
Lecture 13
Page 1 CS 236 Online

Major Problem Areas for
Secure Programming

•  Certain areas of programming have
proven to be particularly prone to
problems

•  What are they?
•  How do you avoid falling into these

traps?

Lecture 13
Page 2 CS 236 Online

Example Problem Areas
•  Buffer overflows and other input verification issues
•  Error handling
•  Access control issues
•  Race conditions
•  Use of randomness
•  Proper use of cryptography
•  Trust
•  Variable synchronization
•  Variable initialization
•  There are others . . .

Lecture 13
Page 3 CS 236 Online

Buffer Overflows
•  The poster child of insecure

programming
•  One of the most commonly exploited

types of programming error
•  Technical details of how they occur

discussed earlier
•  Key problem is language does not

check bounds of variables

Lecture 13
Page 4 CS 236 Online

Preventing Buffer Overflows
•  Use a language with bounds checking

– Most modern languages other than C and
C++ (and assembler)

– Not always a choice
– Or the right choice
– Not always entirely free of overflows

•  Check bounds carefully yourself
•  Avoid constructs that often cause trouble

Lecture 13
Page 5 CS 236 Online

Problematic Constructs for
Buffer Overflows

•  Most frequently C system calls:
– gets(), strcpy(), strcat(),
sprintf(), scanf(),
sscanf(), fscanf(),
vfscanf(),vsprintf(),
vscanf(), vsscanf(),
streadd(), strecpy()

– There are others that are also risky

Lecture 13
Page 6 CS 236 Online

Why Are These Calls Risky?
•  They copy data into a buffer
•  Without checking if the length of the data

copied is greater than the buffer
•  Allowing overflow of that buffer
•  Assumes attacker can put his own data into

the buffer
– Not always true
– But why take the risk?

Lecture 13
Page 7 CS 236 Online

What Do You Do Instead?
•  Many of the calls have variants that

specify how much data is copied
– If used properly, won’t allow the

buffer to overflow
•  Those without the variants allow

precision specifiers
– Which limit the amount of data

handled

Lecture 13
Page 8 CS 236 Online

Is That All I Have To Do?

•  No
•  These are automated buffer overflows
•  You can easily write your own
•  Must carefully check the amount of

data you copy if you do
•  And beware of integer overflow

problems

Lecture 13
Page 9 CS 236 Online

An Example

•  Actual bug in OpenSSH server:

u_int nresp;
. . .
nresp = packet_get_int();
If (nresp > 0) {
 response = xmalloc(nresp * sizeof(char *));
 for (i=0; i<nresp;i++)
 response[i] = packet_get_string(NULL);

}
packet_check_eom();

Lecture 13
Page 10 CS 236 Online

Why Is This a Problem?

• nresp is provided by the user
–  nresp = packet_get_int();

•  But we allocate a buffer of nresp
entries, right?
–  response = xmalloc(nresp * sizeof(char *));

•  So how can that buffer overflow?
•  Due to integer overflow

Lecture 13
Page 11 CS 236 Online

How Does That Work?
•  The argument to xmalloc() is an

unsigned int
•  Its maximum value is 232-1

– 4,294,967,295
• sizeof(char *) is 4
•  What if the user sets nresp to

0x40000020?
•  Multiplication is modulo 232 . . .

– So 4 * 0x40000020 is 0x80

Lecture 13
Page 12 CS 236 Online

What Is the Result?

•  There are 128 entries in response[]
•  And the loop iterates hundreds of

millions of times
– Copying data into the “proper place”

in the buffer each time
•  A massive buffer overflow

Lecture 13
Page 13 CS 236 Online

Other Programming Tools for
Buffer Overflow Prevention

•  Software scanning tools that look for buffer
overflows
– Of varying sophistication

•  Use a C compiler that includes bounds
checking
– Typically offered as an option

•  Use integrity-checking programs
– Stackguard, Rational’s Purity, etc.

Lecture 13
Page 14 CS 236 Online

Canary Values
•  One method of detecting buffer

overflows
•  Akin to the “canary in the mine”
•  Place random value at end of data

structure
•  If value is not there later, buffer

overflow might have occurred
•  Implemented in language or OS

Lecture 13
Page 15 CS 236 Online

Data Execution Prevention (DEP)
•  Buffer overflows typically write executable

code somewhere
•  DEP prevents this

– Page is either writable or executable
•  So if overflow can write somewhere, can’t

execute the code
•  Present in Windows, Mac OS, etc.
•  Doesn’t help against some advanced

techniques

Lecture 13
Page 16 CS 236 Online

Randomizing Address Space
(ASLR)

•  Address Space Layout Randomization
•  Randomly move around where things are stored

– Base address, libraries, heaps, stack
•  Making it hard for attacker to write working

overflow code
•  Used in Windows, Linux, MacOS
•  Not always used, not totally effective

– Several recent Windows problems from
programs not using ASLR

