
1

Lecture 14
Page 1CS 239, Spring 2002

Operating System Security,
Continued

CS 239
Security for Networks and

System Software
May 22, 2002

Lecture 14
Page 2CS 239, Spring 2002

Introduction

• Designing trusted operating systems
• Encapsulated environments

Lecture 14
Page 3CS 239, Spring 2002

Designing Trusted Operating
Systems

• Security professionals tend to speak of trust,
rather than security, in this context

• A more practical definition of what OS
users want

• The user’s trust that the OS will provide
certain security features properly

Lecture 14
Page 4CS 239, Spring 2002

Security Policies and Trusted
Operating Systems

• A policy is a statement of the security
we expect the system to enforce

• We trust a system to the degree we
believe it properly implements its
policy

Lecture 14
Page 5CS 239, Spring 2002

Discretionary and Mandatory
Access Control

• Discretionary access control means
that the users can choose to enforce it
– Or not

• Mandatory access control means the
system forces access control on the
users
– Whether they like it or not

Lecture 14
Page 6CS 239, Spring 2002

More on Mandatory Access
Control

• Allows higher authorities to control
what users do with data they can
access

• Can prevent a user from telling a secret
to someone who “shouldn’t” know it

2

Lecture 14
Page 7CS 239, Spring 2002

Returning to Our Example

Process A Process BGimme your
secret

What if the system authorities don’t want A
to tell the secret to B?
Can we prevent this?

Lecture 14
Page 8CS 239, Spring 2002

Why Would We Want To
Prevent It?

• What if the secret is proprietary
information?

• What if the secret is essentially access to
valuable software?

• What if we’re concerned that B will be able
to fool A?
– Perhaps via social engineering?

• What if A and B are processes, not people?

Lecture 14
Page 9CS 239, Spring 2002

Common Security Policies

• Designed to state what we do and don’t
want to allow
– Like the previous example

• Military security policies
• Commercial security policies

Lecture 14
Page 10CS 239, Spring 2002

Military Security Policies

• Based on several ranks of security
– Unclassified
– Restricted
– Confidential
– Secret
– Top secret

• And compartmentalized by the need to
know

Lecture 14
Page 11CS 239, Spring 2002

Clearances in Military Security

• A clearance describes what
information a subject can know

• All information has some security label
• A subject can access information only

if he has the proper clearance
• A combination of the rank and the

compartment allowed

Lecture 14
Page 12CS 239, Spring 2002

Determining Security Access in
Military Models

• Based on a dominance relationship
• A subject dominates an object iff:

– the subject has a more restricted
rank than the object and

– the subject has access to the all the
compartments of the object

3

Lecture 14
Page 13CS 239, Spring 2002

Commercial Security Policies

• Typically less rigid and hierarchical
than military policies

• But with similar concerns
• Generally more flexibility in setting up

levels and compartments
• And in assigning access privileges

Lecture 14
Page 14CS 239, Spring 2002

Clark-Wilson Security Policy

• Particularly concerned with data
integrity

• System designer specifies well-formed
transactions

• System must guarantee that all
permitted operations conform to such
transactions

Lecture 14
Page 15CS 239, Spring 2002

Separation of Duty Security
Policy

• To guarantee that important
commercial activities are not
performed improperly by employees

• Requires active participation by
multiple parties to achieve a goal
– Even if one or more parties is

permitted to perform every step

Lecture 14
Page 16CS 239, Spring 2002

Chinese Wall Security Policy

• Meant to provide strict separation between
parts of a company
– For intellectual property reasons
– Or to prevent conflicts of interest

• Defines classes of conflicts among different
groups in the company

• Subjects cannot access information from
more than one class member

Lecture 14
Page 17CS 239, Spring 2002

Models of Security

• Lattice model
• Bell-La Padua model
• Many other models exist

– Some are practical
– Some are useful for proving

theoretical limits of security

Lecture 14
Page 18CS 239, Spring 2002

Lattice Model of Security

• A generalization of military model
• Elements of the lattice are the security

labels of the subjects and objects
• A partial ordering is defined on the lattice

elements
• Access is permitted from one element to

another if first is “greater” than the second

4

Lecture 14
Page 19CS 239, Spring 2002

Example of the Lattice Model

G
E F

A B C D

H
J

•E can access A,
but A can’t access
E
•A and B cannot
access each other
•Everyone can
access J
•G can access
everyone

Lecture 14
Page 20CS 239, Spring 2002

Bell-La Padua Confidentiality
Model

• Describes allowable paths of
information flow in a secure system

• Another formalization of military
security model

• Designed for systems that handle data
at multiple levels of sensitivity

Lecture 14
Page 21CS 239, Spring 2002

Important Security Properties for
Bell-LaPadua

• Simple security property
• *-Property
• Tranquility property

Lecture 14
Page 22CS 239, Spring 2002

Simple Security Property

• Subject s may have read access to
object o only if C(o) <= C(s)

•• Means that I can read any object if I Means that I can read any object if I
have a higher enough security classhave a higher enough security class

•• So the general can listen to what the So the general can listen to what the
private saysprivate says

Lecture 14
Page 23CS 239, Spring 2002

*-Property

• Subject s who has read access to object o
may have write access to object p only if
C(o) <= C(p)

• Means that I can only write to objects at my
security class or higher

• Means the general can’t say anything to the
private

• Prevents write-down

Lecture 14
Page 24CS 239, Spring 2002

Tranquility Property

• Classification of a subject or object can
change
– But not while the subject is

accessing anything
– Or while the object is being accessed

• Thereby assuring complete mediation

5

Lecture 14
Page 25CS 239, Spring 2002

Thinking About This Security
Model

• Let’s say I want it in my operating
system

• How do I get it?
• What are the implications of having it?

Lecture 14
Page 26CS 239, Spring 2002

Desired Security Features of a
Normal OS

• Authentication of users
• Memory protection
• File and I/O access control
• General object access control
• Enforcement of sharing
• Fairness guarantees
• Secure IPC and synchronization
• Security of OS protection mechanisms

Lecture 14
Page 27CS 239, Spring 2002

Extra Features for a Trusted OS

• Mandatory and discretionary access
control

• Object reuse protection
• Complete mediation
• Audit capabilities
• Intruder detection capabilities

Lecture 14
Page 28CS 239, Spring 2002

How To Achieve OS Security

• Kernelized design
• Separation and isolation mechanisms
• Virtualization
• Layered design

Lecture 14
Page 29CS 239, Spring 2002

Advantages of Kernelization

• Smaller amount of trusted code
• Easier to check every access
• Separation from other complex pieces

of the system
• Easier to maintain and modify security

features

Lecture 14
Page 30CS 239, Spring 2002

Reference Monitors

• An important security concept for OS
design

• A reference monitor is a subsystem
that controls access to objects
– It provides (potentially) complete

mediation
• Very important to get this part right

6

Lecture 14
Page 31CS 239, Spring 2002

Assurance of Trusted Operating
Systems

• How do I know that I should trust
someone’s operating system?

• What methods can I use to achieve the
level of trust I require?

Lecture 14
Page 32CS 239, Spring 2002

Assurance Methods

• Testing
• Formal verification
• Validation

Lecture 14
Page 33CS 239, Spring 2002

Secure Operating System
Standards

• If I want to buy a secure operating
system, how do I compare options?

• Use established standards for OS
security

• Several standards exist

Lecture 14
Page 34CS 239, Spring 2002

Some Security Standards

• U.S. Orange Book
• European ITSEC
• U.S. Combined Federal Criteria
• Common Criteria for Information

Technology Security Evaluation

Lecture 14
Page 35CS 239, Spring 2002

The U.S. Orange Book

• The earliest evaluation standard for
trusted operating systems

• Defined by the Department of Defense
in the late 1970s

• Now largely a historical artifact

Lecture 14
Page 36CS 239, Spring 2002

Purpose of the Orange Book

• To set standards by which OS security
could be evaluated

• Fairly strong definitions of what features
and capabilities an OS had to have to
achieve certain levels

• Allowing “head-to-head” evaluation of
security of systems
– And specification of requirements

7

Lecture 14
Page 37CS 239, Spring 2002

Orange Book Security Divisions

• A, B, C, and D
– In decreasing order of degree of security

• Important subdivisions within some of the
divisions

• Requires formal certification from the
government (NCSC)
– Except for the D level

Lecture 14
Page 38CS 239, Spring 2002

Some Important Orange Book
Divisions and Subdivisions

• C2 - Controlled Access Protection
• B1 - Labeled Security Protection
• B2 - Structured Protection

Lecture 14
Page 39CS 239, Spring 2002

The C2 Security Class

• Discretionary access
– At fairly low granularity

• Requires auditing of accesses
• And password authentication and

protection of reused objects
• Windows NT has been certified to this

class
Lecture 14
Page 40CS 239, Spring 2002

The B1 Security Class

• Includes mandatory access control
– Using Bell-La Padua model
– Each subject and object is assigned a

security level
• Requires both hierarchical and non-

hierarchical access controls

Lecture 14
Page 41CS 239, Spring 2002

The B3 Security Class

• Requires careful security design
– With some level of verification

• And extensive testing
• Doesn’t require formal verification

– But does require “a convincing
argument”

• Trusted Mach is in this class
Lecture 14
Page 42CS 239, Spring 2002

Logging and Auditing

• An important part of a complete
security solution

• Practical security depends on knowing
what is happening in your system

• Logging and auditing is required for
that purpose

8

Lecture 14
Page 43CS 239, Spring 2002

Logging

• No security system will stop all attacks
– Logging what has happened is vital

to dealing with the holes
• Logging also tells you when someone

is trying to break in
– Perhaps giving you a chance to close

possible holes

Lecture 14
Page 44CS 239, Spring 2002

Access Logs

• One example of what might be logged
for security purposes

• Listing of which users accessed which
objects
– And when and for how long

• Especially important to log failures

Lecture 14
Page 45CS 239, Spring 2002

Other Typical Logging Actions

• Logging failed login attempts
– Can help detect intrusions or

password crackers
• Logging changes in program

permissions
– Often done by intruders

Lecture 14
Page 46CS 239, Spring 2002

Problems With Logging

• Dealing with large volumes of data
• Separating the wheat from the chaff

– Unless the log is very short, auditing
it can be laborious

• System overheads and costs

Lecture 14
Page 47CS 239, Spring 2002

Log Security

• If you use logs to detect intruders, smart
intruders will try to attack logs
– Concealing their traces by erasing or

modifying the log entries
• Append-only access control helps a lot here
• Or logging to hard copy
• Or logging to a remote machine

Lecture 14
Page 48CS 239, Spring 2002

Verifying System Security

• Security mechanisms are great
– If you have proper policies to use them

• Security policies are great
– If you follow them

• For practical systems, proper policies and
consistent use are a major security problem

9

Lecture 14
Page 49CS 239, Spring 2002

Auditing

• A formal (or semi-formal) process of
verifying system security

• “You may not do what I expect, but
you will do what I inspect.”

• A requirement if you really want your
systems to run securely

Lecture 14
Page 50CS 239, Spring 2002

Auditing Requirements

• Knowledge
– Of the installation and general

security issues
• Independence
• Trustworthiness
• Ideally, big organizations should have

their own auditors

Lecture 14
Page 51CS 239, Spring 2002

When Should You Audit?

• Periodically
• Shortly after making major system

changes
– Especially those with security

implications
• When problems arise

– Internally or externally
Lecture 14
Page 52CS 239, Spring 2002

Auditing and Logs

• Logs are a major audit tool
• Some examination can be done

automatically
• But part of the purpose is to detect

things that automatic methods miss
– So some logs should be audited by

hand

Lecture 14
Page 53CS 239, Spring 2002

A Typical Set of Audit Criteria

• For a Unix system
• Some sample criteria:

– All accounts have passwords
– Limited use of setuid root
– Display last login date on login
– Limited write access to system files
– No “.” in PATH variables

Lecture 14
Page 54CS 239, Spring 2002

What Does an Audit Cover?

• Conformance to policy
• Review of control structures
• Examination of audit trail (logs)
• User awareness of security
• Physical controls
• Software licensing and intellectual

property issues

10

Lecture 14
Page 55CS 239, Spring 2002

Encapsulated Environments

• If you can’t trust an executable, how
can you run it?

• Put it in a box where it can’t do much
harm

• Today’s systems offer only limited
abilities to do that

Lecture 14
Page 56CS 239, Spring 2002

Options for Encapsulation Today

• Create a new user ID for the
application
– Be real careful about the privileges

given to that user
• Run it under the Java virtual machine

– In the most restrictive mode

Lecture 14
Page 57CS 239, Spring 2002

Improved Encapsulation
Solutions

• Alter the OS
• Use existing OS mechanisms to build

new protection domains
• Address space protection
• Language-based solutions

Lecture 14
Page 58CS 239, Spring 2002

OS-Based Access Control
Improvements

• Change the OS to add finer granularity
access controls

• And/or more flexibility in setting up
security domains

• Use the new OS tools to solve the
problem
– Begging the question of, how?

Lecture 14
Page 59CS 239, Spring 2002

Pros and Cons of OS-Based
Solutions

+ Potentially good performance
+ With good design, arbitrary flexibility
– You must alter the OS
– High security penalties if you blow it
– Only likely to be effective if lots of

folks play the game

Lecture 14
Page 60CS 239, Spring 2002

Example - DTE

• Use OS alteration to allow checking of
separate access control database

• Each process’ security permissions
specified in database

• When process tries to do something,
check database to see if it’s permitted

11

Lecture 14
Page 61CS 239, Spring 2002

Leveraging Existing Operating
System Features

• Make clever use of existing OS
features to improve access control

• Usually by trapping particular system
calls in clever ways

• When trapped, apply access control to
them in new ways

Lecture 14
Page 62CS 239, Spring 2002

Pros and Cons of Leveraging
OS Features

+ Often pretty cheap and easy to build
+ Can work at the user level
+ Can use existing, proven access control

as a fallback
– Security retrofits have a dismal history
– May have performance problems
– May offer limited leverage

Lecture 14
Page 63CS 239, Spring 2002

Example - Janus

• Designed to limit access for Web helper
programs

• Uses the Unix /proc file system to trap
system calls from these processes

• When trapped, check to see if they are
allowable

• High overhead whenever you do this
– So better not do it often

Lecture 14
Page 64CS 239, Spring 2002

Address Space Protection

• The approaches already discussed have
a fundamental limitation -
– They only protect things outside the

process’ address space
• Most access control assumes a process

should have unlimited access to its
own address space

Lecture 14
Page 65CS 239, Spring 2002

Intra-Address Space Protection

• Why shouldn’t a process completely control
its address space?

• Because of composable applications
• For performance reasons, different

components may need to share an address
space

• Yet they may have their own security
requirements

Lecture 14
Page 66CS 239, Spring 2002

Building Programs Out of
Components

• Increasingly, programs are being built
out of pre-written components
– Due to COM, CORBA, etc.

• So to build a program, slap together
half a dozen pre-existing pieces
– And add a little of your own code

• But can you trust the pieces?

12

Lecture 14
Page 67CS 239, Spring 2002

An Example

• You are building a large application
• Rather than develop your own btree

package, you want to buy a commercial one
• It will be heavily used, so you want to link

it into your process
• How can you be sure it won’t misbehave?

Lecture 14
Page 68CS 239, Spring 2002

Access Control Implications of
Finer Granularity

• Within a single address space, we need
multiple access control domains for
file references, IPC, etc.

• But we also need access control for
memory references!

• Can no longer rely on hardware virtual
memory protection

Lecture 14
Page 69CS 239, Spring 2002

Approaches to Protecting
Memory

• Segment matching
• Address sandboxing

Lecture 14
Page 70CS 239, Spring 2002

The Basic Problem To Be Solved

• Two mutually distrusting code segments
share a single address space

• They export operations to each other
• How can we guarantee that they touch each

other only through those interfaces?
• Given that they can issue each other’s

addresses

Lecture 14
Page 71CS 239, Spring 2002

Other Constraints

• Must not be limited to a single
language
– Any executable must work

• Must be enforced at run time
• Must be relatively cheap

– Or you might as well move the code
to a different address space

Lecture 14
Page 72CS 239, Spring 2002

Segment Matching

• Examine executable about to be loaded
for “unsafe instructions”

• What is unsafe?
– Any jump or store to address that

can’t be statically verified
– E.g., jump through register, store

through register

13

Lecture 14
Page 73CS 239, Spring 2002

Handling Unsafe Instructions

• Define virtual memory segments that a
piece of code can legitimately address

• For each unsafe instruction, insert new
instructions in the executable to check
it at run time

• Could be done at compile time or load
time

Lecture 14
Page 74CS 239, Spring 2002

Checking Unsafe Instructions

• Fundamentally, examine the non-static
address the code proposes to use

• If it’s within the code’s boundaries, let
it happen

• If not, prevent it
• And report the violation

Lecture 14
Page 75CS 239, Spring 2002

Costs of Segment Matching

• Must reserve several registers for this
purpose
– Four, in Berkeley implementation

• Additional instructions performed
– Four, in Berkeley implementation for

a typical RISC processor

Lecture 14
Page 76CS 239, Spring 2002

Address Sandboxing

• Reduces the cost of providing this level of
safety

• But loses ability to pinpoint attempts to
bypass the security

• Essentially, instead of checking, just apply a
mask to unsafe addresses
– Mask ensures that address is within

permitted segments

Lecture 14
Page 77CS 239, Spring 2002

When Is Software-Enforced Fault
Isolation Valuable?

• It’s expensive, because it adds instructions
to code
– Perhaps in common cases

• But not nearly as expensive as IPC
• So it wins if the code performs a lot of IPC
• Also requires fast RPC across protection

domains

Lecture 14
Page 78CS 239, Spring 2002

Virtual Machine and Language
Approaches

• These approaches don’t allow rapid
downloading and execution of
programs
– Which is highly valuable

• What if you couldn’t write a program
that behaved badly?

• What if the machine enforced that?

14

Lecture 14
Page 79CS 239, Spring 2002

The Virtual Machine Approach

• Define a virtual machine that does not
allow “insecure” operations

• Write all untrusted programs in a
language that works on that virtual
machine

• Run imported programs through an
interpreter for that language

Lecture 14
Page 80CS 239, Spring 2002

How Do You Do This “Right”?

• Carefully design a virtual machine that
cannot perform insecure operations
– If properly implemented

• Require all imported programs to be
written in its language

• Interpret those programs at run time
– Or compile at download time

Lecture 14
Page 81CS 239, Spring 2002

Why Isn’t This Easy?

• How do you design a virtual machine
that does useful things?
– But nothing insecure

• How do you implement the virtual
machine and compiler/interpreter?

• Can this perform well enough?

Lecture 14
Page 82CS 239, Spring 2002

Example - Java

• Java tackles these problems
• The Java virtual machine is meant to

provide a secure execution environment
– Also portable

• The Java language ensures that all program
operations are in the context of that VM

Lecture 14
Page 83CS 239, Spring 2002

Language and Virtual Machine
Definitions

• All security depends on the virtual
machine not allowing insecure things

• And on the language only working on
the real machine through the virtual
machine

• So they must be carefully defined to
not allow any insecure operations

Lecture 14
Page 84CS 239, Spring 2002

Secure Implementation of the
Virtual Machine

• Given that the definition of the virtual
machine is secure, we must be sure that
the implementation matches the
definition

• Essentially, this is the same problem as
verifying that an OS is secure
– Perhaps on a smaller scale, though

15

Lecture 14
Page 85CS 239, Spring 2002

Java Interpreters

• Only allow Java “source” code to be
executed
– “Source” code is actually Java bytecode

• A portable “assembly language”
• Then run it through a trusted interpreter

– Which verifies that only approved Java
VM operations are invoked

Lecture 14
Page 86CS 239, Spring 2002

Access Control and the Java
Virtual Machine

• At best, this approach limits access to the
Java virtual machine

• So you must define that VM so a Java
program cannot do anything “bad”

• What is allowed is a key issue
– All the security is based on the virtual

machine operations being acceptable

Lecture 14
Page 87CS 239, Spring 2002

Functionality vs. Security: the
Java Version

• The same old issue arises
• More security or more functionality
• Java originally chose strong security

– Modulo the usual bugs
• But people couldn’t do what they needed to

do
• So Java’s security model was weakened
• And now security-conscious people turn off

Java in their browsers

