added to the 
bucket at the normal traffic rate and removed whenever 
traffic is passed.  The buckets allow traffic to 
momentarily flow in excess of the normal rate.  Figure 4 
compares Matlab and OPNET model bucket sizes when 
the Rate Limiter is subjected to a continuous 100 packets 
per second flow but the normal rate is 500 packets per 
second. 
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Figure 4  Rate Limiter Verification 

 
 Results validation compares the model with real world 
system performance.  To validate the Rate Limiter model, 
a test network was configured in both the JHU/APL IO 
Laboratory and the OPNET model.  The Rate Limiter 
was configured to pass a normal flow of 8,000 bits per 
second and was subjected to an attacker transmitting data 
at 48,000 bits per second.  Figure 5 compares the number 
of packets dropped by the Rate Limiter in the IO 
Laboratory test bed and an equivalent model.  The results 
show that both systems drop packets similarly.   
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Figure 5 Validation of Rate Limiter Process 

 
4.3 Attacker 
 
 Attack model verification compares model output with 
expected behaviors (e.g., packet transmission times, 
packet contents, attack start and end times).  For 
example, the attack model is configured to transmit TCP 
SYN packets at a specific rate.  OPNET’s debug mode 
was used to confirm packet content and intertransmission 
time. 
 Attack model validation is performed by comparing 
model results to results obtained in JHU/APL’s IO 
Laboratory test bed. We set up a test bed with four 
different subnets and installed the Stacheldraht DDOS 
attack tool on all nodes except the victim. These nodes 
included Linux, Solaris, and BSD machines. The attack 
rate from each attack node and the attack rate seen by the 
victim were recorded. The test bed network was then 
modeled in OPNET as shown in Figure 6. 

 

Figure 6 Attacker Validation Network 

 The attack rate for each test bed node is relatively 
constant, as shown in Figure 7. Figure 8 shows the attack 
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transmission rate modeled as a constant rate in OPNET.  
The attacker model can be configured with a stochastic 
attack rate allowing it to mimic variable attack packet 
flow rates.   
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Figure 7 Test bed Attacker Packet Transmissions 
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Figure 8 Model Attacker Transmission Rates 

 
5. Analysis  
 
 Analyzing the interaction between the target network, 
attackers and mitigation technologies begins by 
establishing the attack and the metrics.  The sections 
below present analysis results for the following cases: 
baseline (no attack), no mitigation technology, single 
mitigation technology, and mitigation technology 
combinations. 
 
 
 
 
5.1 The Attack 
 

 While DDOS attacks have existed for some time now, 
their evolution has focused on automated deployment 
processes and enhanced control capabilities and not on 
the development of new and/or more effective attack 
methods.  [3]  With this in mind, DDOS-DATA is 
initially focusing on the TCP SYN flood attack because it 
is still a pertinent threat and many mitigation 
technologies are designed to mitigate that attack.   
 When a TCP connection is initiated, the client2 begins 
the connection by sending a TCP packet with the SYN bit 
set.  The server receives this SYN packet, places an entry 
in the pending connection queue to record this event, and 
transmits a synchronize-acknowledge (SYN-ACK) 
packet.  If the client is legitimate, it then transmits an 
ACK packet.  The server, upon receiving the ACK 
packet, considers the connection complete and removes 
the connection from the pending connection queue. 
 The TCP SYN Flood attack relies on the finite length 
of the TCP pending connection queue.  If a SYN packet 
is received while the pending connection queue is full, no 
SYN-ACK packet is transmitted and a connection cannot 
occur.  This results in a denial of service. 
 
5.2 Metrics 
 
 DDOS-DATA metrics examine the attack scenario 
from three perspectives: the legitimate client, the 
attacker, and the mitigation technology.  The primary 
metric, which considers both the legitimate client and 
attacker, is the probability of denied service (PDS).  We 
calculate PDS as  
 
PDS = 1-(Number of Successful Connections)/(Number 
of Attempts)  
 
where an attempt is the initiation of a TCP socket (i.e., 
the transmission of one or more SYN packets from a 
legitimate client) and a successful connection is the 
completion of the TCP three-way handshake.  
 Attacker effort measures the number of SYN packets 
produced and the number of zombies necessary to 
conduct the attack.  This metric allows us to compare 
attacks across mitigation technologies (e.g., determine 
the increase in required attacker resources to maintain 
PDS due to a newly deployed mitigation technology). 
 Mitigation technologies also have associated metrics 
depending on the system.  For example, when multiple 
mitigation technologies are activated in the network, the 
contribution of each mitigation technology to preventing 
the attack is computed.   Another applicable metric is 
differential impact (DI), which compares PDS for 

                                                 
2 The terms client and server are being used to describe the two parties 
involved in the connection.  While different terminology would be 
appropriate in a peer-to-peer data exchange, the concept is the same.   
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multiple mitigation techniques with PDS for a single 
mitigation technique. 
 
5.3 Target Network Analysis Parameters 
 
 A large variety of parameters drive the target 
network’s traffic levels and overall behavior.   Traffic is 
generated by either the continuous time Markov Models 
described in Subsection 3.1 or OPNET application 
models.  The parameters used to drive the continuous 
time Markov models are too numerous to publish here.  
Table 2 presents traffic parameters that drive web client 
and server behavior 

Table 2 Web Traffic Parameters 

Parameter Value 
Internet Web First  
Object Size 

Lognormal(2.17e3,1.59) 

Internet Web Other  
Object Size 

Lognormal(2.63e3,1.55) 

Internet Number of 
Objects 

Weibull(0.172,0.6763) 

Intranet InterRequest 
Time  

Exponential(mean = 
1390.1) 

Intranet InterRequest 
Time 

Exponential(mean = 
231.6) 

 
 Server parameters and attacker parameters also 
influence system behavior.   Table 3 summarizes key 
analysis parameters. 

Table 3 Analysis Parameters 

Parameter Value 
Attack Start Time 4500 sec 
Attack End Time 5500 sec 
TCP Pending 
Connection Queue Size 

39 or 8192 

TCP Connection 
Retransmission 

Attempts 
Based  

TCP Connection 
Retransmission Number 
of Attempts 

3 

 
 
5.4 Baseline 
 
 Baseline model runs (i.e., no attack, no mitigation) 
confirm that there is no denied service when no attack is 
present in our 500+ node target network.  After verifying 
this, we subjected the network with no active mitigation 
technology to an attack.   Initially, a pending connection 
queue size of 39 (consistent with systems present on the 
network) was used.  These runs show that a single 

attacker using a 1000 packets per second SYN flood 
attack causes a PDS of 0.97 (averaged over 40 runs3). 
Next, we increased the connection queue size to 81924 
[6].  The resulting PDS profile is shown in Figure 9.  The 
two vertical lines denote the start and end of the attack 
and the circles represent PDS in a one second window 
averaged over the forty model runs.  When these values 
are averaged, the resulting PDS is 0.68. 
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Figure 9 Average PDS as a Function of Time for 

 8192 Queue  

 To investigate the impact of traffic load changes, this 
analysis was repeated with heavier and lighter traffic 
loading.  Heavier traffic loading was obtained by 
activating an additional five file transfers throughout the 
network. Traffic for the existing file transfer and all other 
applications remained unchanged. This results in five 
times the traffic volume. For lighter traffic loading, we 
disabled all traffic except the Internet/Intranet Web 
applications. (Web traffic is required for PDS 
calculations.)   This results in one one-hundredth the 
traffic loading.  
 Model runs were made for light and heavy traffic 
loading and PDS was calculated during the attack period. 
PDS was calculated for each model run and then 
averaged over the set of runs. Table 4 shows average 
PDS for normal, light, and heavy traffic. Results indicate 
that the difference in average PDS for normal and heavy 
traffic is less than 2 percent and the difference between 
normal and light is less than 5 percent.  While these 
results suggest a dependence on traffic loading, the 
differences are small and we have elected to focus our 
analysis on mitigation technology. 
 

                                                 
3 Runtime constraints have forced the number of model runs to vary 
across analyses.  As time permits, additional runs are being performed. 
4 A stateful resource attack’s severity can be reduced by providing more 
resources. 
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Table 4 Average PDS for Variable Traffic Conditions 

 
Traffic Type 

Average 
PDS 

Standard 
Deviation 

Number 
of Runs 

Normal  0.681 0.143 30 
Light  0.637 0.126 50 
Heavy  0.675 0.134 40 
 
5.5 Active Monitor 
 
 To investigate the impact of adding an Active 
Monitor, we again used a Pending Connection Queue of 
39 and a TCP SYN flood attack of 1000 packets per 
second.  The average PDS drops from 0.97 to 0.81 over 
the course of the attack.   
  Figure 10 shows average PDS as a function of time for 
this case. While average PDS is decreased, it now 
continues beyond the end of the attack when the Active 
Monitor is enabled.  This deviates from the behavior 
shown in Figure 9. 
 Further investigation reveals that the Active Monitor 
may misclassify nodes under certain circumstances.  In 
particular, when the pending connection queue on the 
server is full, spoofed SYN packets will be dropped by 
the server, no SYN-ACK packet will be sent, and the 
client will not respond.   Since the Active Monitor 
observes the SYN packet but does not observe a 
completed handshake, the node is classified as BAD.   
When the client does attempt to gain service, the 
connection is reset by the Active Monitor.  Eventually, 
the Active Monitor will observe enough traffic after it 
resets the connection to reclassify the node.  This 
accounts for the drop in PDS shown in Figure 10 as a 
function of time.  Figure 11 shows the average number of 
misclassified nodes as a function of time for this case.5   
 There are two timing parameters associated with the 
Active Monitor.  The staleness timer determines the 
maximum amount of time traffic cannot be observed 
before a node is reclassified as NEW.  The expire timer is 
the amount of time a system waits before it classifies a 
node as BAD and resets the connection.   We have 
analyzed the performance impact of varying the expire 
timeout.  Our results show that a shorter expire timeout 
can cause PDS to decrease because attack connections 
are more quickly reset by the Active Monitor.  However, 
making the expire timeout too short can actually cause 
PDS to increase as long-delay links are timed out and 
misclassified before they can complete the three way 
handshake.   

                                                 
5 This misclassification behavior can be avoided if the Active Monitor 
checks that a SYN-ACK is sent by the server before a node can be 
classified as BAD.  Furthermore, nodes will be reclassified more 
quickly if they request service at a faster rate.  The authors of [4] are 
aware of these issues. 

1 

                                                 
1 A pending connection queue of 39 shows similar results. 
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Figure 10 Average PDS for Active Monitor Against 

TCP SYN Flood Attack  
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Figure 11 Average Number of Nodes Misclassified by 
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5.6 Rate Limiter 
 
 Using data derived from the JHU/APL network, the 
Rate Limiter model was initially configured to pass one 
SYN packet every 16.7 seconds to the server.  The 
Pending Connection Queue was configured to 8192 and 
the network was subjected to the 1000 packet per second 
attack between 4500 and 5500 seconds, as before6.  
Figure 12 presents PDS as a function of time for this 
scenario.  Recalling that PDS for a network with no Rate 
Limiter and this attacker is 0.68, PDS actually increases 
to 100% with Rate Limiting.  Examination of the data 
reveals that indiscriminately dropping SYN packets 
destined for the server causes legitimate SYN packets to 
be dropped, resulting in an increase in PDS.   

                                                 
6 A pending connection queue of 39 gives similar results. 
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1 A pending connection queue of 39 shows similar results.
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Figure 12 Average PDS with Outbound Rate Limiting 
and 1000 pps Attack 

 
 Next we modified the rate limiting rules so that each 
input to the core router was limited (an inbound 
configuration as discussed in Subsection 3.2).   Using the 
same attack as before, and configuring the Rate Limiter 
to pass SYN packets as appropriate for each interface, the 
attack was run and PDS computed.  Figure 13 shows 
PDS as a function of time for all hosts trying to use the 
attacked web server.     
 Figure 13 shows that PDS, calculated over 1 second 
windows, varies between 0 and 1 during the attack.  To 
explain this change, PDS was re-calculated for two cases.  
The first (Figure 14) was for hosts that used the same 
router interface as the attacker.  These hosts had a PDS of 
1.0 during the attack.  The second (Figure 15) is for hosts 
using other interfaces.  These hosts had a PDS of 0.0 for 
the attack.  This finding suggest that while the Rate 
Limiter, in this configuration, may increase the denied 
service of legitimate traffic that shares the network path 
used by the attacker, it does protect users who do not 
share this path.    
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Figure 13 Average PDS as a Function of Time for 
Inbound Rate Limiting (All Hosts) 
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Figure 14 Average PDS for Clients Sharing an 
Interface with the Attacker 

 
5.7 Proof of Work 
 
 A server using the Proof of Work technology and 
considering itself under attack will require clients to 
perform work before they are granted resources (i.e., 
space in the pending connection queue).  In this 
implementation, the work is solving a cryptographic 
puzzle.   The server will request that a puzzle be solved 
when its pending connection queue exceeds a certain 
level (defined by the pending connection queue length 
minus the defense threshold).   It is assumed that the 
legitimate clients are aware of the Proof of Work 
technology and will first request access to the server via 
the Proof of Work protocol.  The server’s response to 
these requests determines if the client can immediately 
request the resource or must first solve a puzzle. 
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Figure 15 Average PDS for Clients that do not Share 

the Attacker’s Interface 

 
 We first subjected the internal web server, equipped 
with Proof of Work, to the 1000 SYN per second SYN 
flood attack previously described.  Since the attacker 
does not know about the Proof of Work protocol, they are 
not properly requesting permission to use the server and 
their SYN packets are simply dropped.  This results in a 
PDS of zero for this attack. 
  If the attacker is aware of the Proof of Work process, 
they would modify their attack.  The simplest 
modification is to attempt a SYN flood while accounting 
for the Proof of Work protocol.  The attacker, in this 
case, asks for permission to use the server and, if 
necessary, will attempt to solve the puzzle. Examination 
of the model output for this case reveals zero PDS.  The 
attacker will initially fill up the pending connection 
queue as it is given approval to submit requests for 
resources.  However, when only defense threshold slots 
remain available, the server begins to request that puzzles 
be solved before resources can be requested.  The 
attacker is then required to solve many puzzles (one for 
each request) and their CPU becomes increasingly 
overwhelmed.  Our analysis shows that the attacker’s 
ability to send attack packets decreases, lightening the 
attack, and allowing service to continue for legitimate 
clients (i.e., PDS is zero).    
 Since the puzzle process overwhelms the attacker’s 
ability to send packets, an attacker would seek to solve 
the puzzles more quickly perhaps by distributing the 
work load across multiple systems. To examine this, the 
model was configured to use 450 low rate attackers each 
producing an attack every 0.45 seconds (for a net attack 
of 1000 packets per second).  The results of this attack 
are shown in Figure 16.  The average PDS is 0.66, which 
is comparable to the 0.68 for the baseline attack.   
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Figure 16 Average PDS for Distributed Proof of Work 

Attacker (8192 Pending Connection Queue) 

5.8 Active Monitor and Rate Limiter 
 
 Our results show that the Active Monitor, by itself, 
reduces PDS to 0.01 from 0.68 during a 1000-pps SYN 
flood. Although PDS is reduced, the attacker bandwidth 
remains unconstrained. To investigate the impact of 
increasing bandwidth allocated to this service while 
another mitigation technology is present, the Active 
Monitor and the Rate Limiter were activated and the Rate 
Limiter normal traffic rate was varied.  Figure 17 shows 
average PDS as a function of the Rate Limiter normal 
rate for the Rate Limiter, by itself, and with the Active 
Monitor. In both scenarios, average PDS remains above 
0.99 until the normal rate reaches 100,000 (312.5 SYN 
packets per second). However, as the normal rate reaches 
100,000, PDS drops more sharply in the multiple-
mitigation case (average PDS drops to 0.68, as compared 
to 0.84). In both scenarios, the effect of the Rate Limiter 
lessens as normal rate increases and the effect of the Rate 
Limiter on PDS disappears when the normal rate exceeds 
the attack rate (i.e., the Rate Limiter passes all attack 
packets). In the multiple-mitigation case, the PDS 
limiting value is the average PDS shown previously for 
the Active Monitor case (average PDS of 0.01).  
 The effect of combining the two mitigations illustrates 
the tradeoff between reduced PDS and restricted attacker 
bandwidth. In particular, reducing attacker bandwidth by 
about one-third introduces a PDS of 0.4, and reducing 
attacker bandwidth by about two-thirds introduces a PDS 
of 0.68. The latter case produces an average PDS 
comparable to the nominal value with no mitigation 
technology in place. Thus, the advantage of reduced 
attacker bandwidth is gained without decreasing the level 
of available service. Of course, the attacker could 
increase the attack rate, filling the available bandwidth. If 
this occurred, then this scenario reduces to the Rate 
Limiter one attacker case previously analyzed. 
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Figure 17 Average PDS as a Function of Rate Limiter 

Normal Rate 

 
5.9 Proof of Work and Active Monitor 
 
 The Proof of Work process requires clients to use their 
real addresses to request Proof of Work puzzles, which 
must be solved before a connection is allowed. This 
process eliminates an attacker’s ability to spoof the 
source address of attack packets. As previously 
discussed, the primary weakness of the Active Monitor is 
misclassification resulting from an attacker spoofing 
legitimate client addresses. Given this information, it 
seems that the two mitigation strategies may have a 
synergistic effect in lowering PDS during an attack. 
 A distributed Proof of Work attack of about 1000 pps 
is launched against the internal Web server. In this case, 
Proof of Work and the Active Monitor are activated. 
With a queue size of 8192, the average PDS over the 
entire attack period is 0, as shown in Figure 18. This 
result is consistent with earlier Active Monitor results 
with this queue size. With a queue size of 39, as shown in 
Figure 19, average PDS over the entire period is 
approximately 0, much lower than the resulting PDS of 
0.81 using only the Active Monitor. In this example, the 
attacker is unable to send spoofed attack packets with 
legitimate client addresses. Consequently, the 
misclassification problem is removed and the Active 
Monitor proves much more capable at mitigating the 
attack.  
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Figure 18 Average Probability of Denied Service for 

Proof of Work and Active Monitor (8192 Queue) 
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Figure 19 Average PDS for Proof of Work and Active 

Monitor (39 Queue) 

 
 When a TCP SYN packet is transmitted without prior 
payment to a server protected by the Proof of Work 
mitigation technology, the server simply discards the 
packet. While this mitigation feature is effective against 
the baseline attack, it does interfere with the three-way 
handshake. Because the Active Monitor monitors this 
handshake, an attacker could conceivably use this to their 
advantage. To investigate this, the combination of Proof 
of Work and Active Monitor was subjected to a modified 
attack. The attacker generates a stream of spoofed SYN 
packets directed at the server. The server’s Proof of Work 
process discards these attack packets because they did not 
make a Proof of Work request. However, because the 
Active Monitor is not aware of the Proof of Work 
process, it interpreted unacknowledged SYN packets as 
an attack and classifies the source addresses as BAD. 
Thus, the attacker can send an attack packet to the server 
for each node the attacker wishes to deny service.  When 
the misclassified nodes make a connection attempt, the 
connection is reset, resulting in a denial of service. 
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Average PDS for the targeted clients, as shown in Figure 
20, is 0.69 for the first 1000 seconds after the attack 
began and is 0.31 from 5500 seconds until the end of the 
simulation. As in the case of the baseline attack, PDS 
declines after the attack because the Active Monitor 
eventually reclassified the victim nodes as GOOD after it 
observed legitimate TCP traffic from them.  
 This attack is effective because the Active Monitor 
and Proof of Work mitigation strategies do not coordinate 
efforts that interfere with each other’s observed data. If 
the Active Monitor only monitored connections approved 
by the Proof of Work process, then this attack would not 
be effective. In this case, an attack that is ineffective 
against a mitigation technology (Proof of Work) is made 
effective by the addition of the Active Monitor.  
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Figure 20 Average PDS Over 100-Second Windows 

with Proof of Work and Active Monitor and  

 
6. Conclusions 
 
  DDOS-DATA is examining the relationship between 
mitigation technologies and computer network attacks.  
By using analysis, we are developing a detailed 
understanding of the interaction between DDOS 
mitigation technologies and attackers.  This type of 
understanding is critical to breaking the reactionary cycle 
that currently exists between attackers and defenders.   
 Modeling and Simulation is useful for performing 
these analyses.  When using Modeling and Simulation, 
verification and validation are both necessary and critical 
to the analysis.  Without these activities, the validity of 
any conclusions drawn from the analysis is in question. 
 Our initial study conclusions are:  
 

• It is important that systems be tuned to best 
defend themselves against attacks before 
mitigation technologies are applied. 

• Mitigation techniques that seek to classify nodes 
must consider that an attacker can use that 
misclassification to their advantage.  

Classification schemes should account for data 
loss (e.g., packets lost in the network) to as great 
an extent as possible. 

• Blind Rate Limiting techniques can reduce 
DDOS effects for those links not involved in the 
attack.  However, they can amplify effects for 
clients who share communication links with the 
attacker. 

• Requiring a client to make a payment can be an 
effective countermeasure against DOS attackers.  
However, these mechanisms can be overcome 
by subjecting the system to a distributed attack 
that spreads the payment mechanism throughout 
the network.   

• Mitigation technologies can be successfully 
combined but only when they either share 
information or when they are designed to not 
interfere with each other.  Otherwise combining 
systems may introduce vulnerabilities or 
increase attack effectiveness.   
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