
Lecture 14
Page 1 CS 236 Online

Variable Initialization

•  Some languages let you declare
variables without specifying their
initial values

•  And let you use them without
initializing them
– E.g., C and C++

•  Why is that a problem?

Lecture 14
Page 2 CS 236 Online

Variable Initialization

•  Some languages let you declare
variables without specifying their
initial values

•  And let you use them without
initializing them
– E.g., C and C++

•  Why is that a problem?

Lecture 14
Page 3 CS 236 Online

A Little Example
main()

{

foo();

bar();

}

foo()

{

 int a;

 int b;

 int c;

 a = 11;

 b = 12;

 c = 13;

}

bar()

{

 int aa;

 int bb;

 int cc;

 printf("aa = %d\n",aa);

 printf("bb = %d\n",bb);

 printf("cc = %d\n",cc);

}

Lecture 14
Page 4 CS 236 Online

What’s the Output?

lever.cs.ucla.edu[9]./a.out
aa = 11

bb = 12

cc = 13

•  Perhaps not exactly what you might want

Lecture 14
Page 5 CS 236 Online

Why Is This Dangerous?

•  Values from one function “leak” into
another function

•  If attacker can influence the values in
the first function,

•  Maybe he can alter the behavior of the
second one

Lecture 14
Page 6 CS 236 Online

Variable Cleanup
•  Often, programs reuse a buffer or other

memory area
•  If old data lives in this area, might not be

properly cleaned up
•  And then can be treated as something other

than what it really was
•  E.g., bug in Microsoft TCP/IP stack

– Old packet data treated as a function
pointer

Lecture 14
Page 7 CS 236 Online

Use-After-Free Bugs
•  Increasingly popular security bug type
•  Related to memory management

– Memory structures are dynamically
allocated on the heap

•  Either explicitly or implicitly freed
– Depending on language and context

•  In some cases, pointers can be used to
access freed memory
– E.g., in C and C++

Lecture 14
Page 8 CS 236 Online

An Example Use-After-Free Bug

•  In OpenSSL (from 2009)
. . .
frag->fragment,frag->msg_header.frag_len);
}
dtls1_hm_fragment_free(frag);
pitem_free(item);

if (al==0)
{
 *ok = 1;
 return frag->msg_header.frag_len;
}

dtls1_hm_fragment_free(frag);

return frag->msg_header.frag_len

Lecture 14
Page 9 CS 236 Online

What Was the Effect?

•  Typically, crashing the program
•  But it would depend
•  When combined with other

vulnerabilities, could be worse
•  E.g., arbitrary code execution
•  Often making use of poor error

handling code

Lecture 14
Page 10 CS 236 Online

Recent Examples of Use-After-
Free Bugs

•  Internet Explorer (2014, several in
2012-2013)

•  Adobe Flash (2016, multiple cases in
2015)

•  Mozilla, multiple products (2012)
•  Google Chrome (2012)

Lecture 14
Page 11 CS 236 Online

Some Other Problem Areas

•  Handling of data structures
–  Indexing error in DAEMON Tools

•  Arithmetic issues
–  Integer overflow in Adobe Flash (2016)
–  Signedness error in XnView (2012)

•  Errors in flow control
–  Samba error that causes loop to use wrong structure

•  Off-by-one errors
–  Denial of service flaw in Clam AV (2011)

Lecture 14
Page 12 CS 236 Online

Yet More Problem Areas
•  Null pointer dereferencing

– FreeBSD denial of service (2016)
•  Side effects
•  Punctuation errors
•  Typos and cut-and-paste errors

–  iOS vulnerability based on inadvertent
duplication of a goto statement (2014)

•  There are many others

Lecture 14
Page 13 CS 236 Online

Why Should You Care?

•  A lot of this stuff is kind of exotic
•  Might seem unlikely it can be

exploited
•  Sounds like it would be hard to exploit

without source code access
•  Many examples of these bugs probably

unexploitable

Lecture 14
Page 14 CS 236 Online

So . . .?
•  Well, that’s what everyone thinks before

they get screwed
•  “Nobody will find this bug”
•  “It’s too hard to figure out how to exploit

this bug”
•  “It will get taken care of by someone else”

– Code auditors
– Testers
– Firewalls

Lecture 14
Page 15 CS 236 Online

That’s What They Always Say

•  Before their system gets screwed
•  Attackers can be very clever

– Maybe more clever than you
•  Attackers can work very hard

– Maybe harder than you would
•  Attackers may not have the goals you

predict

Lecture 14
Page 16 CS 236 Online

But How to Balance Things?
•  You only have a certain amount of

time to design and build code
•  Won’t secure coding cut into that time?
•  Maybe
•  But less if you develop code coding

practices
•  If you avoid problematic things, you’ll

tend to code more securely

Lecture 14
Page 17 CS 236 Online

Some Good Coding Practices

•  Validate input
•  Be careful with failure conditions and

return codes
•  Avoid dangerous constructs

– Like C input functions that don’t
specify amount of data

•  Keep it simple

