4 ‘Major Problem Areas for
Secure Programming

(¥

» Certain areas of programming have
proven to be particularly prone to
problems

* What are they?

* How do you avoid falling into these
traps?

\

Lecture 13

CS 236 Online

Page 1

4 N

Example Problem Areas

Buffer overflows and other input verification issues

Error handling

Access control issues

Race conditions

Use of randomness

Proper use of cryptography

Trust

Variable synchronization

Variable initialization

There are others . . . /

Lecture 13
CS 236 Online Page 2

-

CS 236 Online

[Buffer Overﬂows}

The poster child of insecure
programming

* One of the most commonly exploited

types of programming error

* Technical details of how they occur

discussed earlier

» Key problem 1s language does not

check bounds of variables

\

Lecture 13

Page 3

-

CS 236 Online

\

Preventing Buffer Overflows

* Use a language with bounds checking

— Most modern languages other than C and
C++ (and assembler)

— Not always a choice
— Or the right choice

— Not always entirely free of overflows

* Check bounds carefully yourself
* Avoid constructs that often cause trouble

/

Lecture 13
Page 4

/ Problematic Constructs for \

Buffer Overtlows
* Most frequently C system calls:

-gets (), strcpy (), strcat (),
sprintf (), scant (),
sscanf (), fscanf (),
viscanf (),vsprintf (),
vscantf (), vsscant (),
streadd (), strecpy ()

—There are others that are also risky /

Lecture 13
CS 236 Online Page 5

-

CS 236 Online

Why Are These Calls Risky?

They copy data into a buffer

Without checking 1f the length of the data
copied 1s greater than the buffer

Allowing overflow of that buffer

Assumes attacker can put his own data into
the buffer

— Not always true
— But why take the risk?

\

Lecture 13
Page 6

4 N

What Do You Do Instead?

* Many of the calls have variants that
specify how much data 1s copied

—If used properly, won’t allow the
buffer to overflow

 Those without the variants allow
precision specifiers

—Which limit the amount of data
handled /

Lecture 13
CS 236 Online Page 7

-

e No

 Must careful]

problems

Is That All I Have To Do?

 These are automated buffer overtlows

* You can easily write your own

'y check the amount of

data you copy 1f you do
* And beware of integer overflow

\

Lecture 13

CS 236 Online

Page 8

4 N

An Example

» Actual bug 1n OpenSSH server:

u int nresp;

nresp = packet get int();
If (nresp > 0) {
response = xmalloc (nresp * sizeof (char *));
for (i=0; i<nresp;i++)
response[1] = packet get string(NULL) ;
}
packet check eom(); /

Lecture 13
CS 236 Online Page 9

-

CS 236 Online

Why Is This a Problem?

nresp 1s provided by the user
— nresp = packet get int();

* But we allocate a buffer of nresp

entries, right?

— response = xmalloc (nresp * sizeof (char *));

So how can that buffer overtlow?

* Due to integer overflow

\

Lecture 13

Page 10

/ How Does That Work?

* The argument to xmalloc () 1s an
unsigned 1int

e Its maximum value is 232-1
—4.294.967,295
e sizeof (char *) 1s4

 What 1f the user sets nresp to
0x400000207?

e Multiplication is modulo 23% . . .
—So 4 * 0x40000020 is 0x80

CS 236 Online

Lecture 13
Page 11

-

CS 236 Online

\

What Is the Result?

millions of
—Copying
in the bus

* There are 128 entries iIn response []

* And the loop 1iterates hundreds of

times

data into the “proper place”
fer each time

A massive buffer overflow

Lecture 13
Page 12

/ Other Programming Tools for \
Buftfer Overflow Prevention

* Software scanning tools that look for buffer
overflows

— Of varying sophistication

» Use a C compiler that includes bounds
checking
— Typically offered as an option

* Use integrity-checking programs
— Stackguard, Rational’s Purity, etc. L

Page 13

CS 236 Online

4 N

Canary Values

* One method of detecting buffer
overflows

* Akin to the “canary in the mine”

 Place random value at end of data
structure

 If value 1s not there later, buffer
overflow might have occurred

k Implemented 1n language or OS /

Lecture 13
CS 236 Online Page 14

-

CS 236 Online

Buffer overflows typically write executable
code somewhere

DEP prevents this
— Page 1s either writable or executable

So 1f overflow can write somewhere, can’t
execute the code

Present in Windows, Mac OS, etc.

Doesn’t help against some advanced
techniques

\

Data Execution Prevention (DEP)

Lecture 13
Page 15

/ Randomizing Address Space \
(ASLR)

* Address Space Layout Randomization
e Randomly move around where things are stored
— Base address, libraries, heaps, stack

« Making 1t hard for attacker to write working
overflow code

e Used in Windows, Linux, MacOS
* Not always used, not totally effective

— Several recent Windows problems from
programs not using ASLR /

CS 236 Online

Lecture 13
Page 16

