
Lecture 14
Page 1 CS 236 Online

Proper Use of Cryptography

•  Never write your own crypto functions if you have
any choice
– Another favorite piece of advice from industry

•  Never, ever, design your own encryption
algorithm
– Unless that’s your area of expertise

•  Generally, rely on tried and true stuff
– Both algorithms and implementations

Lecture 14
Page 2 CS 236 Online

Proper Use of Crypto

•  Even with good crypto algorithms (and
code), problems are possible

•  Proper use of crypto is quite subtle
•  Bugs possible in:

– Choice of keys
– Key management
– Application of cryptographic ops

Lecture 14
Page 3 CS 236 Online

An Example

•  An application where RSA was used to
distribute a triple-DES key

•  Seemed to work fine
•  Someone noticed that part of the RSA

key exchange was always the same
– That’s odd . . .

Lecture 14
Page 4 CS 236 Online

What Was Happening?
•  Bad parameters were handed to the RSA

encryption code
•  It failed and returned an error
•  Which wasn’t checked for

– Since it “couldn’t fail”
•  As a result, RSA encryption wasn’t applied

at all
•  The session key was sent in plaintext . . .

Lecture 14
Page 5 CS 236 Online

Another Example
•  Many pieces of malware use cryptography
•  RC4 is a frequent choice of cipher

– Seems easy and fast
•  So the hackers implement it themselves
•  Which often gives the defenders advantages
•  Because the hackers screw it up
•  Being evil doesn’t necessarily make you

smart

Lecture 14
Page 6 CS 236 Online

Trust Management

•  Don’t trust anything you don’t need to
•  Don’t trust other programs
•  Don’t trust other components of your

program
•  Don’t trust users
•  Don’t trust the data users provide you

Lecture 14
Page 7 CS 236 Online

Trust
•  Some trust required to get most jobs done
•  But determine how much you must trust the

other
– Don’t trust things you can independently

verify
•  Limit the scope of your trust

– Compartmentalization helps
•  Be careful who you trust

Lecture 14
Page 8 CS 236 Online

Two Important Lessons

1.  Many security problems arise
because of unverified assumptions

–  You think someone is going to do
something he actually isn’t

2.  Trusting someone doesn’t just mean
trusting their honesty

–  It means trusting their caution, too

Lecture 14
Page 9 CS 236 Online

 Input Verification
•  Never assume users followed any rules

in providing you input
•  They can provide you with anything
•  Unless you check it, assume they’ve

given you garbage
– Or worse

•  Just because the last input was good
doesn’t mean the next one will be

Lecture 14
Page 10 CS 236 Online

Treat Input as Hostile

•  If it comes from outside your control
and reasonable area of trust

•  Probably even if it doesn’t
•  There may be code paths you haven’t

considered
•  New code paths might be added
•  Input might come from new sources

Lecture 14
Page 11 CS 236 Online

For Example
•  Shopping cart exploits
•  Web shopping carts sometimes

handled as a cookie delivered to the
user

•  Some of these weren’t encrypted
•  So users could alter them
•  The shopping cart cookie included the

price of the goods . . .

Lecture 14
Page 12 CS 236 Online

What Was the Problem?

•  The system trusted the shopping cart cookie when
it was returned
– When there was no reason to trust it

•  Either encrypt the cookie
– Making the input more trusted
– Can you see any problem with this approach?

•  Or scan the input before taking action on it
– To find refrigerators being sold for 3 cents

Lecture 14
Page 13 CS 236 Online

Variable Synchronization

•  Often, two or more program variables
have related values

•  Common example is a pointer to a
buffer and a length variable

•  Are the two variables always
synchronized?

•  If not, bad input can cause trouble

Lecture 14
Page 14 CS 236 Online

An Example

•  From Apache web server
• cdata is a pointer to a buffer
• len is an integer containing the

length of that buffer
•  Programmer wanted to get rid of

leading and trailing white spaces

Lecture 14
Page 15 CS 236 Online

The Problematic Code
while (apr_isspace(*cdata))

 ++cdata;
while (len-- >0 &&

 apr_isspace(cdata[len]))
 continue;

cdata[len+1] = ‘/0’;

•  len is not decremented when leading white spaces are
removed
•  So trailing white space removal can overwrite end of buffer
with nulls
•  May or may not be serious security problem, depending on
what’s stored in overwritten area

