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Introduction

• Designing trusted operating systems
• Encapsulated environments
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Designing Trusted Operating 
Systems

• Security professionals tend to speak of trust, 
rather than security, in this context

• A more practical definition of what OS 
users want

• The user’s trust that the OS will provide 
certain security features properly
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Security Policies and Trusted 
Operating Systems

• A policy is a statement of the security 
we expect the system to enforce

• We trust a system to the degree we 
believe it properly implements its 
policy
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Discretionary and Mandatory 
Access Control

• Discretionary access control means 
that the users can choose to enforce it
– Or not

• Mandatory access control means the 
system forces access control on the 
users
– Whether they like it or not
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More on Mandatory Access 
Control

• Allows higher authorities to control 
what users do with data they can 
access

• Can prevent a user from telling a secret 
to someone who “shouldn’t” know it 
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Returning to Our Example

Process A Process BGimme your
secret

What if the system authorities don’t want A 
to tell the secret to B?
Can we prevent this? 
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Why Would We Want To 
Prevent It?

• What if the secret is proprietary 
information?

• What if the secret is essentially access to 
valuable software?

• What if we’re concerned that B will be able 
to fool A?
– Perhaps via social engineering?

• What if A and B are processes, not people?
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Common Security Policies

• Designed to state what we do and don’t 
want to allow
– Like the previous example

• Military security policies
• Commercial security policies
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Military Security Policies

• Based on several ranks of security
– Unclassified
– Restricted
– Confidential
– Secret
– Top secret

• And compartmentalized by the need to 
know
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Clearances in Military Security

• A clearance describes what 
information a subject can know

• All information has some security label
• A subject can access information only 

if he has the proper clearance
• A combination of the rank and the 

compartment allowed
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Determining Security Access in 
Military Models

• Based on a dominance relationship
• A subject dominates an object iff:

– the subject has a more restricted 
rank than the object and 

– the subject has access to the all the 
compartments of the object
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Commercial Security Policies

• Typically less rigid and hierarchical 
than military policies

• But with similar concerns
• Generally more flexibility in setting up 

levels and compartments
• And in assigning access privileges
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Clark-Wilson Security Policy

• Particularly concerned with data 
integrity

• System designer specifies well-formed 
transactions

• System must guarantee that all 
permitted operations conform to such 
transactions
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Separation of Duty Security 
Policy

• To guarantee that important 
commercial activities are not 
performed improperly by employees

• Requires active participation by 
multiple parties to achieve a goal
– Even if one or more parties is 

permitted to perform every step
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Chinese Wall Security Policy

• Meant to provide strict separation between 
parts of a company
– For intellectual property reasons
– Or to prevent conflicts of interest

• Defines classes of conflicts among different 
groups in the company

• Subjects cannot access information from 
more than one class member
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Models of Security

• Lattice model
• Bell-La Padua model
• Many other models exist

– Some are practical
– Some are useful for proving 

theoretical limits of security
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Lattice Model of Security

• A generalization of military model
• Elements of the lattice are the security 

labels of the subjects and objects
• A partial ordering is defined on the lattice 

elements
• Access is permitted from one element to 

another if first is “greater” than the second
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Example of the Lattice Model

G
E F

A B C D

H
J

•E can access A, 
but A can’t access 
E
•A and B cannot 
access each other
•Everyone can 
access J
•G can access 
everyone
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Bell-La Padua Confidentiality 
Model

• Describes allowable paths of 
information flow in a secure system

• Another formalization of military 
security model

• Designed for systems that handle data 
at multiple levels of sensitivity
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Important Security Properties for 
Bell-LaPadua

• Simple security property
• *-Property
• Tranquility property
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Simple Security Property

• Subject s may have read access to 
object o only if C(o) <= C(s)

•• Means that I can read any object if I Means that I can read any object if I 
have a higher enough security classhave a higher enough security class

•• So the general can listen to what the So the general can listen to what the 
private saysprivate says
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*-Property

• Subject s who has read access to object o
may have write access to object p only if 
C(o) <= C(p)

• Means that I can only write to objects at my 
security class or higher

• Means the general can’t say anything to the 
private

• Prevents write-down
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Tranquility Property

• Classification of a subject or object can 
change
– But not while the subject is 

accessing anything
– Or while the object is being accessed

• Thereby assuring complete mediation
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Thinking About This Security 
Model

• Let’s say I want it in my operating 
system

• How do I get it?
• What are the implications of having it?
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Desired Security Features of a 
Normal OS 

• Authentication of users
• Memory protection
• File and I/O access control
• General object access control
• Enforcement of sharing
• Fairness guarantees
• Secure IPC and synchronization
• Security of OS protection mechanisms
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Extra Features for a Trusted OS

• Mandatory and discretionary access 
control

• Object reuse protection
• Complete mediation
• Audit capabilities
• Intruder detection capabilities
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How To Achieve OS Security

• Kernelized design  
• Separation and isolation mechanisms
• Virtualization
• Layered design
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Advantages of Kernelization

• Smaller amount of trusted code
• Easier to check every access
• Separation from other complex pieces 

of the system
• Easier to maintain and modify security 

features
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Reference Monitors

• An important security concept for OS 
design

• A reference monitor is a subsystem 
that controls access to objects
– It provides (potentially) complete 

mediation
• Very important to get this part right



6

Lecture 14
Page 31CS 239, Spring 2002

Assurance of Trusted Operating 
Systems 

• How do I know that I should trust 
someone’s operating system?

• What methods can I use to achieve the 
level of trust I require?
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Assurance Methods

• Testing
• Formal verification
• Validation
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Secure Operating System 
Standards

• If I want to buy a secure operating 
system, how do I compare options?

• Use established standards for OS 
security

• Several standards exist
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Some Security Standards

• U.S. Orange Book
• European ITSEC
• U.S. Combined Federal Criteria
• Common Criteria for Information 

Technology Security Evaluation

Lecture 14
Page 35CS 239, Spring 2002

The U.S. Orange Book

• The earliest evaluation standard for 
trusted operating systems

• Defined by the Department of Defense 
in the late 1970s

• Now largely a historical artifact
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Purpose of the Orange Book

• To set standards by which OS security 
could be evaluated

• Fairly strong definitions of what features 
and capabilities an OS had to have to 
achieve certain levels 

• Allowing “head-to-head” evaluation of 
security of systems
– And specification of requirements
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Orange Book Security Divisions

• A, B, C, and D
– In decreasing order of degree of security

• Important subdivisions within some of the 
divisions

• Requires formal certification from the 
government (NCSC)
– Except for the D level
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Some Important Orange Book 
Divisions and Subdivisions

• C2 - Controlled Access Protection
• B1 - Labeled Security Protection
• B2 - Structured Protection
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The C2 Security Class

• Discretionary access
– At fairly low granularity

• Requires auditing of accesses
• And password authentication and 

protection of reused objects
• Windows NT has been certified to this 

class
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The B1 Security Class

• Includes mandatory access control
– Using Bell-La Padua model
– Each subject and object is assigned a 

security level
• Requires both hierarchical and non-

hierarchical access controls
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The B3 Security Class

• Requires careful security design
– With some level of verification

• And extensive testing
• Doesn’t require formal verification

– But does require “a convincing 
argument”

• Trusted Mach is in this class
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Logging and Auditing

• An important part of a complete 
security solution

• Practical security depends on knowing 
what is happening in your system

• Logging and auditing is required for 
that purpose
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Logging

• No security system will stop all attacks
– Logging what has happened is vital 

to dealing with the holes
• Logging also tells you when someone 

is trying to break in
– Perhaps giving you a chance to close 

possible holes
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Access Logs

• One example of what might be logged 
for security purposes

• Listing of which users accessed which 
objects
– And when and for how long

• Especially important to log failures
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Other Typical Logging Actions

• Logging failed login attempts
– Can help detect intrusions or 

password crackers
• Logging changes in program 

permissions
– Often done by intruders
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Problems With Logging

• Dealing with large volumes of data
• Separating the wheat from the chaff

– Unless the log is very short, auditing 
it can be laborious

• System overheads and costs
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Log Security

• If you use logs to detect intruders, smart 
intruders will try to attack logs
– Concealing their traces by erasing or 

modifying the log entries
• Append-only access control helps a lot here
• Or logging to hard copy
• Or logging to a remote machine
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Verifying System Security

• Security mechanisms are great
– If you have proper policies to use them

• Security policies are great
– If you follow them

• For practical systems, proper policies and 
consistent use are a major security problem
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Auditing

• A formal (or semi-formal) process of 
verifying system security

• “You may not do what I expect, but 
you will do what I inspect.”

• A requirement if you really want your 
systems to run securely
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Auditing Requirements

• Knowledge
– Of the installation and general 

security issues
• Independence
• Trustworthiness
• Ideally, big organizations should have 

their own auditors
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When Should You Audit?

• Periodically
• Shortly after making major system 

changes
– Especially those with security 

implications
• When problems arise

– Internally or externally
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Auditing and Logs

• Logs are a major audit tool
• Some examination can be done 

automatically
• But part of the purpose is to detect 

things that automatic methods miss
– So some logs should be audited by 

hand
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A Typical Set of Audit Criteria

• For a Unix system
• Some sample criteria:

– All accounts have passwords
– Limited use of setuid root
– Display last login date on login
– Limited write access to system files
– No “.” in PATH variables
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What Does an Audit Cover?

• Conformance to policy
• Review of control structures
• Examination of audit trail (logs)
• User awareness of security
• Physical controls
• Software licensing and intellectual 

property issues
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Encapsulated Environments

• If you can’t trust an executable, how 
can you run it?

• Put it in a box where it can’t do much 
harm

• Today’s systems offer only limited 
abilities to do that
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Options for Encapsulation Today

• Create a new user ID for the 
application
– Be real careful about the privileges 

given to that user
• Run it under the Java virtual machine

– In the most restrictive mode
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Improved Encapsulation 
Solutions

• Alter the OS
• Use existing OS mechanisms to build 

new protection domains
• Address space protection
• Language-based solutions
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OS-Based Access Control 
Improvements

• Change the OS to add finer granularity 
access controls

• And/or more flexibility in setting up 
security domains

• Use the new OS tools to solve the 
problem
– Begging the question of, how?
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Pros and Cons of OS-Based 
Solutions

+ Potentially good performance
+ With good design, arbitrary flexibility
– You must alter the OS
– High security penalties if you blow it
– Only likely to be effective if lots of 

folks play the game
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Example - DTE

• Use OS alteration to allow checking of 
separate access control database

• Each process’ security permissions 
specified in database

• When process tries to do something, 
check database to see if it’s permitted
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Leveraging Existing Operating 
System Features

• Make clever use of existing OS 
features to improve access control

• Usually by trapping particular system 
calls in clever ways

• When trapped, apply access control to 
them in new ways
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Pros and Cons of Leveraging 
OS Features

+ Often pretty cheap and easy to build
+ Can work at the user level
+ Can use existing, proven access control 

as a fallback
– Security retrofits have a dismal history
– May have performance problems
– May offer limited leverage
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Example - Janus

• Designed to limit access for Web helper 
programs

• Uses the Unix /proc file system to trap 
system calls from these processes

• When trapped, check to see if they are 
allowable

• High overhead whenever you do this
– So better not do it often
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Address Space Protection

• The approaches already discussed have 
a fundamental limitation -
– They only protect things outside the 

process’ address space
• Most access control assumes a process 

should have unlimited access to its 
own address space
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Intra-Address Space Protection

• Why shouldn’t a process completely control 
its address space?

• Because of composable applications
• For performance reasons, different 

components may need to share an address 
space

• Yet they may have their own security 
requirements
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Building Programs Out of 
Components

• Increasingly, programs are being built 
out of pre-written components
– Due to COM, CORBA, etc.

• So to build a program, slap together 
half a dozen pre-existing pieces
– And add a little of your own code

• But can you trust the pieces?
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An Example

• You are building a large application
• Rather than develop your own btree

package, you want to buy a commercial one
• It will be heavily used, so you want to link 

it into your process
• How can you be sure it won’t misbehave?
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Access Control Implications of 
Finer Granularity

• Within a single address space, we need 
multiple access control domains for 
file references, IPC, etc.

• But we also need access control for 
memory references!

• Can no longer rely on hardware virtual 
memory protection
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Approaches to Protecting 
Memory

• Segment matching
• Address sandboxing
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The Basic Problem To Be Solved

• Two mutually distrusting code segments 
share a single address space

• They export operations to each other
• How can we guarantee that they touch each 

other only through those interfaces?
• Given that they can issue each other’s 

addresses
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Other Constraints

• Must not be limited to a single 
language
– Any executable must work

• Must be enforced at run time
• Must be relatively cheap

– Or you might as well move the code 
to a different address space
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Segment Matching

• Examine executable about to be loaded 
for “unsafe instructions”

• What is unsafe?
– Any jump or store to address that 

can’t be statically verified
– E.g., jump through register, store 

through register
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Handling Unsafe Instructions

• Define virtual memory segments that a 
piece of code can legitimately address

• For each unsafe instruction, insert new 
instructions in the executable to check 
it at run time

• Could be done at compile time or load 
time
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Checking Unsafe Instructions

• Fundamentally, examine the non-static 
address the code proposes to use

• If it’s within the code’s boundaries, let 
it happen

• If not, prevent it
• And report the violation
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Costs of Segment Matching

• Must reserve several registers for this 
purpose
– Four, in Berkeley implementation

• Additional instructions performed
– Four, in Berkeley implementation for 

a typical RISC processor
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Address Sandboxing

• Reduces the cost of providing this level of 
safety

• But loses ability to pinpoint attempts to 
bypass the security

• Essentially, instead of checking, just apply a 
mask to unsafe addresses
– Mask ensures that address is within 

permitted segments
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When Is Software-Enforced Fault 
Isolation Valuable?

• It’s expensive, because it adds instructions 
to code
– Perhaps in common cases

• But not nearly as expensive as IPC
• So it wins if the code performs a lot of IPC
• Also requires fast RPC across protection 

domains
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Virtual Machine and Language 
Approaches

• These approaches don’t allow rapid 
downloading and execution of 
programs
– Which is highly valuable

• What if you couldn’t write a program 
that behaved badly?

• What if the machine enforced that?
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The Virtual Machine Approach

• Define a virtual machine that does not 
allow “insecure” operations

• Write all untrusted programs in a 
language that works on that virtual 
machine

• Run imported programs through an 
interpreter for that language
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How Do You Do This “Right”?

• Carefully design a virtual machine that 
cannot perform insecure operations
– If properly implemented

• Require all imported programs to be 
written in its language

• Interpret those programs at run time
– Or compile at download time
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Why Isn’t This Easy?

• How do you design a virtual machine 
that does useful things?
– But nothing insecure

• How do you implement the virtual 
machine and compiler/interpreter?

• Can this perform well enough?
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Example - Java

• Java tackles these problems
• The Java virtual machine is meant to 

provide a secure execution environment
– Also portable

• The Java language ensures that all program 
operations are in the context of that VM
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Language and Virtual Machine 
Definitions

• All security depends on the virtual 
machine not allowing insecure things

• And on the language only working on 
the real machine through the virtual 
machine

• So they must be carefully defined to 
not allow any insecure operations
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Secure Implementation of the 
Virtual Machine

• Given that the definition of the virtual 
machine is secure, we must be sure that 
the implementation matches the 
definition

• Essentially, this is the same problem as 
verifying that an OS is secure
– Perhaps on a smaller scale, though
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Java Interpreters

• Only allow Java “source” code to be 
executed
– “Source” code is actually Java bytecode

• A portable “assembly language”
• Then run it through a trusted interpreter

– Which verifies that only approved Java 
VM operations are invoked
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Access Control and the Java 
Virtual Machine

• At best, this approach limits access to the 
Java virtual machine

• So you must define that VM so a Java 
program cannot do anything “bad”

• What is allowed is a key issue
– All the security is based on the virtual 

machine operations being acceptable
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Functionality vs. Security:  the  
Java Version

• The same old issue arises
• More security or more functionality
• Java originally chose strong security

– Modulo the usual bugs
• But people couldn’t do what they needed to 

do
• So Java’s security model was weakened
• And now security-conscious people turn off 

Java in their browsers


