4 N

Operating System Security,
Continued
CS 239
Security for Networks and
System Software
May 22, 2002

Lecture14
Page1

CS239, Spring 2002

(e)

» Designing trusted operating systems
 Encapsulated environments

Lecure14
©5239, Spring 2002 Page2

/ Designing Trusted Operating \
Systems
* Security professionalstend to speak of trust,
rather than security, in this context

» A more practical definition of what OS
users want

» Theuser’strust that the OSwill provide
certain security featuresproperly

o

CS239, Spring 2002

Lectre 14
Page3

/ Security Policies and Trusted \
Operating Systems
» A policy is a statement of the security
we expect the system to enforce

» We trust a system to the degree we
believe it properly implements its
policy

k Lecture14
Peged

5239, Spring 2002 2

4 N

Discretionary and Mandatory
Access Control

« Discretionary access control means
that the users can choose to enforce it
—Or not

» Mandatory access control means the
system forces access control on the
users

k —Whether they like it or not /

CS239, Spring 2002 Page5

4 N

More on Mandatory Access
Control
« Allows higher authorities to control

what users do with data they can
access

« Can prevent a user from telling a secret
to someone who “shouldn’t” know it

- J

Lecture 14
©5239, Spring 2002 Page6

Returning to Our Example

ProcessA ProcessB

G nmme your
secret

al
|
i

Lg|

What if the system authorities don’'t want A
totell the secret to B?
Can we prevent this?

CS239, Spring 2002

Lecture14
Page7

7~ Why Would We Want To
Prevent It?
* What if the secret is proprietary
information?

* What if the secret is essentially accessto
valuablesoftware?

* What if we're concerned that B will be able
tofool A?

— Perhapsviasocia engineering?

* What if A and B are processes, not people?

€5239, Spring 2002

\

Lecture 14
Page8

/

Common Security Policies

» Designed to state what we do and don’t
want to alow

—Like the previous example
* Military security policies
» Commercial security policies

o

CS239, Spring 2002

Lectre 14
Page9

Military Security_Policies_!

» Based on severd ranks of security
—Unclassified
—Restricted
— Confidential
— Secret
—Topsecret
« And compartmentalized by the need to

kknow

5239, Spring 2002

Lecture14
Page 10

4 N

Clearancesin Military Security

« A clearance describes what
information a subject can know

« All information has some security |abel

* A subject can access information only
if he has the proper clearance

» A combination of the rank and the
kcompartment alowed

CS239, Spring 2002

J/

Lecture 14
Pagell

(o

etermining Security Accessin
Military Models

 Based on a dominance relationship

A subject dominates an object iff:

— the subject has a more restricted
rank than the object and

—the subject has access to the all the

compartments of the object

CS239, Spring 2002

\

J/

Lecture 14
Page 12

» Typically lessrigid and hierarchical
than military policies

 But with similar concerns

» Generaly more flexibility in setting up
levels and compartments

* And in assigning access privileges

Lecture 14
CS239, Spring 2002 Page 13

Clark-Wilson Security Policy

« Particularly concerned with data
integrity

« System designer specifies well-formed
transactions

e System must guarantee that all
permitted operations conform to such
transactions

Lecture14
CS239, Spring 2002 Page14

/ Separation of Duty Security \
Policy

* To guarantee that important
commercial activities are not
performed improperly by employees

* Requires active participation by
multiple parties to achieve a goa
—Even if one or more partiesis

permitted to perform every step

Lecture 14
€239, Spring 2002 Page 5

\

Chinese Wall Security Policy

» Meant to provide strict separation between
parts of acompany

—For intellectua property reasons
—Or to prevent conflicts of interest

« Definesclasses of conflicts among different
groupsin the company

* Subjects cannot accessinformation from

kmore than one class member

Lecture 14
©$239, Spring 2002 Pege16

s SN

L Models of Security

* Lattice model

* Bell-La Padua model

» Many other models exist
—Some are practical

—Some are useful for proving
k theoretica limits of security /

Lecture 14
CS239, Spring 2002 Page 17

4 N

Lattice Model of Security

A generalization of military model

 Elementsof the|attice are the security
labels of the subjects and objects

A partial ordering isdefined on thelattice
elements

 Accessis permitted from one e ement to

another if firstis“grester” than the second

_

CS239, Spring 2002

J/

Lecture 14
Page 18

Example of the Lattice Model

*E can access A,
but A can’t access

/ G
E A
E
/ \ *A and B cannot
A access each other
\ *Everyone can
access J
a

J G can access
everyone

k/

%

Lecture 14
Page19

CS239, Spring 2002

/" Bell-LaPadua Confidentidity \
Model

* Describes alowable paths of
information flow in a secure system

» Another formalization of military
security model

 Designed for systems that handle data
at multiple levels of sensitivity

Lecture14
©5239, Spring 2002 Page20

/I mportant Security Properties for\
Bell-LaPadua

e Simple security property

e *-Property

» Tranquility property

k Lecture14
Page2l

CS239, Spring 2002

Simple Security Property

 Subject s may have read access to
object o only if C(0) <= C(9)

* Meansthat | can read any object if |
have a higher enough security class

« So the general can listen to what the
private says

k Lecture 14
2

5239, Spring 2002 Pege

4 N

*-Property

* Subject swho hasread accessto objecto
may havewrite accessto objectp only if
C(0) <=C(p)

* Meansthat | can only writeto objectsat my
security classor highet

» Meansthegeneral can't say anything to the
private

k-Preventswritedown /

Lecture 14
Page3

CS239, Spring 2002

4 N

Tranquility Property

« Classification of a subject or object can
change
—But not while the subject is
accessing anything
—Or while the object is being accessed

 Thereby assuring complete mediation

Lecture 14
©5239, Spring 2002 Page24

Model
e Let'ssay | want it in my operating
system
e How do | get it?
» What are the implications of having it?

CS239, Spring 2002

/” Thinking About This Security \

Lecture 14
Pages

d Pesired Security Features of a
: Normal OS

Authentication of users

Memory protection

File and 1/0 access control

Generd object access control

Enforcement of sharing

Fairnessguarantees

Secure |PC and synchronization

Security of OS protection mechanisms

€5239, Spring 2002

\:\

Lecture 14
Page 26

/

Extra Features for a Trusted OS

» Mandatory and discretionary access
control

* Object reuse protection

» Complete mediation

* Audit capabilities

* Intruder detection capabilities

CS239, Spring 2002

Lectre 14
Page27

How To Achieve OS Security

» Kernelized design

 Separation and isolation mechanisms
* Virtualization

 Layered design

\

5239, Spring 2002

Lecture14
Page 28

4 N

Advantages of Kernelization

» Smaller amount of trusted code

* Easier to check every access

* Separation from other complex pieces
of the system

 Easier to maintain and modify security
features

CS239, Spring 2002

J/

Lecture 14
Page

/

Reference Monitors

< An important security concept for OS
design
« A reference monitor is a subsystem
that controls access to objects
—It provides (potentially) complete
mediation
-kVery important to get this part right

CS239, Spring 2002

Lecture 14
Page0

l Systems
* How do | know that | should trust
someone’ s operating system?

» What methods can | use to achieve the
level of trust | require?

CS239, Spring 2002

Lecture 14
Pageal

/

¢ Testing
* Formal verification
« Vdidation

Assurance M ethods

€5239, Spring 2002

Lecture 14
Page 2

« If | want to buy a secure operating
system, how do | compare options?

» Use established standards for OS
security

» Severa standards exist

o

CS239, Spring 2002

Lectre 14
Page®

/

Some Security Standards

» U.S. Orange Book
¢ European ITSEC
¢ U.S. Combined Federa Criteria

* Common Criteria for Information
Technology Security Evaluation

\

5239, Spring 2002

Lecture 14
Page34

4 N

The U.S. Orange Book

» The earliest evaluation standard for
trusted operating systems

* Defined by the Department of Defense
in the late 1970s

* Now largely a historical artifact

\

CS239, Spring 2002

Lecture14
Page

/

Purpose of the Orange Book

¢ To set standards by which OS security
could beevaluated

« Fairly strong definitions of what features
and capabilitiesan OS had to have to
achieve certain levels

« Allowing “head-to-head” evaluation of
security of systems

k—And specification of requirements

CS239, Spring 2002

Lecture 14
Page %

Orange Book Security Divisions

« A,B,C,andD
—Indecreasing order of degree of security
* Important subdivisionswithin some of the
divisons
» Requiresformal certification from the
government (NCSC)
—Except for the D level

CS239, Spring 2002

Lecture 14
Paged’

/ Some Important Orange Book \
Divisions and Subdivisions
¢ C2 - Controlled Access Protection
» B1- Labeled Security Protection
* B2 - Structured Protection

Lecure 14
©5239, Spring 2002 Page3

\

The C2 Security Class

* Discretionary access
—At fairly low granularity

* Requires auditing of accesses

» And password authentication and
protection of reused objects

» Windows NT has been certified to this

kd ass

CS239, Spring 2002

Lectre 14
Page®

\

The B1 Security Class

* Includes mandatory access control
—Using Bdll-La Padua model
—Each subject and object is assigned a
security level
 Requires both hierarchical and non-
hierarchical access controls

k Lecture 14
Page)

5239, Spring 2002 2

4 N

The B3 Security Class

* Requires careful security design
—With some level of verification

* And extensive testing

» Doesn't require formal verification

—But does require “a convincing
argument”

kTrusted Mach isin this class

CS239, Spring 2002

Lecture 14
Page

/

| . | Auditi \

» An important part of a complete
security solution

« Practical security depends on knowing
what is happening in your system

 Logging and auditing is required for
that purpose

J/

Lecture 14
©5239, Spring 2002 Page &2

* No security system will stop al attacks
—Logging what has happened is vita
to dealing with the holes
* Logging aso tells you when someone
istrying to bregk in

—Perhaps giving you a chance to close
possible holes

Lecture 14
Page3

CS239, Spring 2002

/

¢ One example of what might be logged
for security purposes

« Listing of which users accessed which
objects

—And when and for how long
* Especialy important to log failures

AccessLogs

€5239, Spring 2002

\

Lecture 14
Page 44

\

Other Typical Logging Actions

* Logging failed login attempts
—Can help detect intrusions or
password crackers
* Logging changes in program
permissions
—Often done by intruders

o

CS239, Spring 2002

Lectre 14
Pageds

Problems With Logging

« Dealing with large volumes of data
 Separating the wheat from the chaff

—Unless the log is very short, auditing
it can be laborious

« System overheads and costs

\

5239, Spring 2002

\

Lecture 14
Page 6

4 N

Log Security

« If you uselogsto detect intruders, smart
intruderswill try to attack logs

—Concedling their traces by erasing or
modifying thelog entries
* Append-only accesscontrol helpsalot here
* Orlogging to hard copy

k-Or logging to aremote machine /

Lecture 14
CS239, Spring 2002 Paged?

o

* Security mechanisms are great
—If you have proper policiesto usethem

* Security policiesare great
—If youfollow them

* For practical systems, proper policiesand
consistent use areamajor security problem

\

CS239, Spring 2002

\

J/

Lecture 14
Page 8

4 N

Auditing

» A formal (or semi-formal) process of
verifying system security

* “You may not do what | expect, but
you will do what | inspect.”

* A requirement if you really want your
systems to run securely

Lecture 14
CS239, Spring 2002 Page 9

Auditing Requirements

« Knowledge
—Of the installation and genera
security issues
* Independence
Trustworthiness
Ideally, big organizations should have

their own auditors

€5239, Spring 2002

Lecture 14
Page S0

When Should You Audit?

* Periodically
« Shortly after making major system
changes
—Especialy those with security
implications
» When problems arise
k —Internaly or externally

Lectre 14
€239, Spring 2002 PagesL

/

Auditing and Logs

* Logs are a mgjor audit tool

* Some examination can be done
automaticaly

« But part of the purpose is to detect
things that automatic methods miss

—So0 some logs should be audited by

hand
\

5239, Spring 2002

Lecture14
Pages2

4 N

A Typical Set of Audit Criteria

» For aUnix system
» Somesamplecriteria:
— All accounts have passwords
—Limited use of setuid root
—Display last logindate onlogin
—Limited write accessto system files
k —No“.” inPATH variables /

Lecture 14
CS239, Spring 2002 PageS3

/

What Does an Audit Cover?

« Conformance to policy

* Review of control structures

« Examination of audit trail (logs)
e User awareness of security
 Physicd controls

 Software licensing and intellectual
kproperty issues

CS239, Spring 2002

Lecture 14
Page54

[Encapsulated Envi ronments]

* If you can't trust an executable, how
can you run it?

* Put it in abox where it can’t do much
harm

» Today’'s systems offer only limited
abilities to do that

Lecture 14
Page %

CS239, Spring 2002

Options for Encapsulation Today

* Create anew user ID for the
application
—Bereal careful about the privileges
given to that user

* Run it under the Java virtual machine

—In the most restrictive mode

€5239, Spring 2002

Lecture 14
Page %

/ Improved Encapsulation \
Solutions
* Alter the OS

» Use existing OS mechanisms to build
new protection domains

» Address space protection
* Language-based solutions

k Lecture14
Pages7

CS239, Spring 2002

\
5
)
|
>
8
4
O
=1
S

 Change the OS to add finer granularity
access controls

» And/or more flexibility in setting up
security domains

¢ Use the new OS tools to solve the
problem

—Begging the question of, how?

\

5239, Spring 2002

Lecture14
Pages3

/ Pros and Cons of OS-Based \
Solutions
+ Potentially good performance
+ With good design, arbitrary flexibility
—You must ater the OS
— High security pendltiesif you blow it
— Only likely to be effective if lots of
kfoI ks play the game /

Lecture 14
CS239, Spring 2002 Page®

/

Example- DTE

» Use OS dlteration to allow checking of
separate access control database

« Each process' security permissions
specified in database

* When process tries to do something,
check database to see if it’'s permitted

CS239, Spring 2002

\

Lecture 14
Page €0

10

» Make clever use of existing OS
features to improve access control

 Usualy by trapping particular system
calsin clever ways

» When trapped, apply access control to
them in new ways

Lecture 14
Page6l

CS239, Spring 2002

/ Pros and Cons of Leveraging \
OS Features
+ Often pretty cheap and easy to build
+ Can work at the user level

+ Can use existing, proven access control
as afallback

— Security retrofits have a dismal history
— May have performance problems

— May offer limited leverage

Lecure14
©5239, Spring 2002 Page &2

4 N

Example - Janus

 Designed to limit accessfor Web helper
programs

» UsestheUnix / pr oc file systemto trap
system calls from these processes

» When trapped, check to seeif they are
alowable

* High overhead whenever you dothis
k — So better not do it often

Lectre 14
€239, Spring 2002 Page63

 The approaches aready discussed have
afundamental limitation -
—They only protect things outside the
process address space

» Most access control assumes a process
should have unlimited access to its

own address space

Lecture 14
©$239, Spring 2002 Page &4

4 N

Intra- Address Space Protection

» Why shouldn’t aprocess completely control
itsaddressspace?
* Because of composable applications

* For performance reasons, different
components may need to share an address
space

* Yet they may havetheir own security

krequi rements /

Lecture 14
Pages

CS239, Spring 2002

/

Building Programs Out of
Components
* Increasingly, programs are being built
out of prewritten components
—Due to COM, CORBA, etc.

¢ So to build a program, dlap together
half a dozen pre-existing pieces

—And add alittle of your own code

&But can you trust the pieces? /

Lecture 14
©5239, Spring 2002 Page 6

11

4 N

An Example

* You arebuilding alarge application
« Rather than develop your own btree
package, you want to buy acommercia one

* It will be heavily used, so youwant to link
it into your process

» How can you be sureit won't misbehave?

Lecture 14
Page67

CS239, Spring 2002

ﬂccess Control Implications of \
Finer Granularity

« Within a single address space, we heed
multiple access control domains for
file references, IPC, etc.

» But we also need access control for
memory references!

« Can no longer rely on hardware virtual

memory protection

Lecure14
©5239, Spring 2002 Page €8

/ Approachesto Protecting \
Memory

» Segment matching
 Address sandboxing

o

CS239, Spring 2002

Lectre 14
Page®

The Basic Problem To Be Solved

¢ Two mutually distrusting code segments
shareasingle address space

 They export operationsto each other

» How can we guarantee that they touch each
other only through those interfaces?

 Given that they can issue each other’s
addresses

k Lecture 14
Page

5239, Spring 2002 2

4 N

Other Constraints

» Must not be limited to asingle
language
—Any executable must work
* Must be enforced at run time
» Must be relatively cheap

—Or you might as well move the code
k to a different address space /

Lecture 14
CS239, Spring 2002 Page7L

4 N

Segment Matching

» Examine executable about to be loaded
for “unsafe instructions’

* What is unsafe?

—Any jump or store to address that
can't be statically verified
—E.g., jump through register, store

k through register /

Lecture 14
©5239, Spring 2002 Page 72

12

Handling Unsafe Instructions

* Define virtual memory segments that a
piece of code can legitimately address

* For each unsafe instruction, insert new
instructions in the executable to check
it a run time

 Could be done at compile time or load
time

Lecture 14
PageT3

CS239, Spring 2002

Checking Unsafe Instructions

¢ Fundamentally, examine the non-static
address the code proposes to use

« If it's within the code' s boundaries, let
it happen

« If not, prevent it

e And report the violation

Lecture 14
Page 74

€5239, Spring 2002

\

Costs of Segment Matching

» Must reserve severa registers for this
purpose
—Four, in Berkeley implementation
 Additional instructions performed

—Four, in Berkeley implementation for
atypical RISC processor

Lectre 14
€239, Spring 2002 Page s

Address Sandboxing

» Reducesthe cost of providing thislevel of
safety

» But loses ability to pinpoint attemptsto
bypassthe security

» Essentidly, instead of checking, just apply a
mask to unsafe addresses
—Mask ensures that addressiswithin

k permitted segments

5239, Spring 2002

\

Lecture 14
Page 76

ag

\

/VVhen |s Software-Enforced Fault
Isolation Vauable?
* It'sexpensive, becauseit addsinstructions
tocode
—Perhapsin common cases
 But not nearly asexpensiveas|PC
» Soitwinsif the code performsalot of IPC
* Alsorequiresfast RPC across protection

kdomai ns /

Lecture 14
Page 77

CS239, Spring 2002

 These approaches don’t allow rapid
downloading and execution of
programs
—Which is highly vauable

* What if you couldn’t write a program
that behaved badly?

-kWhat if the machine enforced that?

CS239, Spring 2002

J/

Lecture 14
Page B

13

The Virtual Machine Approach

* Define avirtua machine that does not
alow “insecure” operations

» Write all untrusted programsin a
language that works on that virtual
machine

* Run imported programs through an
interpreter for that language

Lecture 14
Page ™

CS239, Spring 2002

How Do You Do This “Right”?

e Carefully design a virtual machine that
cannot perform insecure operations

—If properly implemented

« Require al imported programs to be
written in its language

* Interpret those programs at run time
—Or compile at download time

Lecure14
©5239, Spring 2002 Page&d

\

Why Isn’'t This Easy?

» How do you design a virtual machine
that does useful things?

—But nothing insecure

* How do you implement the virtual
machine and compiler/interpreter?

* Can this perform well enough?

o

CS239, Spring 2002

Lectre 14
Page8l

 Javatacklestheseproblems

» The Javavirtual machineis meant to
provide a secure execution environment
—Alsoportable

» The Javalanguage ensuresthat all program
operations arein the context of that VM

k Lecture 14
Page @

5239, Spring 2002 2

L N

anguage and Virtual Machine
Definitions
« All security depends on the virtua
machine not alowing insecure things
» And on the language only working on
the real machine through the virtua
machine

* So they must be carefully defined to
knot allow any insecure operations

CS239, Spring 2002

J/

Lecture 14
Page®

(e N

ure Implementation of the
Virtual Machine

« Given that the definition of the virtual
machine is secure, we must be sure that
the implementation matches the
definition

 Essentidly, thisis the same problem as
verifying that an OS is secure

—Perhaps on a smdler scae, though /

Lecture 14

©5239, Spring 2002 Page 84

14

/

e Only dlow Java“source’ codeto be
executed

—"“Source” codeisactualy Javabytecode
* A portable* assembly language”
» Thenrunit through atrusted interpreter
—Which verifiesthat only approved Java
VM operations are invoked

Java Interpreters

Lecture 14
CS239, Spring 2002 Page s

/ Access Control and the Java \
Virtual Machine
* At best, thisapproach limits accessto the
Javavirtual machine
* Soyou must definethat VM so aJava
program cannot do anything “bad”
* What isalowed isakey issue
— All the security isbased on thevirtua
machine operations being acceptable

Lecure14
©5239, Spring 2002 Page8s

/ Functionality vs. Security: the \

Java Version

Thesameoldissuearises

More security or more functionality

Javaoriginally chose strong security

—Modulo theusua bugs

. cI?ut people couldn’t do what they needed to
o

» So Java' s security model was weakened

* And now security-conscious people turn off
kJava in their browsers

CS239, Spring 2002

Lectre 14
Paged?

15

