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» Designing trusted operating systems
 Encapsulated environments
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/ Designing Trusted Operating \
Systems
* Security professionalstend to speak of trust,
rather than security, in this context

» A more practical definition of what OS
users want

» Theuser’strust that the OSwill provide
certain security featuresproperly

o
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/ Security Policies and Trusted \
Operating Systems
» A policy is a statement of the security
we expect the system to enforce

» We trust a system to the degree we
believe it properly implements its
policy
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Discretionary and Mandatory
Access Control

« Discretionary access control means
that the users can choose to enforce it
—Or not

» Mandatory access control means the
system forces access control on the
users

k —Whether they like it or not /
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More on Mandatory Access
Control
« Allows higher authorities to control

what users do with data they can
access

« Can prevent a user from telling a secret
to someone who “shouldn’t” know it

- J
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Returning to Our Example

ProcessA ProcessB

G nmme your
secret

al
|
i

Lg|

What if the system authorities don’'t want A
totell the secret to B?
Can we prevent this?
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Lecture14
Page7

7~ Why Would We Want To
Prevent It?
* What if the secret is proprietary
information?

* What if the secret is essentially accessto
valuablesoftware?

* What if we're concerned that B will be able
tofool A?

— Perhapsviasocia engineering?

* What if A and B are processes, not people?
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Common Security Policies

» Designed to state what we do and don’t
want to alow

—Like the previous example
* Military security policies
» Commercial security policies

o
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Military Security_Policies_!

» Based on severd ranks of security
—Unclassified
—Restricted
— Confidential
— Secret
—Topsecret
« And compartmentalized by the need to

kknow
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Clearancesin Military Security

« A clearance describes what
information a subject can know

« All information has some security |abel

* A subject can access information only
if he has the proper clearance

» A combination of the rank and the
kcompartment alowed
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etermining Security Accessin
Military Models

 Based on a dominance relationship

A subject dominates an object iff:

— the subject has a more restricted
rank than the object and

—the subject has access to the all the

compartments of the object
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» Typically lessrigid and hierarchical
than military policies

 But with similar concerns

» Generaly more flexibility in setting up
levels and compartments

* And in assigning access privileges
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Clark-Wilson Security Policy

« Particularly concerned with data
integrity

« System designer specifies well-formed
transactions

e System must guarantee that all
permitted operations conform to such
transactions
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/ Separation of Duty Security \
Policy

* To guarantee that important
commercial activities are not
performed improperly by employees

* Requires active participation by
multiple parties to achieve a goa
—Even if one or more partiesis

permitted to perform every step
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Chinese Wall Security Policy

» Meant to provide strict separation between
parts of acompany

—For intellectua property reasons
—Or to prevent conflicts of interest

« Definesclasses of conflicts among different
groupsin the company

* Subjects cannot accessinformation from

kmore than one class member
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L Models of Security

* Lattice model

* Bell-La Padua model

» Many other models exist
—Some are practical

—Some are useful for proving
k theoretica limits of security /
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Lattice Model of Security

A generalization of military model

 Elementsof the|attice are the security
labels of the subjects and objects

A partial ordering isdefined on thelattice
elements

 Accessis permitted from one e ement to

another if firstis“grester” than the second

\_
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Example of the Lattice Model

*E can access A,
but A can’t access

/ G
E A
E
/ \ *A and B cannot
A access each other
\ *Everyone can
access J
a

J G can access
everyone

k/

%
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/" Bell-LaPadua Confidentidity \
Model

* Describes alowable paths of
information flow in a secure system

» Another formalization of military
security model

 Designed for systems that handle data
at multiple levels of sensitivity
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/I mportant Security Properties for\
Bell-LaPadua

e Simple security property

e *-Property

» Tranquility property

k Lecture14
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Simple Security Property

 Subject s may have read access to
object o only if C(0) <= C(9)

* Meansthat | can read any object if |
have a higher enough security class

« So the general can listen to what the
private says

k Lecture 14
2
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*-Property

* Subject swho hasread accessto objecto
may havewrite accessto objectp only if
C(0) <=C(p)

* Meansthat | can only writeto objectsat my
security classor highet

» Meansthegeneral can't say anything to the
private

k-Preventswritedown /
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Tranquility Property

« Classification of a subject or object can
change
—But not while the subject is
accessing anything
—Or while the object is being accessed

 Thereby assuring complete mediation
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Model
e Let'ssay | want it in my operating
system
e How do | get it?
» What are the implications of having it?
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/” Thinking About This Security \
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d Pesired Security Features of a
: Normal OS

Authentication of users

Memory protection

File and 1/0 access control

Generd object access control

Enforcement of sharing

Fairnessguarantees

Secure |PC and synchronization

Security of OS protection mechanisms

€5239, Spring 2002
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Extra Features for a Trusted OS

» Mandatory and discretionary access
control

* Object reuse protection

» Complete mediation

* Audit capabilities

* Intruder detection capabilities
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How To Achieve OS Security

» Kernelized design

 Separation and isolation mechanisms
* Virtualization

 Layered design

\
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Advantages of Kernelization

» Smaller amount of trusted code

* Easier to check every access

* Separation from other complex pieces
of the system

 Easier to maintain and modify security
features
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Reference Monitors

< An important security concept for OS
design
« A reference monitor is a subsystem
that controls access to objects
—It provides (potentially) complete
mediation
-kVery important to get this part right
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l Systems
* How do | know that | should trust
someone’ s operating system?

» What methods can | use to achieve the
level of trust | require?
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¢ Testing
* Formal verification
« Vdidation

Assurance M ethods
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« If | want to buy a secure operating
system, how do | compare options?

» Use established standards for OS
security

» Severa standards exist

o
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Some Security Standards

» U.S. Orange Book
¢ European ITSEC
¢ U.S. Combined Federa Criteria

* Common Criteria for Information
Technology Security Evaluation

\
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The U.S. Orange Book

» The earliest evaluation standard for
trusted operating systems

* Defined by the Department of Defense
in the late 1970s

* Now largely a historical artifact

\
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Purpose of the Orange Book

¢ To set standards by which OS security
could beevaluated

« Fairly strong definitions of what features
and capabilitiesan OS had to have to
achieve certain levels

« Allowing “head-to-head” evaluation of
security of systems

k—And specification of requirements
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Orange Book Security Divisions

« A,B,C,andD
—Indecreasing order of degree of security
* Important subdivisionswithin some of the
divisons
» Requiresformal certification from the
government (NCSC)
—Except for the D level

CS239, Spring 2002
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/ Some Important Orange Book \
Divisions and Subdivisions
¢ C2 - Controlled Access Protection
» B1- Labeled Security Protection
* B2 - Structured Protection
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The C2 Security Class

* Discretionary access
—At fairly low granularity

* Requires auditing of accesses

» And password authentication and
protection of reused objects

» Windows NT has been certified to this

kd ass
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The B1 Security Class

* Includes mandatory access control
—Using Bdll-La Padua model
—Each subject and object is assigned a
security level
 Requires both hierarchical and non-
hierarchical access controls

k Lecture 14
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The B3 Security Class

* Requires careful security design
—With some level of verification

* And extensive testing

» Doesn't require formal verification

—But does require “a convincing
argument”

kTrusted Mach isin this class

CS239, Spring 2002
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| . | Auditi \

» An important part of a complete
security solution

« Practical security depends on knowing
what is happening in your system

 Logging and auditing is required for
that purpose

J/
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* No security system will stop al attacks
—Logging what has happened is vita
to dealing with the holes
* Logging aso tells you when someone
istrying to bregk in

—Perhaps giving you a chance to close
possible holes
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¢ One example of what might be logged
for security purposes

« Listing of which users accessed which
objects

—And when and for how long
* Especialy important to log failures

AccessLogs

€5239, Spring 2002
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Other Typical Logging Actions

* Logging failed login attempts
—Can help detect intrusions or
password crackers
* Logging changes in program
permissions
—Often done by intruders

o
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Problems With Logging

« Dealing with large volumes of data
 Separating the wheat from the chaff

—Unless the log is very short, auditing
it can be laborious

« System overheads and costs

\
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Log Security

« If you uselogsto detect intruders, smart
intruderswill try to attack logs

—Concedling their traces by erasing or
modifying thelog entries
* Append-only accesscontrol helpsalot here
* Orlogging to hard copy

k-Or logging to aremote machine /
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* Security mechanisms are great
—If you have proper policiesto usethem

* Security policiesare great
—If youfollow them

* For practical systems, proper policiesand
consistent use areamajor security problem

\
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Auditing

» A formal (or semi-formal) process of
verifying system security

* “You may not do what | expect, but
you will do what | inspect.”

* A requirement if you really want your
systems to run securely

Lecture 14
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Auditing Requirements

« Knowledge
—Of the installation and genera
security issues
* Independence
Trustworthiness
Ideally, big organizations should have

their own auditors
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When Should You Audit?

* Periodically
« Shortly after making major system
changes
—Especialy those with security
implications
» When problems arise
k —Internaly or externally

Lectre 14
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Auditing and Logs

* Logs are a mgjor audit tool

* Some examination can be done
automaticaly

« But part of the purpose is to detect
things that automatic methods miss

—So0 some logs should be audited by

hand
\
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A Typical Set of Audit Criteria

» For aUnix system
» Somesamplecriteria:
— All accounts have passwords
—Limited use of setuid root
—Display last logindate onlogin
—Limited write accessto system files
k —No“.” inPATH variables /
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What Does an Audit Cover?

« Conformance to policy

* Review of control structures

« Examination of audit trail (logs)
e User awareness of security
 Physicd controls

 Software licensing and intellectual
kproperty issues

CS239, Spring 2002
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[Encapsulated Envi ronments]

* If you can't trust an executable, how
can you run it?

* Put it in abox where it can’t do much
harm

» Today’'s systems offer only limited
abilities to do that
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Options for Encapsulation Today

* Create anew user ID for the
application
—Bereal careful about the privileges
given to that user

* Run it under the Java virtual machine

—In the most restrictive mode

€5239, Spring 2002
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/ Improved Encapsulation \
Solutions
* Alter the OS

» Use existing OS mechanisms to build
new protection domains

» Address space protection
* Language-based solutions

k Lecture14
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 Change the OS to add finer granularity
access controls

» And/or more flexibility in setting up
security domains

¢ Use the new OS tools to solve the
problem

—Begging the question of, how?

\
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/ Pros and Cons of OS-Based \
Solutions
+ Potentially good performance
+ With good design, arbitrary flexibility
—You must ater the OS
— High security pendltiesif you blow it
— Only likely to be effective if lots of
kfoI ks play the game /
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Example- DTE

» Use OS dlteration to allow checking of
separate access control database

« Each process' security permissions
specified in database

* When process tries to do something,
check database to see if it’'s permitted

CS239, Spring 2002
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» Make clever use of existing OS
features to improve access control

 Usualy by trapping particular system
calsin clever ways

» When trapped, apply access control to
them in new ways

Lecture 14
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/ Pros and Cons of Leveraging \
OS Features
+ Often pretty cheap and easy to build
+ Can work at the user level

+ Can use existing, proven access control
as afallback

— Security retrofits have a dismal history
— May have performance problems

— May offer limited leverage

Lecure14
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Example - Janus

 Designed to limit accessfor Web helper
programs

» UsestheUnix / pr oc file systemto trap
system calls from these processes

» When trapped, check to seeif they are
alowable

* High overhead whenever you dothis
k — So better not do it often

Lectre 14
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 The approaches aready discussed have
afundamental limitation -
—They only protect things outside the
process address space

» Most access control assumes a process
should have unlimited access to its

own address space
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Intra- Address Space Protection

» Why shouldn’t aprocess completely control
itsaddressspace?
* Because of composable applications

* For performance reasons, different
components may need to share an address
space

* Yet they may havetheir own security

krequi rements /
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Building Programs Out of
Components
* Increasingly, programs are being built
out of prewritten components
—Due to COM, CORBA, etc.

¢ So to build a program, dlap together
half a dozen pre-existing pieces

—And add alittle of your own code

&But can you trust the pieces? /
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An Example

* You arebuilding alarge application
« Rather than develop your own btree
package, you want to buy acommercia one

* It will be heavily used, so youwant to link
it into your process

» How can you be sureit won't misbehave?
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ﬂccess Control Implications of \
Finer Granularity

« Within a single address space, we heed
multiple access control domains for
file references, IPC, etc.

» But we also need access control for
memory references!

« Can no longer rely on hardware virtual

memory protection

Lecure14
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/ Approachesto Protecting \
Memory

» Segment matching
 Address sandboxing

o
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The Basic Problem To Be Solved

¢ Two mutually distrusting code segments
shareasingle address space

 They export operationsto each other

» How can we guarantee that they touch each
other only through those interfaces?

 Given that they can issue each other’s
addresses

k Lecture 14
Page

5239, Spring 2002 2

4 N

Other Constraints

» Must not be limited to asingle
language
—Any executable must work
* Must be enforced at run time
» Must be relatively cheap

—Or you might as well move the code
k to a different address space /
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Segment Matching

» Examine executable about to be loaded
for “unsafe instructions’

* What is unsafe?

—Any jump or store to address that
can't be statically verified
—E.g., jump through register, store

k through register /
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Handling Unsafe Instructions

* Define virtual memory segments that a
piece of code can legitimately address

* For each unsafe instruction, insert new
instructions in the executable to check
it a run time

 Could be done at compile time or load
time

Lecture 14
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Checking Unsafe Instructions

¢ Fundamentally, examine the non-static
address the code proposes to use

« If it's within the code' s boundaries, let
it happen

« If not, prevent it

e And report the violation
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Costs of Segment Matching

» Must reserve severa registers for this
purpose
—Four, in Berkeley implementation
 Additional instructions performed

—Four, in Berkeley implementation for
atypical RISC processor

Lectre 14
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Address Sandboxing

» Reducesthe cost of providing thislevel of
safety

» But loses ability to pinpoint attemptsto
bypassthe security

» Essentidly, instead of checking, just apply a
mask to unsafe addresses
—Mask ensures that addressiswithin

k permitted segments

5239, Spring 2002
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/VVhen |s Software-Enforced Fault
Isolation Vauable?
* It'sexpensive, becauseit addsinstructions
tocode
—Perhapsin common cases
 But not nearly asexpensiveas|PC
» Soitwinsif the code performsalot of IPC
* Alsorequiresfast RPC across protection

kdomai ns /
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 These approaches don’t allow rapid
downloading and execution of
programs
—Which is highly vauable

* What if you couldn’t write a program
that behaved badly?

-kWhat if the machine enforced that?

CS239, Spring 2002
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The Virtual Machine Approach

* Define avirtua machine that does not
alow “insecure” operations

» Write all untrusted programsin a
language that works on that virtual
machine

* Run imported programs through an
interpreter for that language

Lecture 14
Page ™

CS239, Spring 2002

How Do You Do This “Right”?

e Carefully design a virtual machine that
cannot perform insecure operations

—If properly implemented

« Require al imported programs to be
written in its language

* Interpret those programs at run time
—Or compile at download time

Lecure14
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Why Isn’'t This Easy?

» How do you design a virtual machine
that does useful things?

—But nothing insecure

* How do you implement the virtual
machine and compiler/interpreter?

* Can this perform well enough?

o
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 Javatacklestheseproblems

» The Javavirtual machineis meant to
provide a secure execution environment
—Alsoportable

» The Javalanguage ensuresthat all program
operations arein the context of that VM

k Lecture 14
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anguage and Virtual Machine
Definitions
« All security depends on the virtua
machine not alowing insecure things
» And on the language only working on
the real machine through the virtua
machine

* So they must be carefully defined to
knot allow any insecure operations

CS239, Spring 2002
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ure Implementation of the
Virtual Machine

« Given that the definition of the virtual
machine is secure, we must be sure that
the implementation matches the
definition

 Essentidly, thisis the same problem as
verifying that an OS is secure

—Perhaps on a smdler scae, though /
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e Only dlow Java“source’ codeto be
executed

—"“Source” codeisactualy Javabytecode
* A portable* assembly language”
» Thenrunit through atrusted interpreter
—Which verifiesthat only approved Java
VM operations are invoked

Java Interpreters

Lecture 14
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/ Access Control and the Java \
Virtual Machine
* At best, thisapproach limits accessto the
Javavirtual machine
* Soyou must definethat VM so aJava
program cannot do anything “bad”
* What isalowed isakey issue
— All the security isbased on thevirtua
machine operations being acceptable
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/ Functionality vs. Security: the \

Java Version

Thesameoldissuearises

More security or more functionality

Javaoriginally chose strong security

—Modulo theusua bugs

. cI?ut people couldn’t do what they needed to
o

» So Java' s security model was weakened

* And now security-conscious people turn off
kJava in their browsers
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