## Protecting Other Styles of Protocols

- Generally, how do you know you should believe another router?
- About distance to some address space
- About reachability to some address space
- About other characteristics of a path
- About what other nodes have told you


## How Routing Protocols Pass Information

- Some protocols pass full information
- E.g., BGP
- So they can pass signed information
- Others pass summary information
- E.g., RIP
- They use other updates to create new summaries
- How can we be sure they did so properly?


## Who Are You Worried About?

- Random attackers?
-Generally solvable by encrypting/ authenticating routing updates
- Misbehaving insiders?
- A much harder problem
- They're supposed to make decisions
-How do you know they're lying?



## Types of Attacks on Distance Vector Routing Protocols

- Blackhole attacks
- Claim short route to target
- Claim longer distance
- To avoid traffic going through you
- Inject routing loops
- Which cause traffic to be dropped
- Inject lots of routing updates
- Generally for denial of service

CS 236 Online

## How To Secure a Distance Vector Protocol?

- Can't just sign the hop count -Not tied to the path
- Instead, sign a length and a "second-tolast" router identity
- By iterating, you can verify path length


## An Example



## One Way to Do It



H directly verifies
that it's one hop to E
H gets signed info that D is
2 hops through E
Then we iterate

## Who Does the Signing?

- The destination
- A in the example
- It only signs the unchanging part -Not the hop count
- But an update eventually reaches H that was signed by A


## What About That Hop Count?

- E could lie about the hop count
- But he can't lie that A is next to B
- Nor that B next to C, nor C next to D, nor D next to E
- Unless other nodes collude, E can't claim to be closer to A than he is


## What If Someone Lies?



| E | 1 | - |  |
| :--- | :--- | :--- | :--- |
| $D$ | 2 | $E$ |  |
| $C$ | 3 | $D$ |  |
| B | 4 | $C$ |  |
| $A$ | 5 | $B$ |  |

There's limited scope for effective lies
E can't claim to be Since E can't produce a closer to A routing update signed by A that substantiates that

## A Difficulty

- This approach relies on a PKI
- H must be able to check the various signatures
- Breaks down if someone doesn't sign
-That's a hole in the network, from the verification point of view
-Consider, in example, what happens if C doesn't sign


## What If C Doesn't Sign?



A message coming

| E | 1 | - |  |
| :--- | :--- | :--- | :--- |
| $D$ | 2 | $E$ |  |
| $C$ | 3 | $D$ |  |
| $B$ | 4 | $C$ |  |
| $A$ | 5 | $B$ |  | through D tells us that it's three hops to C

But H can't verify that H knows $C$ is next to $B$

But how can he be sure D is next to C ?

Other than trusting D . . . And that B is next to A

## What's the Problem?



For this graph, no problem

| E | 1 | - |  |
| :--- | :--- | :--- | :--- |
| $D$ | 2 | $E$ |  |
| $C$ | 3 | $D$ |  |
| $B$ | 4 | $C$ |  |
| $A$ | 5 | $B$ |  |

But how about for this one?


