
1

Lecture 13
Page 1CS 239, Spring 2002

Operating System Security
CS 239

Security for Networks and
System Software

May 20, 2002

Lecture 13
Page 2CS 239, Spring 2002

Outline

• Introduction
• Memory protection
• Interprocess communications protection
• File protection
• Authentication

Lecture 13
Page 3CS 239, Spring 2002

Introduction

• Threats to single machines are of the
same character as threats to network
communications

• But very different in their mechanisms
and solutions

Lecture 13
Page 4CS 239, Spring 2002

Single User Vs. Multiple User
Machines

• The majority of today’s computers usually
support a single user
– Sometimes one at a time
– Sometimes only one ever

• Some computers are still multi-user
– Mainframes
– Servers
– Network-of-workstation machines

Lecture 13
Page 5CS 239, Spring 2002

Server Machines Vs. General
Purpose Machines

• Most server machines provide only limited
services
– Web page access
– File access
– DNS lookup

• Security problems are simpler for them
• Some machines still provide completely

general service, though

Lecture 13
Page 6CS 239, Spring 2002

Embedded Systems

• An increasingly large number of
objects contain embedded computers
– With limited capabilities and access

• The future will undoubtedly see
security problems for them
– First for embedded processors in

security systems, probably

2

Lecture 13
Page 7CS 239, Spring 2002

Downloadable Code and Single
User Machines

• Applets and other downloaded code
should run in a limited mode

• Using access control on a finer
granularity than the user

• Essentially the same protection
problem as multiple users

Lecture 13
Page 8CS 239, Spring 2002

Mechanisms for Secure
Operating Systems

• Most operating system security is
based on separation
– Keep the bad guys away from the

good stuff
– Since you don’t know who’s bad,

separate most things

Lecture 13
Page 9CS 239, Spring 2002

Separation Methods

• Physical separation
– Different machines

• Temporal separation
– Same machine, different times

• Logical separation
– HW/software enforcement

• Cryptographic separation
Lecture 13
Page 10CS 239, Spring 2002

The Problem of Sharing

• Separating stuff is actually pretty easy
• The hard problem is allowing

controlled sharing
• How can the OS allow users to share

exactly what they intend to share?
– In exactly the ways they intend

Lecture 13
Page 11CS 239, Spring 2002

Levels of Sharing Protection

• None
• Isolation
• All or nothing
• Access limitations
• Limited use of an object

Lecture 13
Page 12CS 239, Spring 2002

Protecting Memory

• Most general purpose systems provide some
memory protection
– Logical separation of processes that run

concurrently
• Usually through virtual memory methods
• Originally arose mostly for error

containment, not security

3

Lecture 13
Page 13CS 239, Spring 2002

Security Aspects of Paging

• Main memory is divided into page frames
• Every process has an address space divided

into logical pages
• For a process to use a page, it must reside in

a page frame
• If multiple processes are running, how do

we protect their frames?

Lecture 13
Page 14CS 239, Spring 2002

Protection of Pages

• Each process is given a page table
– Translation of logical addresses into

physical locations
• All addressing goes through page table

– At unavoidable hardware level
• If the OS is careful about filling in the page

tables, a process can’t even name other
processes’ pages

Lecture 13
Page 15CS 239, Spring 2002

Security Issues of Page Frame
Reuse

• A common set of page frames is shared by
all processes

• The OS switches ownership of page frames
as necessary

• When a process acquires a new page frame,
it used to belong to another process
– Can the new process read the old data?

Lecture 13
Page 16CS 239, Spring 2002

Special Interfaces to Memory

• Some systems provide a special interface to
memory

• If the interface accesses physical memory,
– And doesn’t go through page table

protections,
• Attackers can read the physical memory

– Then figure out what’s there and find
what they’re looking for

Lecture 13
Page 17CS 239, Spring 2002

Protecting Interprocess
Communications

• Operating systems provide various kinds of
interprocess communications
– Messages
– Semaphores
– Shared memory
– Sockets

• How can we be sure they’re used properly?
Lecture 13
Page 18CS 239, Spring 2002

IPC Protection Issues

• How hard it is depends on what you’re
worried about

• For the moment, let’s say we’re worried
about one process improperly using IPC to
get info from another
– Process A wants to steal information

from process B
• How would process A do that?

4

Lecture 13
Page 19CS 239, Spring 2002

Message Security
Process A Process B

Can process B use message-
based IPC to steal the secret?

Gimme your
secret

That’s probably
not going to work

Lecture 13
Page 20CS 239, Spring 2002

How Can B Get the Secret?
• He can convince the system he’s A

– A problem for authentication
• He can break into A’s memory

– That doesn’t use message IPC
– And is handled by page tables

• He can forge a message from someone else
to get the secret

• He can “eavesdrop” on someone else who
gets the secret

Lecture 13
Page 21CS 239, Spring 2002

Forging An Identity
Process A Process B

Process C

I’m C, gimme
your secret

Will A
know B is

lying?

Lecture 13
Page 22CS 239, Spring 2002

Operating System Protections

• The operating system knows who each
process belongs to

• It can tag the message with the identity
of the sender

• If the receiver cares, he can know the
identity

Lecture 13
Page 23CS 239, Spring 2002

How About Eavesdropping?
Process A Process B

Process C

I’m C, gimme
your secret

Can process B
“listen in” on
this message?

Lecture 13
Page 24CS 239, Spring 2002

What’s Really Going on Here?

• On a single machine, what is a message
send, really?

• A message is copied from a process buffer
to an OS buffer
– Then from the OS buffer to another

process’ buffer
• If attacker can’t get at processes’ internal

buffers and can’t get at OS buffers, he can’t
“eavesdrop”

5

Lecture 13
Page 25CS 239, Spring 2002

Other Forms of IPC

• Semaphores, sockets, shared memory, RPC
• Pretty much all the same

– Need system call to perform them
– System call to get access belongs to some

process
– Process belongs to some principal
– OS can check principal against access

control permissions at syscall time
Lecture 13
Page 26CS 239, Spring 2002

So When’s It Hard?

• What if the OS has to prevent
cooperating processes from sharing
information?

Lecture 13
Page 27CS 239, Spring 2002

The Hard Case
Process A Process B

Process A wants to tell the secret to process B
But the OS has been instructed to prevent that
Can the OS prevent A and B from colluding

to get the secret to B?
Lecture 13
Page 28CS 239, Spring 2002

File Protection

• How do we apply these access protection
mechanisms to a real system resource?

• Files are a common example of a typically
shared resource

• If an OS supports multiple users, it needs to
address the question of file protection

Lecture 13
Page 29CS 239, Spring 2002

Unix File Protection

• A model for protecting files developed
in the 1970s

• Still in very wide use today
– With relatively few modifications

• But not very flexible

Lecture 13
Page 30CS 239, Spring 2002

Unix File Protection Philosophy

• Essentially, Unix uses a limited ACL
• Only three subjects per file

– Owner
– Group
– Other

• Limited set of rights specifiable
– Read, write, execute
– Special meanings for some file types

6

Lecture 13
Page 31CS 239, Spring 2002

Unix Groups

• A set of Unix users can be joined into a
group

• All users in that group receive common
privileges
– Except file owners always get the owner

privileges
• A user can be in multiple groups
• But a file has only one group

Lecture 13
Page 32CS 239, Spring 2002

Setuid and Setgid

• Unix mechanisms for changing your user
identity and group identity

• Either for a long time or for the run of a
single program

• Created to deal with inflexibilities of the
Unix access control model

• But the source of endless security problems

Lecture 13
Page 33CS 239, Spring 2002

Why Are Setuid Programs
Necessary?

• The print queue is essentially a file
• Someone must own that file
• How will other people put stuff in the print

queue?
– Without making the print queue writeable

for all purposes
• Typical Unix answer is run the printing

program setuid
– To the owner of the print queue

Lecture 13
Page 34CS 239, Spring 2002

Why Are Setuid Programs
Dangerous?

• Essentially, setuid programs expand a
user’s security domain

• In an encapsulated way
– Abilities of the program limit the

operations in that domain
• Need to be damn sure that the

program’s abilities are limited

Lecture 13
Page 35CS 239, Spring 2002

Some Examples of Setuid
Dangers

• Setuid programs that allow forking of a new
shell

• Setuid programs with powerful debugging
modes

• Setuid programs with interesting side
effects
– E.g., lpr options that allow file deletion

Lecture 13
Page 36CS 239, Spring 2002

Unix File Access Control and
Complete Mediation

• Unix doesn’t offer complete mediation
• File access is checked on open to a file

– For the requested modes of access
• Opening program can use the file in the

open mode for as long as it wants
– Even if the file’s access permissions

change
• Substantially cheaper in performance

7

Lecture 13
Page 37CS 239, Spring 2002

Physical Implementation of Unix
Access Control

• Effectively, requires 9 bits per file
– Setuid and setgid adds two bits

• Stored in the file’s inode
– Possible because they’re so small

• Checking them again requires re-
examining the inode

Lecture 13
Page 38CS 239, Spring 2002

Pros and Cons of Unix File
Protection Model

+ Low cost
+ Simple and easy to understand
+ Time tested
– Lacking in flexibility

• In granularity of control
–Subject and object

• In what controls are possible

Lecture 13
Page 39CS 239, Spring 2002

Access Control Lists for File
Systems

• The file system access control
mechanism of choice in modern
operating systems

• Used in many systems -
– Andrew
– Windows NT
– Solaris 2.5

Lecture 13
Page 40CS 239, Spring 2002

Solaris 2.5 ACLs for Files

• In addition to the standard Unix
permissions

• Allows ACL-style listing of users and
groups
– With separate permissions for each

• Does not expand set of allowable
permissions

Lecture 13
Page 41CS 239, Spring 2002

Windows NT ACLs for Files

• Integrated into the overall NT access
control mechanism

• Uses NT concept of security
descriptors
– Specifying objects

• And security IDs
– Specifying subjects

Lecture 13
Page 42CS 239, Spring 2002

More On Windows NT File
ACLs

• The NT model also allows creation of
groups
– With their own security IDs

• The security model is object-based
– So the types of permissions that can

be granted are flexible and extensible

8

Lecture 13
Page 43CS 239, Spring 2002

Authentication in Single
Machine Systems

• Most single machine system security
mechanisms are based on controlling
access

• Access control only works if you have
good authentication

• Various means are used to provide
authentication in operating systems

Lecture 13
Page 44CS 239, Spring 2002

Process Authentication

• Memory protection is based on process
identity
– Only the owning process can name

its own virtual memory pages
• Because VM is completely in OS

control, pretty easy to ensure that
processes can’t fake identities

Lecture 13
Page 45CS 239, Spring 2002

How the OS Authenticates
Processes

• System calls are issued by a particular
process

• The OS securely ties a process control
block to the process
– Not under user control

• Thus, the ID in the process control
block can be trusted

Lecture 13
Page 46CS 239, Spring 2002

How Do Processes Originally
Obtain Access Permission?

• Most OS resources need access control
based on user identity or role
– Other than virtual memory pages and

other transient resources
• How does a process get properly tagged

with its owning user or role?
• Security is worthless if OS carefully

controls access on a bogus user ID

Lecture 13
Page 47CS 239, Spring 2002

Users and Roles

• In most systems, OS assigns each potential
user an ID

• More sophisticated systems recognize that
the same user works in different roles
– Effectively, each role requires its own ID
– And secure methods of setting roles

Lecture 13
Page 48CS 239, Spring 2002

Securely Identifying Users and
Roles

• Passwords
• Identification devices
• Challenge/response systems
• Physical verification of the user

9

Lecture 13
Page 49CS 239, Spring 2002

Passwords

• Authentication by what you know
• One of the oldest and most commonly used

security mechanisms
• Authenticate the user by requiring him to

produce a secret
– Known only to him and to the

authenticator
– Or, if one-way encryption used, known

only to him
Lecture 13
Page 50CS 239, Spring 2002

Problems With Passwords

• They have to be unguessable
– Yet easy for people to remember

• If networks connect terminals to
computers, susceptible to password
sniffers

• Unless fairly long, brute force attacks
often work on them

Lecture 13
Page 51CS 239, Spring 2002

Proper Use of Passwords

• Select good ones
• Change them often
• Never write them down
• Never tell anyone else

Lecture 13
Page 52CS 239, Spring 2002

Handling Passwords

• The OS must be able to check
passwords when users log in

• So must the OS store passwords?
• Not really

– It can store an encrypted version
• Encrypt the offered password and

compare it to the stored version

Lecture 13
Page 53CS 239, Spring 2002

Standard Password Handling

Login: Groucho

We6/d02,

password: swordfish

Harpo 2st6’sG0
Zeppo G>I5{as3
Chico w*-;sddw
Karl sY(34,ee,
Groucho We6/d02,

The Marx
Brothers’

Family
Machine

Lecture 13
Page 54CS 239, Spring 2002

Is Encrypting the Password File
Enough?

• What if an attacker gets a copy of your
password file?

• No problem, the passwords are
encrypted
– Right?

• Yes, but . . .

10

Lecture 13
Page 55CS 239, Spring 2002

Dictionary Attacks on the
Encrypted Password File

Harpo 2st6’sG0
Zeppo G>I5{as3
Chico w*-;sddw
Karl sY(34,ee,
Groucho We6/d02,

Dictionary

aardvark340jafg;aardwolfK]ds+3a,abaca sY(34,ee

sY(34,ee

Rats!!!!

Now you can hack
the Communist

Manifesto!

Lecture 13
Page 56CS 239, Spring 2002

A Serious Issue

• All Linux machines use the same one-
way function to encrypt passwords

• If someone runs the entire dictionary
through that function,
– Will they have a complete list of all

encrypted dictionary passwords?

Lecture 13
Page 57CS 239, Spring 2002

Illustrating the Problem

beard^*eP6la- beard^*eP6la-

aardvark 340jafg;
aardwolf K[ds+3a,
abaca sY(34,ee

. . .
beard ^*eP61a-

Lecture 13
Page 58CS 239, Spring 2002

The Real Problem

• Not that Darwin and Marx chose the same
password

• But that anyone who chose that password
got the same encrypted result

• So the attacker need only encrypt every
possible password once

• And then she has a complete dictionary
usable against anyone

Lecture 13
Page 59CS 239, Spring 2002

Salted Passwords

• Combine the plaintext password with a
random number
– Then run it through the one-way

function
• The random number need not be secret
• It just has to be different for different

users

Lecture 13
Page 60CS 239, Spring 2002

Did It Fix Our Problem?

beard beardD0Cls6&)#4,doa8aardvark 340jafg;
aardwolf K[ds+3a,
abaca sY(34,ee

. . .
beard ^*eP61a-

11

Lecture 13
Page 61CS 239, Spring 2002

Identification Devices

• Authentication by what you have
• A smart card or other hardware device

that is readable by the computer
• Authenticate by providing the device

to the computer

Lecture 13
Page 62CS 239, Spring 2002

Problems With Identification
Devices

• If lost or stolen, you can’t authenticate
yourself
– And someone else can
– Often combined with passwords to avoid

this problem
• Unless cleverly done, susceptible to sniffing

attacks
• Requires special hardware

Lecture 13
Page 63CS 239, Spring 2002

Challenge/Response
Authentication

• Authentication by what questions you
can answer correctly

• The system asks the user to provide
some information

• If it’s provided correctly, the user is
authenticated

Lecture 13
Page 64CS 239, Spring 2002

Differences From Passwords

• Challenge/response systems ask for
different information every time

• Or at least the questions come from a large
set

• Best security achieved by requiring what
amounts to encryption of the challenge
– But that requires special hardware
– Essentially, a smart card

Lecture 13
Page 65CS 239, Spring 2002

Problems With Authentication
Through Challenge/Response

• Either the question is too hard to answer
without special hardware

• Or the question is too easy for intruders to
spoof

• Still, commonly used in real-world
situations
– E.g., authenticating you by asking your

mother’s maiden name

Lecture 13
Page 66CS 239, Spring 2002

Authentication Through Physical
Verification

• Authentication based on who you are
• Things like fingerprints, voice patterns,

retinal patterns, etc.
• To authenticate to the system, let it

measure the appropriate physical
characteristics

12

Lecture 13
Page 67CS 239, Spring 2002

Problems With Physical
Verification

• Requires very special hardware
– Possibly excepting systems that examine

typing patterns
• May not be as foolproof as you think
• Many characteristics vary too much for

practical use
• Generally not helpful for authenticating

programs or roles

