|

Principles for Secure Software

}\

CS 236 Online

Following these doesn’t guarantee
security

» But they touch on the most commonly

seen security problems

» Thinking about them 1s likely to lead to

more secure code

Lecture 13

Page 1



-

CS 236 Online

1. Secure the Weakest Link

Don’t consider only a single possible
attack

Look at all possible attacks you can
think of

Concentrate most attention on most
vulnerable elements

\

Lecture 13

Page 2



-

CS 236 Online

For Example,

Those attacking your web site are not likely
to break transmission cryptography

— Switching from DES to AES probably
doesn’t address your weakest link

Attackers are more likely to use a buffer
overflow to break in

— And read data before 1t’s encrypted

— Prioritize preventing that

\

Lecture 13
Page 3



-

CS 236 Online

2. Practice Defense 1n Depth

Try to avoid designing software so failure
anywhere compromises everything

* Also try to protect data and applications

from failures elsewhere 1n the system

* Don’t let one security breach give away

everything

\

Lecture 13

Page 4



-

CS 236 Online

For Example,

You write a routine that validates all input
properly

All other routines that are supposed to get input
should use that routine

Worthwhile to have those routines also do some
validation

— What if there’s a bug in your general routine?

— What if someone changes your code so it
doesn’t use that routine for input?

\

/

Lecture 13

Page 5



-

CS 236 Online

3. Fail Securely
Security problems frequently arise
when programs fail

* They often fail into modes that aren’t

secure
So attackers cause them to fail
—To see 1f that helps them

So make sure that when ordinary
measures fail, the fallback 1s secure

\

/

Lecture 13

Page 6



-

* A major security flaw 1n typical Java RMI
implementations

For Example,

 If server wants to use security protocol
client doesn’t have, what happens?

— Client downloads 1t from the server
— Which it doesn’t trust yet . . .

* Malicious entity can force installation of
compromised protocol

\

Lecture 13

CS 236 Online

Page 7



/ 4. Use Principle of Least \
Privilege
* (Glve minimum access necessary

* For the minimum amount of time required
* Always possible that the privileges you give
will be abused

— E1ther directly or through finding a
security flaw

* The less you give, the lower the risk

Lecture 13
Page 8

CS 236 Online



-

CS 236 Online

For Example,

Say your web server interacts with a backend
database

It only needs to get certain information from the
database

— And uses access control to determine which
remote users can get it

Set access permissions for database so server can
only get that data

If web server hacked, only part of database 1s at
risk

\

/

Lecture 13
Page 9



-

CS 236 Online

5. Compartmentalize

Divide programs 1nto pieces

» Ensure that compromise of one piece

does not automatically compromise
others

Set up limited interfaces between
pieces

—Allowing only necessary interactions

\

Lecture 13

Page 10



/ For Example, \

* Traditional Unix has terrible compartmentalization

— Obtaining root privileges gives away the entire
system

* Redesigns that allow root programs to run under
other identities help

— E.g., mail server and print server users
* Not just a problem for root programs
— E.g., web servers that work for many clients

» Research systems like Asbestos allow finer
granularity compartmentalization Lecmre/ §

CS 236 Online Page 11




-

CS 236 Online

6. Value Simplicity

Complexity 1s the enemy of security

Complex systems give more
opportunities to screw up

* Also, harder to understand all “proper”

behaviors of complex systems

» So favor simple designs over complex

ONncs

\

Lecture 13

Page 12



4 N

For Example,

Re-use components when you think they’re secure

Use one implementation of encryption, not several

— Especially 1f you use “tried and true” implementation

Build code that only does what you need

— Implementation of exactly what you need are safer than
“Swiss army knife” approaches

Choose simple algorithms over complex algorithms
— Unless complex one offers necessary advantages

— “It’s somewhat faster” usually 1sn’t a necessary
advantage

— And “it’s a neat new approach” definitely isn’t /

Lecture 13
CS 236 Online Page 13




/ Especially Important When \
Human Users Involved

* Users will not read documentation

— So don’t rely on designs that require that
» Users are lazy

— They’ll 1gnore pop-ups and warnings

— They will prioritize getting the job done
over security

— So designs requiring complex user
decisions usually fail T

CS 236 Online Page 14




-

CS 236 Online

7. Promote Privacy

Avoid doing things that will
COmMpPromise user privacy

* Don’t ask for data you don’t need

» Avoid storing user data permanently

—Especially unencrypted data

» There are strong legal 1ssues related to

this, nowadays

\

Lecture 13

Page 15



-

CS 236 Online

\

For Example,

Google’s little war driving incident

They drove around many parts of the world
to get information on Wif1 hotspots

But they simultaneously were sniffing and
storing packets from those networks

And gathered a lot of private information

They got into a good deal of trouble . . .

Lecture 13
Page 16



/ 8. Remember That Hiding \
Secrets 1s Hard

* Assume anyone who has your program can
learn everything about it

» “Hidden” keys, passwords, certificates 1n
executables are invariably found

* Security based on obfusticated code 1s
always broken

 Just because you’re not smart enough to
crack it doesn’t mean the hacker isn’t, either /

Lecture 13
CS 236 Online Page 17




-

CS 236 Online

\

For Example,
Passwords often “hidden” in executables

— Zhuhai RaySharp surveillance DVRs had
one hard coded password on all 46,000+

— Allowed Internet access to any of them

Android apps containing private keys are in
use (and are compromised)

Ubiquitous 1n digital rights management

— And 1t never works

Lecture 13
Page 18



-

CS 236 Online

9. Be Reluctant to Trust

Don’t automatically trust things
— Especially if you don’t have to

Remember, you’re not just trusting the
honesty of the other party

— You’re also trusting their caution

» Avoid trusting users you don’t need to trust,

116]0)

— Doing so makes you more open to social
engineering attacks

\

/

Lecture 13
Page 19



-

CS 236 Online

For Example,

* Why do you trust that shrinkwrapped

software?

 Or that open source library?
* Must you?

* Can you design the system so 1t’s

secure even 1f that component fails?

e [fso,doit

\

Lecture 13

Page 20



/ 10. Use Your Community \

—Especial.
* Keep up to

Resources

» Favor widely used and respected
security sos

tware over untested stuff

'y your own . . .
date on what’s going on

—Not just patching
— Also things like attack trends

CS 236 Online

Lecture 13
Page 21



-

CS 236 Online

For Example,

Don’t implement your own AES code

Rely on one of the widely used
Versions

But also don’t be too trusting

—E.g., just because 1t’s open source
doesn’t mean it’s more secure

\

Lecture 13

Page 22



