
Information Flow Security

Oren Freiberg Shu-yu Guo

University of California, Los Angeles

October 21, 2010



Controlling Information

Problem

Information is power. Information now lives on computers. It goes to
places we don’t want it to go. How do we control information?

We want:

End-to-end

To control propagation

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 2 / 20



What’s wrong with existing technologies?

Access controls control the release of sensitive information, not
propagation. Once it’s out, it’s out.

Firewalls and antivirus are not end-to-end.

Covert channels
I Implicit flow
I Termination
I Timing
I Probablistic

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 3 / 20



What’s wrong with existing technologies?

Access controls control the release of sensitive information, not
propagation. Once it’s out, it’s out.

Firewalls and antivirus are not end-to-end.

Covert channels
I Implicit flow
I Termination
I Timing
I Probablistic

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 3 / 20



What’s wrong with existing technologies?

Access controls control the release of sensitive information, not
propagation. Once it’s out, it’s out.

Firewalls and antivirus are not end-to-end.

Covert channels
I Implicit flow
I Termination
I Timing
I Probablistic

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 3 / 20



What’s wrong with existing technologies?

Access controls control the release of sensitive information, not
propagation. Once it’s out, it’s out.

Firewalls and antivirus are not end-to-end.

Covert channels
I Implicit flow
I Termination
I Timing
I Probablistic

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 3 / 20



Programming Languages

A promising approach has been to integrate information flow primitives
into programming languages: now we have guarantees at the language
level that information “flows to the right places”.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 4 / 20



Example: Explicit Flow

var h = getSecret();

var l = h; // oops

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 5 / 20



Example: Implicit Flow

var h = getSecret();

var l = 0;

if (h == 0) {

l = 1;

}

l strongly depends on h. By observing the value of l, we
know the value of h, whether the conditional is executed or
not.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 6 / 20



Example: Implicit Flow

var h = getSecret();

var l = 0;

if (h == 0) {

l = 1;

}

l strongly depends on h. By observing the value of l, we
know the value of h, whether the conditional is executed or
not.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 6 / 20



Policy

Question

How do we specify information flow policies for confidentiality?

State of the Art

Distributive lattice of labels

Simple

Nice, well-known properties

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 7 / 20



Lattice

{med ,fin, crim}

{med , crim}{med ,fin} {fin, crim}

{fin}{med} {crim}

⊥

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 8 / 20



Lattice

H

L

L v H

L can flow to H, i.e. information can be read from low security variables
and go into a high-security variable, but not vice versa.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 9 / 20



Lattice

H

L

L v H

L can flow to H, i.e. information can be read from low security variables
and go into a high-security variable, but not vice versa.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 9 / 20



Noninterference

With any formal model, the end goal is to prove properties. In this case,
we want to prove some kind of property that information doesn’t flow to
the wrong places.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 10 / 20



Noninterference

Noninterference

∀p1, p2.p1 =L p2 ∧ p1 7→∗ p′1 ∧ p2 7→∗ p′2 ⇒ p′1 =L p′2

In English, it says that if the “low view” of two programs are equivalent,
then during execution their “low views” should always be equivalent. That
is, high-security information should not interfere with low-security
information.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 11 / 20



Implicit Flow Revisited

var h = getSecret();

var l = 0;

if (h == 0) {

l = 1;

}

This program is not non-interfering: observable low-security
data depends on unobservable high-security data.
Easy to prove statically, hard to so dynamically. (Anyone see
why?)

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 12 / 20



Duality

Confidentiality

Preventing information from flowing from bad places. No read up.

Integrity

Preventing information from flowing to bad places. No write down.

Dual to each other: the integrity lattice is the confidentiality lattice upside
down.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 13 / 20



Integrity

Instead of private and public information, the basic lattice for
integrity consists of tainted and untainted data.

Important difference from confidentiality: integrity can be
compromised without interaction with the external world, simply by
having bugs. Correctness is hard to prove.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 14 / 20



Challenges in Languages

Complexity Nobody knows how to write flow policies because they are
bewilderingly complicated and principals aren’t usually static.
Shouldn’t be this hard.

Too Strict Noninterference is too strict a property to be useful. Systems
need legitimate ways of declassifying, and dually, endorsing
data. How do we do this right?

Dynamic Kinda hard and inefficient.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 15 / 20



Security of Entire Systems

Security, after all, is a property of entire systems, not just programming
languages.
Plus, nobody knows how to actually use information flow-safe languages,
so what do we do?

Abstract it to the operating system.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 16 / 20



Information Flow in OS

Information flow is controlled at process and thread boundaries.

Can use the same lattices and theory that languages research has
developed.

Untrusted program will cause minimal damage since the operating
system will be enforcing security policies.

Example: HiStar. Integrates both confidentiality and integrity policies into
the operating system.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 17 / 20



Information Flow in OS

Information flow is controlled at process and thread boundaries.

Can use the same lattices and theory that languages research has
developed.

Untrusted program will cause minimal damage since the operating
system will be enforcing security policies.

Example: HiStar. Integrates both confidentiality and integrity policies into
the operating system.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 17 / 20



Information Flow in OS

Information flow is controlled at process and thread boundaries.

Can use the same lattices and theory that languages research has
developed.

Untrusted program will cause minimal damage since the operating
system will be enforcing security policies.

Example: HiStar. Integrates both confidentiality and integrity policies into
the operating system.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 17 / 20



Information Flow in OS

Information flow is controlled at process and thread boundaries.

Can use the same lattices and theory that languages research has
developed.

Untrusted program will cause minimal damage since the operating
system will be enforcing security policies.

Example: HiStar. Integrates both confidentiality and integrity policies into
the operating system.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 17 / 20



Benefits of Information Flow in OS

Requires minimal code changes to enforce security policies.

Eliminates the need for superusers on the OS, reducing risks to
arbitrary user data.

Authentication of users requires no highly-trusted process, minimizing
leaked data.

Allows for VPN isolation since incoming data is tainted.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 18 / 20



Benefits of Information Flow in OS

Requires minimal code changes to enforce security policies.

Eliminates the need for superusers on the OS, reducing risks to
arbitrary user data.

Authentication of users requires no highly-trusted process, minimizing
leaked data.

Allows for VPN isolation since incoming data is tainted.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 18 / 20



Benefits of Information Flow in OS

Requires minimal code changes to enforce security policies.

Eliminates the need for superusers on the OS, reducing risks to
arbitrary user data.

Authentication of users requires no highly-trusted process, minimizing
leaked data.

Allows for VPN isolation since incoming data is tainted.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 18 / 20



Benefits of Information Flow in OS

Requires minimal code changes to enforce security policies.

Eliminates the need for superusers on the OS, reducing risks to
arbitrary user data.

Authentication of users requires no highly-trusted process, minimizing
leaked data.

Allows for VPN isolation since incoming data is tainted.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 18 / 20



Challenges in Systems

Complexity Still hard to use. Nobody still knows how to make the right
policy.

Persistency Have to maintain persistency across restarts.

Performance Performance overheads are now added to processes and
threads.

Oren Freiberg, Shu-yu Guo (UCLA) Info Flow October 2010 19 / 20



Discussion


