-

* Some languages let you declare
variables without specifying their
initial values

{Variable Initialization}

* And let you use them without
initializing them
—E.g., C and C++
* Why 1s that a problem?)

Lecture 14
CS 236 Online Page 1

-

* Some languages let you declare
variables without specifying their
initial values

{Variable Initialization}

* And let you use them without
initializing them
—E.g., C and C++
* Why 1s that a problem?)

Lecture 14
CS 236 Online Page 2

main ()

foo();
bar () ;

foo ()

A Little Example

bar ()

int aa;
int bb;

int cc;

printf ("aa
printf ("bb

sd\n", aa) ;

$d\n",Dbb) ;

int a; printf ("cc d\n", cc) ;

int b; }

int c;

a = 11;

b =12;

c = 13; ‘/
: Lecture 14

CS 236 Online Page 3

4 N

What’s the Output?

lever.cs.ucla.edu[9]./a.out
aa = 11

bb = 12

cc = 13

» Perhaps not exactly what you might want

Lecture 14
CS 236 Online Page 4

-

CS 236 Online

Why Is This Dangerous?

Values from one function “leak’ into
another function

If attacker can influence the values in
the first function,

» Maybe he can alter the behavior of the

second one

\

Lecture 14

Page 5

4 N

Variable Cleanup

Often, programs reuse a buffer or other
memory area

If old data lives in this area, might not be
properly cleaned up

And then can be treated as something other
than what 1t really was

E.g., bug in Microsoft TCP/IP stack

— Old packet data treated as a function
pointer L

CS 236 Online Page 6

/ [Use-After-Free Bugs] \

* Increasingly popular security bug type

* Related to memory management

— Memory structures are dynamically
allocated on the heap

 Either explicitly or implicitly freed
— Depending on language and context

* In some cases, pointers can be used to
access freed memory

— E.g., in C and C++ /

Lecture 14
CS 236 Online Page 7

4 N

An Example Use-After-Free Bug

* In OpenSSL (from 2009)

frag->fragment, frag->msg header.frag len);

J
dtlsl hm fragment free(frag):;
pitem free (item);

1f (al==0)

{
*ok = 1;

\\\\ return frag->msg header.frag len; /
J

Lecture 14
CS 236 Online Page 8

4 N

What Was the Efftect?

* Typically, crashing the program
* But it would depend

* When combined with other
vulnerabilities, could be worse

» E.g., arbitrary code execution

» Often making use of poor error
handling code /

Lecture 14
CS 236 Online Page 9

/ Recent Examples of Use-After-\
Free Bugs

* Internet Explorer (2014, several 1n
2012-2013)

* Adobe Flash (2016, multiple cases in
2015)

* Moazilla, multiple products (2012)
* Google Chrome (2012)

Lecture 14
CS 236 Online Page 10

/ {Some Other Problem Areas] \

Handling of data structures
— Indexing error in DAEMON Tools
Arithmetic 1ssues
— Integer overflow in Adobe Flash (2016)
— Signedness error in XnView (2012)

Errors in flow control

— Samba error that causes loop to use wrong structure

Off-by-one errors
— Denial of service flaw in Clam AV (2011)

/

Lecture 14
CS 236 Online Page 11

-

* Nul
FreeBSD denial of service (2016)

Yet More Problem Areas

| pointer dereferencing

* Sic

CS 236

e effects

* Punctuation errors
* Typos and cut-and-paste errors

—10S vulnerability based on 1nadvertent
duplication of a goto statement (2014)

e There are many others

\

Lecture 14

Online

Page 12

-

CS 236 Online

[Why Should You Care?}

A lot of this stuff i1s kind of exotic

Might seem unlikely 1t can be
exploited

* Sounds like 1t would be hard to exploit

without source code access

* Many examples of these bugs probably

unexploitable

\

/

Lecture 14

Page 13

/ SO0 .. .7 \

Well, that’s what everyone thinks before
they get screwed

“Nobody will find this bug”

“It’s too hard to figure out how to exploit
this bug”

“It will get taken care of by someone else”
— Code auditors

— Testers

— Firewalls Lecture 14

CS 236 Online Page 14

-

CS 236 Online

That’s What They Always Say

Before their system gets screwed
Attackers can be very clever
—Maybe more clever than you
Attackers can work very hard
—Maybe harder than you would

Attackers may not have the goals you
predict

\

Lecture 14

Page 15

-

CS 236 Online

But How to Balance Things?

You only have a certain amount of
time to design and build code

 Won’t secure coding cut into that time?

Maybe

But less 1f you develop code coding
practices

* [f you avoid problematic things, you’ll

tend to code more securely

\

/

Lecture 14

Page 16

-

* Validate imnput

Some Good Coding Practices

e Be careful with failure conditions and
return codes

* Avoid dangerous constructs

—Like C mput functions that don’t
specify amount of data

» Keep 1t simple

\

Lecture 14

CS 236 Online

Page 17

