Encryption and Network Security

- Cryptography is widely used to protect networks
- Relies on encryption algorithms and protocols discussed previously
- Can be applied at different places in the network stack
- With different effects and costs

Where Are the Endpoints, Anyway?

- If you do end-to-end encryption, where are the endpoints?
- The network layer end points?
- The transport layer end points?
- The application layer end points?
- Maybe not even end machine to end machine (e.g., VPNs)?
- Has serious implications for where you do cryptography
 - And keying and trust issues

IPsec

- Standard for applying cryptography at the network layer of IP stack
- Provides various options for encrypting and authenticating packets
 - -On end-to-end basis
 - -Without concern for transport layer (or higher)

What IPsec Covers

- Message integrity
- Message authentication
- Message confidentiality

What Isn't Covered

- Non-repudiation
- Digital signatures
- Key distribution
- Traffic analysis
- Handling of security associations
- Some of these covered in related standards

Some Important Terms for IPsec

 Security Association - "A Security Association (SA) is a simplex 'connection' that affords security services to the traffic carried by it."

– Basically, a secure one-way channel

 SPI (Security Parameters Index) – Combined with destination IP address and IPsec protocol type, uniquely identifies an SA

General Structure of IPsec

- Really designed for end-to-end encryption

 Though could do link level
- Designed to operate with either IPv4 or IPv6
- Meant to operate with a variety of different ciphers
- And to be neutral to key distribution methods
- Has sub-protocols
 - E.g., Encapsulating Security Payload

Encapsulating Security Payload (ESP) Protocol

- Encrypt the data and place it within the ESP
- The ESP has normal IP headers
- Can be used to encrypt just the payload of the packet
- Or the entire IP packet

ESP Modes

- Transport mode
 - Encrypt just the transport-level data in the original packet
 - -No IP headers encrypted
- Tunnel mode
 - -Original IP datagram is encrypted and placed in ESP
 - Unencrypted headers wrapped around ESP

ESP in Transport Mode

- Extract the transport-layer frame -E.g., TCP, UDP, etc.
- Encapsulate it in an ESP
- Encrypt it
- The encrypted data is now the last payload of a cleartext IP datagram

Using ESP in Tunnel Mode

- Encrypt the IP datagram
 - -The entire datagram
- Encapsulate it in a cleartext IP datagram
- Routers not understanding IPsec can still handle it
- Receiver reverses the process

Uses and Implications of Tunnel Mode

- Typically used when there are security gateways between sender and receiver
 - And/or sender and receiver don't speak IPsec
- Outer header shows security gateway identities

– Not identities of real parties

• Can thus be used to hide some traffic patterns

What IPsec Requires

- Protocol standards
 - To allow messages to move securely between nodes
- Supporting mechanisms at hosts running IPsec
 - -E.g., a Security Association Database
- Lots of plug-in stuff to do the cryptographic heavy lifting

The Protocol Components

- Pretty simple
- Necessary to interoperate with non-IPsec equipment
- So everything important is inside an individual IP packet's payload
- No inter-message components to protocol
 - Though some security modes enforce inter-message invariants at endpoints

The Supporting Mechanisms

- Methods of defining security associations
- Databases for keeping track of what's going on with other IPsec nodes
 - To know what processing to apply to outgoing packets
 - To know what processing to apply to incoming packets

Plug-In Mechanisms

- Designed for high degree of generality
- So easy to plug in:
 - -Different crypto algorithms
 - -Different hashing/signature schemes
 - -Different key management mechanisms

Status of IPsec

- Accepted Internet standard
- Widely implemented and used
 - Supported in Windows 2000, XP, Vista, Windows 7 and later
 - In Linux 2.6 (and later) kernel
- The architecture doesn't require everyone to use it
- RFC 3602 on using AES in IPsec still listed as "proposed"
- AES will become default for ESP in IPsec