
Lecture 13
Page 1 CS 236 Online

Principles for Secure Software

•  Following these doesn’t guarantee
security

•  But they touch on the most commonly
seen security problems

•  Thinking about them is likely to lead to
more secure code

Lecture 13
Page 2 CS 236 Online

1. Secure the Weakest Link

•  Don’t consider only a single possible
attack

•  Look at all possible attacks you can
think of

•  Concentrate most attention on most
vulnerable elements

Lecture 13
Page 3 CS 236 Online

For Example,
•  Those attacking your web site are not likely

to break transmission cryptography
– Switching from DES to AES probably

doesn’t address your weakest link
•  Attackers are more likely to use a buffer

overflow to break in
– And read data before it’s encrypted
– Prioritize preventing that

Lecture 13
Page 4 CS 236 Online

2. Practice Defense in Depth

•  Try to avoid designing software so failure
anywhere compromises everything

•  Also try to protect data and applications
from failures elsewhere in the system

•  Don’t let one security breach give away
everything

Lecture 13
Page 5 CS 236 Online

For Example,
•  You write a routine that validates all input

properly
•  All other routines that are supposed to get input

should use that routine
•  Worthwhile to have those routines also do some

validation
– What if there’s a bug in your general routine?
– What if someone changes your code so it

doesn’t use that routine for input?

Lecture 13
Page 6 CS 236 Online

3. Fail Securely
•  Security problems frequently arise

when programs fail
•  They often fail into modes that aren’t

secure
•  So attackers cause them to fail

– To see if that helps them
•  So make sure that when ordinary

measures fail, the fallback is secure

Lecture 13
Page 7 CS 236 Online

For Example,

•  A major security flaw in typical Java RMI
implementations

•  If server wants to use security protocol
client doesn’t have, what happens?
– Client downloads it from the server
– Which it doesn’t trust yet . . .

•  Malicious entity can force installation of
compromised protocol

Lecture 13
Page 8 CS 236 Online

4. Use Principle of Least
Privilege

•  Give minimum access necessary
•  For the minimum amount of time required
•  Always possible that the privileges you give

will be abused
– Either directly or through finding a

security flaw
•  The less you give, the lower the risk

Lecture 13
Page 9 CS 236 Online

For Example,
•  Say your web server interacts with a backend

database
•  It only needs to get certain information from the

database
– And uses access control to determine which

remote users can get it
•  Set access permissions for database so server can

only get that data
•  If web server hacked, only part of database is at

risk

Lecture 13
Page 10 CS 236 Online

5. Compartmentalize

•  Divide programs into pieces
•  Ensure that compromise of one piece

does not automatically compromise
others

•  Set up limited interfaces between
pieces
– Allowing only necessary interactions

Lecture 13
Page 11 CS 236 Online

For Example,
•  Traditional Unix has terrible compartmentalization

– Obtaining root privileges gives away the entire
system

•  Redesigns that allow root programs to run under
other identities help
– E.g., mail server and print server users

•  Not just a problem for root programs
– E.g., web servers that work for many clients

•  Research systems like Asbestos allow finer
granularity compartmentalization

Lecture 13
Page 12 CS 236 Online

6. Value Simplicity

•  Complexity is the enemy of security
•  Complex systems give more

opportunities to screw up
•  Also, harder to understand all “proper”

behaviors of complex systems
•  So favor simple designs over complex

ones

Lecture 13
Page 13 CS 236 Online

For Example,
•  Re-use components when you think they’re secure
•  Use one implementation of encryption, not several

–  Especially if you use “tried and true” implementation
•  Build code that only does what you need

–  Implementation of exactly what you need are safer than
“Swiss army knife” approaches

•  Choose simple algorithms over complex algorithms
–  Unless complex one offers necessary advantages
–  “It’s somewhat faster” usually isn’t a necessary

advantage
–  And “it’s a neat new approach” definitely isn’t

Lecture 13
Page 14 CS 236 Online

Especially Important When
Human Users Involved

•  Users will not read documentation
– So don’t rely on designs that require that

•  Users are lazy
– They’ll ignore pop-ups and warnings
– They will prioritize getting the job done

over security
– So designs requiring complex user

decisions usually fail

Lecture 13
Page 15 CS 236 Online

7. Promote Privacy

•  Avoid doing things that will
compromise user privacy

•  Don’t ask for data you don’t need
•  Avoid storing user data permanently

– Especially unencrypted data
•  There are strong legal issues related to

this, nowadays

Lecture 13
Page 16 CS 236 Online

For Example,
•  Google’s little war driving incident
•  They drove around many parts of the world

to get information on Wifi hotspots
•  But they simultaneously were sniffing and

storing packets from those networks
•  And gathered a lot of private information
•  They got into a good deal of trouble . . .

Lecture 13
Page 17 CS 236 Online

8. Remember That Hiding
Secrets is Hard

•  Assume anyone who has your program can
learn everything about it

•  “Hidden” keys, passwords, certificates in
executables are invariably found

•  Security based on obfusticated code is
always broken

•  Just because you’re not smart enough to
crack it doesn’t mean the hacker isn’t, either

Lecture 13
Page 18 CS 236 Online

For Example,
•  Passwords often “hidden” in executables

– Zhuhai RaySharp surveillance DVRs had
one hard coded password on all 46,000+

– Allowed Internet access to any of them
•  Android apps containing private keys are in

use (and are compromised)
•  Ubiquitous in digital rights management

– And it never works

Lecture 13
Page 19 CS 236 Online

9. Be Reluctant to Trust
•  Don’t automatically trust things

– Especially if you don’t have to
•  Remember, you’re not just trusting the

honesty of the other party
– You’re also trusting their caution

•  Avoid trusting users you don’t need to trust,
too
– Doing so makes you more open to social

engineering attacks

Lecture 13
Page 20 CS 236 Online

For Example,

•  Why do you trust that shrinkwrapped
software?

•  Or that open source library?
•  Must you?
•  Can you design the system so it’s

secure even if that component fails?
•  If so, do it

Lecture 13
Page 21 CS 236 Online

10. Use Your Community
Resources

•  Favor widely used and respected
security software over untested stuff
– Especially your own . . .

•  Keep up to date on what’s going on
– Not just patching
– Also things like attack trends

Lecture 13
Page 22 CS 236 Online

For Example,

•  Don’t implement your own AES code
•  Rely on one of the widely used

versions
•  But also don’t be too trusting

– E.g., just because it’s open source
doesn’t mean it’s more secure

