
Lecture 16
Page 1 CS 236 Online

Exploiting Statelessness

•  HTTP is designed to be stateless
•  But many useful web interactions are

stateful
•  Various tricks used to achieve statefulness

– Usually requiring programmers to
provide the state

– Often trying to minimize work for the
server

Lecture 16
Page 2 CS 236 Online

A Simple Example

•  Web sites are set up as graphs of links
•  You start at some predefined point

– A top level page, e.g.
•  And you traverse links to get to other pages
•  But HTTP doesn’t “keep track” of where

you’ve been
– Each request is simply the name of a link

Lecture 16
Page 3 CS 236 Online

Why Is That a Problem?

•  What if there are unlinked pages on the
server?

•  Should a user be able to reach those
merely by naming them?

•  Is that what the site designers
intended?

Lecture 16
Page 4 CS 236 Online

A Concrete Example

•  The ApplyYourself system
•  Used by colleges to handle student

applications
•  For example, by Harvard Business

School in 2005
•  Once all admissions decisions made,

results available to students

Lecture 16
Page 5 CS 236 Online

What Went Wrong?
•  Pages representing results were created as

decisions were made
•  Stored on the web server

– But not linked to anything, since results
not yet released

•  Some appliers figured out how to craft
URLs to access their pages
– Finding out early if they were admitted

Lecture 16
Page 6 CS 236 Online

The Core Problem

•  No protocol memory of what came before
•  So no protocol way to determine that

response matches request
•  Could be built into the application that

handles requests
•  But frequently isn’t

– Or is wrong

Lecture 16
Page 7 CS 236 Online

Solution Approaches
•  Get better programmers

– Or better programming tools
•  Back end system that maintains and compares

state
•  Front end program that observes requests and

responses
– Producing state as a result

•  Cookie-based
– Store state in cookies (preferably encrypted)

Lecture 16
Page 8 CS 236 Online

Data Transport Issues

•  The web is inherently a network
application

•  Thus, all issues of network security are
relevant

•  And all typical network security
solutions are applicable

•  Where do we see problems?

Lecture 16
Page 9 CS 236 Online

(Non-) Use of Data Encryption

•  Much web traffic is not encrypted
– Or signed

•  As a result, it can be sniffed
•  Allowing eavesdropping, MITM

attacks, alteration of data in transit, etc.
•  Why isn’t it encrypted?

Lecture 16
Page 10 CS 236 Online

Why Web Sites Don’t Use
Encryption

•  Primarily for cost reasons
•  Crypto costs cycles
•  For high-volume sites, not encrypting

messages lets them buy fewer servers
•  They are making a cost/benefit analysis

decision
•  And maybe it’s right?

Lecture 16
Page 11 CS 236 Online

Problems With Not Using
Encryption

•  Sensitive data can pass in the clear
– Passwords, credit card numbers, SSNs,

etc.
•  Attackers can get information from

messages to allow injection attacks
•  Attackers can readily profile traffic

– Especially on non-secured wireless
networks

Lecture 16
Page 12 CS 236 Online

Firesheep
•  Many wireless networks aren’t encrypted
•  Many web services don’t use end-to-end

encryption for entire sessions
•  Firesheep was a demo of the dangers of those in

combination
•  Simple Firefox plug-in to scan unprotected

wireless nets for unencrypted cookies
– Allowing session hijacking attacks

•  When run in that environment, tended to be highly
successful

Lecture 16
Page 13 CS 236 Online

Why Does Session Hijacking
Work?

•  Web sites try to avoid computation costs of
encryption

•  So they only encrypt login
•  Subsequent HTTP messages

“authenticated” with a cookie
•  Anyone who has the cookie can authenticate
•  The cookie is sent in the clear . . .
•  So attacker can “become” legit user

Lecture 16
Page 14 CS 236 Online

Using Encryption on the Web
•  Some web sites support use of HTTPS

– Which permits encryption of data
– Based on TLS/SSL

•  Performs authentication and two-way
encryption of traffic
– Authentication is certificate-based

•  HSTS (HTTP Strict Transport Security)
requires browsers to use HTTPS

Lecture 16
Page 15 CS 236 Online

Increased Use of Web Encryption
•  These and other problems have led more

major web sites to encrypt traffic
•  E.g., Google announced in 2014 it would

encrypt all search requests
•  Facebook, Twitter adopted HSTS in 2014

– Overall, only 5% of web sites have
adopted it as of 2016, though

•  Arguably, all web interactions should be
encrypted

Lecture 16
Page 16 CS 236 Online

Sometimes Encryption Isn’t
Enough

•  Especially powerful “attackers” can subvert
this process
– Man-in-the-middle attacks by ISPs
– NSA compromised key management
– NSA also spied on supposedly private

links
•  Usually impossible for typical criminal
•  Hard or impossible for a user to know if this

is going on

Lecture 16
Page 17 CS 236 Online

Conclusion

•  Web security problems not inherently
different than general software security

•  But generality, power, ubiquity of the
web make them especially important

•  Like many other security problems,
constrained by legacy issues

